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La notion d’espace

1.1  DEFINITIONS

Disons de suite que I'on ne peut définir tous les termes, certaines notions primitives sont sans
définition. Par exemple certaines définitions sont circulaires, elles dépendent d’autres définitions
qui dépendent elles-mémes de ce que 'on cherche & définir. La mise en place des premieres
notions est souvent un procédé itératif, on doit en parler avant de les avoir définies.

On fonctionne par analogie avec notre perception de l’environnement, principalement la
feuille de papier ou le tableau noir, et la surface de la Terre.

DEFINITION 1.1.1. Espace topologique

Un espace topologique est un ensemble de points dans lequel le voisinage de chaque point
est défini, grace auquel on définit les concepts de continuité, de limite et de connexité.
C’est donc un espace dont les éléments sont des points, muni d’une structure appelée
topologie, qui définit la notion de voisinage d’un point.

C’est I'espace le plus général dans lequel on puisse faire des mathématiques.

Les systemes de coordonnées ont probablement pour origine les premieres cartes de naviga-
tion indiquant les paralleles et les méridiens.

DEFINITION 1.1.2. Dimension d’un espace topologique
La dimension d’un espace topologique est le nombre minimal de coordonnées nécessaires
pour spécifier un point de cet espace.

Le point et la droite sont des objets mathématiques primitifs, sans définition. On les imagine
plongés dans le plan, alors que celui-ci n’est pas défini. Pour repérer un point sur une droite dont
on a fixé l'origine, il ne faut qu’'une seule coordonnée. On peut en utiliser deux si on la plonge
dans un plan, mais une seule est nécessaire. Nous pouvons dire que c¢’est un espace topologique
de dimension 1, constitué d’une succession infinie de points, sans extrémités et sans courbure.
Néanmoins, la courbure n’étant pas définie, cette définition ne fait que repousser le probleme a
une autre définition.
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Une courbe est un espace topologique de dimension 1, constitué d’une succession infinie de
points, sans extrémités. Elle généralise la notion de droite, celle-ci étant une courbe particuliere.
Pour repérer un point sur une courbe seule est nécessaire 1’abscisse curviligne.

Un plan est un espace topologique de dimension 2, d’extension infinie et sans courbure.
C’est un objet mathématique primitif. Le plan est I’analogue en deux dimensions a la droite.
Une surface est un espace topologique de dimension 2. Elle généralise le plan, celui-ci étant une
surface particuliere.

1.2 GEODESIQUES D’'UN ESPACE

Les géodésiques sont la généralisation des droites aux espaces courbes de dimension quel-
conque. Ce sont les courbes de courbure minimale, elles possedent la méme courbure locale (au
voisinage immédiat de chacun de leur point) que l’espace lui-méme. Sur un plan leur courbure
est nulle, ce sont des droites. On réserve le terme « droite » aux espaces plats, sans courbure
intrinseque. Un arc de géodésique est aussi une géodésique. Les arcs de courbes qui minimisent
la distance entre deux points, appelées orthodromies, sont des géodésiques mais la réciproque
est fausse. Sur une sphere les grands cercles et les arcs de grands cercles sont des géodésiques.
Prenons deux points sur un grand cercle. S’ils ne sont pas antipodaux ils définissent un petit
arc et un grand arc de grand cercle, qui sont tous les deux des géodésiques. Pour se représenter
une géodésique sur une surface quelconque on peut imaginer un ruban pas trop large que 1'on
colle au mieux (avec un minimum de pliures) sur la surface.

Si l'on sait tracer des géodésiques et mesurer des angles (rapport de deux longueurs), une
surface est plane ssi la somme des angles de tout triangle tracé a ’aide de géodésiques sur cette
surface vaut 7. On peut également utiliser la somme des angles d'un carré qui vaut 2m, ou l'aire
de toute figure géométrique fermée, celle d'un disque de rayon r vaut 7r?, celle d'un carré de
coté r vaut 2, etc.

1.3 PLONGEMENT D’UN ESPACE

Bien qu’ayant une existence propre, les droites, les courbes, les plans et les surfaces sont
habituellement représentés dans un espace de dimension supérieure. Les courbes sont représen-
tées dans le plan ou dans 'espace (& 3 dimensions), les plans et les surfaces dans I'espace. S’il
aide a se faire une image mentale, ce plongement n’a aucune nécessité. Les espaces topologiques
ont une existence propre sans plongement dans un espace de dimension supérieure, sans quoi
ce dernier devrait a son tour étre plongé dans un espace de dimension plus grande, et ainsi de
suite.

1.4 COURBURE

Il est important de distinguer la courbure intrinséque et la courbure extrinseque. Le cylindre
et le cone sont des espaces topologiques plats, ils peuvent étre déroulés pour en faire un plan et
ont méme topologie que le plan. Ils ont une courbure extrinséque mais n’ont pas de courbure
intrinseque (qui leur est propre). En restant a la surface d'un cylindre ou d’un cone rien ne
permet de mettre en évidence une quelconque courbure locale. La somme des angles d'un
triangle tracé sur un cylindre ou un cone vaut 7w. En revanche, la courbure globale apparait
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lorsque en avancant perpendiculairement a la génératrice du cylindre I'on revient sur nos pas.
Dans les cas du cylindre et du cone la courbure globale est liée a leur seule courbure extrinseque.
Seule la courbure intrinseque est utile en géométrie, la courbure extrinseque est de moindre
importance, elle est liée au plongement de la surface dans un espace de dimension supérieure.

1.4.1 Courbure positive

La sphére est un espace topologique courbe, sa courbure intrinseque fait que ’on ne peut
la déplier sans déformations pour en faire un plan. Sa courbure constante positive est mise en
évidence en mesurant la somme des angles d'un triangle sphérique, triangle dont les cotés sont
des arcs de grands cercles, elle est comprise entre 7 et 37. De méme, 'aire du triangle sphérique
est supérieure a celle d'un triangle plat. Dans le cas de la sphere la courbure globale est liée a
la courbure intrinseque.

1.4.2 Courbure négative

La selle de cheval a aussi une courbure intrinseque, négative et non constante, elle tend
vers zéro a mesure que 'on s’éloigne du siege. A noter qu'une surface de coubure négative
constante ne peut étre réalisée dans I'espace ordinaire a trois dimensions. La somme des angles
d’un triangle hyperbolique, triangle dont les cotés sont des géodésiques, est inférieure a m, et
I’aire du triangle hyperbolique est inférieure a celle d’un triangle plat.






Notation indicielle

2.1 CONVENTION DE SOMMATION

En notation indicielle les coordonnées x, v, z, sont notées ', 22, 23. Cette notation permet
d’adopter la convention de sommation suivante :

NOTATION 1. Toutes les fois que dans un monéme (expression de la forme az™) figure le méme
indice en haut et en bas, nous devons sommer tous les mondémes obtenus en domnant a cet indice

toutes les valeurs possibles.

EXEMPLE 2.1.1. La différentielle totale de la fonction f(x,y, z) exprimée dans le systéme
de coordonnée (x,y, z), s’écrit sous forme indicielle avec la convention de sommation :

f of of .

df = (9 dy +8z
af of of . 5
axl 8x2d +8xd
af . .

ot Uindice latin i varie de 1 a 3.

NOTATION 2. Lorsqu’aucune confusion n’est possible sur les coordonnées employées, la dérivée
partielle premiere par rapport d la i variable d’une fonction f quelconque est aussi notée

of _
oxt o
ou bien simplement avec une virgule et un indice inférieur :
of
- = f,i
ozt

Un indice en haut d’une lettre au numérateur est équivalent a un indice en bas d’une lettre au déno-
minateur. La dérivée partielle seconde est notée :

0 _
daigai — 007

= f,ij
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Pour un systéme de coordonnées primé, nous mettrons le prime sur l’indice,

af _
a7 = 017

= i
fi

bien qu’il ne s’agisse pas de l'indice i’ mais de la i ™ coordonnée x’. Cette notation permet au symbole
Oy d’indiquer une dérivation partielle par rapport a la i €™ coordonnée de la base primée.

EXEMPLE 2.1.2. La différentielle totale de la fonction g(t',x',y',2") exprimée dans le
référentiel (t', 2’y 2'), s’écrit sous forme indicielle avec la convention de sommation :

dg dg dg dg
dg==dt + —=dz’ + == dy' + == d?’
I= 9t T g™ Ty T 5,
dg 0 dg 1 dg 2 dg 3
= w dl‘l + 81‘/1 dl’, + w dl’, —I— % dl‘l
= N,g dl‘u
= g,p/dl‘u/

ot l’indice grec p varie de 0 a 3.

2.2 QUELQUES IDENTITES

En notation indicielle la matrice colonne [u] est notée u’, la matrice carrée [a] est notée a;;.

REMARQUE 1. Parler de la matrice u® est un abus de langage pour parler de la matrice [u] dont les
composantes sont les u', de méme pour la matrice a;;.

. i A 1 2 3
Vi=1,2,3 a;uw = apu + apu” + a;u

ol le symbole £ signifie « par définition », dans le cas présent par définition de la notation
employée.
(1) Lorsque la matrice [a;;] est non symétrique (a;; # aj;), nous avons
aiju'v’ = a;viu’ et aiju'v’ = ajulv’
ou = est le symbole d’équivalence, et les inégalités :
al-juivj =+ al-jujvi et al-juivj + ajiuivj (1)
Par exemple

A 1.1 1,2 2.1 2.2
o a;;u'v! = anu v 4 apu v+ anuTv 4 anuv
vi,j =12 A 1,1 2.1 1,2 2.2
= QU U+ apuU + a1l U7 4 Gutv

aijujvi
A partir des inégalités (1) on déduit :

(aij + aji)u'v? # 2au'v?
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(2) En posant 2/ = v/ + 07 :
aij (W +v7) = aju’ + a0
aij(zj) = aijuj + aijvj
(3) Avec v/ = wiu® :
{(aij + a)u'n! = 2au'

(aij — aji)uiuj =

2.3 SYMBOLE DE KRONECKER

DEFINITION 2.3.1. Symbole de Kronecker 0;;
1l est défini par :
{515 =1 pouri =7, donc d; =1

0ij = 0 pour i # j

Il permet d’utiliser la convention de sommation sur les indices répétés.

EXEMPLE 2.3.1.
ds* = (dx1)2 + (dx2)2 + oo+ (da)?
:(Szjdflfldflfj i,jzl,...,n

Les indices du symbole de Kronecker sont en bas pour respecter la convention de sommation.
C’est aussi un opérateur de substitution d’indice :

EXEMPLE 2.3.2. Soit (z%) un systéme de coordonnées :

Vi 22=0xa'4+0x2®2+--+1xzt+---+0x 2"

= 5Z'jl'j

EXEMPLE 2.3.3. Soit (z') un systéme de coordonnées :

Vi = i ort  Ox
T o T ax = .. 01!
ox' - ViJ g5 = O
Vi #£ j i 0 carx' et x’ sont indépendants

EXEMPLE 2.3.4. Soient (z') et (y’) deuz systémes de coordonnées. Les n fonctions

Vi=1,...,n xi:xi<y1,y2,...,y")
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sont supposées au moins de classe C? : les dérivées partielles secondes existent et sont
continues, donc a fortiori les dérivées partielles premieres. Elles sont aussi supposées
indépendantes de sorte que l'on puisse résoudre les n équations en fonction des x*,
Vi=1,....n o =y (xl,a:2,...,x")
qui sont alors aussi de classe C*. D’une part :
Oz
dy”
oy*
ort oy*
O (2)
oy* OxJ
D’autre part, avec ’exemple précédent ou en différentiant le résultat de 'exemple 2.3.2 :

Vi dxt =

Avec les deux égalités précédentes :
ozt oy*
oyk oxi Y

Notez que si l'on pose i = j la somme sur k disparait dans (2), et (3) donne bien 6; = 1.

(3)

Vi, j

2.4 SYMBOLE D’ANTISYMETRIE

DEFINITION 2.4.1. Symbole d’antisymétrie
Le symbole d’antisymétrie € ou e;; ou ! est défini par :

€9 =0 pouri=j=1,2
€9 =41 pouri=1c¢etj=2
9= —1pouri=2etj=1

Le symbole est bien antisymétrique :

gl — _gJt

EXEMPLE 2.4.1. Grace au symbole d’antisymétrie, le déterminant d’une matrice s’écrit :

1,2
a; a
1 47 1.2 1.2
1 2| = Q109 — Q04
ay G
_ 61]a1a2

17

On généralise ce symbole a un nombre quelconque d’indice, par exemple 3 :

£% — () si deux indices ont méme valeur

€% = 41 si les indices sont dans I'ordre 1,2,3 ou si le nombre de permutations est pair

€% = —1 si le nombre de permutations est impair
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EXEMPLE 2.4.2.

g2 _ 183 _ 212 —0
g128 _ 312 _ 231 _
Q182 _ 321 _ 213 _ 4






Vecteurs

Historiquement, les vecteurs modéliserent d’abord des notions issues de la mécanique clas-
sique, principalement celles de force et de vitesse.

3.1 REPRESENTATION GEOMETRIQUE

NOTATION 3. Les vecteurs sont notés par des lettres droites en caractére gras, par exemple £ pour
la force, ou par des lettres surmontées d’une fléche f.

Dans 'espace physique, représenté par ’espace a trois dimensions de la géométrie classique,
les vecteurs forces sont représentés par une fleche ayant une longueur proportionnelle a 'inten-
sité (ou magnitude) de la force, une direction et un sens qui sont celui de la force, et ayant pour
origine le point d’application de la force.

3.1.1 Lois de composition géométriques

En accord avec la notion physique de force qu’ils modélisent, on définit sur les vecteurs les
deux opérations suivantes, appelées lois de composition :

(1) L’addition de deux vecteurs ayant méme origine donne un vecteur

Fi1c. 3.1 — Addition des vecteurs u et v

C’est la regle du parallélogramme pour la composition des forces ayant méme point
d’application. De méme que la somme de deux forces est une force, la somme de deux
vecteurs est un vecteur. Pour additionner deux forces nous devons les rapporter a la
méme origine. De méme, nous n’additionnerons que des vecteurs ayant méme origine
et la théorie des espaces vectoriels sera construite sous cette hypothese.
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EXEMPLE 3.1.1. Imaginons un cube homogene vu de dessus sur lequel on exerce
deux forces perpendiculaires aux faces :

En négligeant les frottements, sous ’action de ces deux forces le cube se déplace
en translation. Pour sommer ces deux forces en une unique force nous les trans-
latons pour qu’elles aient méme origine. Pour que le cube ait un mouvement de
translation sans rotation, la force résultante doit passer par le centre de gravité
du cube. On en déduit le point d’application de cette force.

Nous parlons de vecteur 1ié (& un point) lorsque le point d’application du vecteur
est spécifié, de vecteur libre lorsque ce point n’est pas spécifié.

(2) La multiplication d’un vecteur par un nombre réel donne un vecteur

Fi1c. 3.2 — Multiplication du vecteur u par le nombre réel «

Le vecteur obtenu est homothétique au vecteur de départ, il a méme direction, il
est de méme sens si a > 0 et de sens contraire si a < 0, et sa longueur est multipliée
par |a|. De méme qu’'une force dont l'intensié varie reste une force, la multiplication
d’un vecteur par un réel est un vecteur.

Ces deux lois peuvent s’appliquer en une seule fois :

DEFINITION 3.1.1. Soient a et 3 deux nombres réels, le vecteur w tel que
w=au+ v

est appelé combinaison linéaire des vecteurs u et v. a et B sont les coefficients de la
combinaison linéaire.
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Notons que la vitesse est aussi un vecteur, et que la combinaison linéaire de deux forces
donne toujours une force et jamais une vitesse. Il faudra donc toujours préciser a quel ensemble
de vecteurs, c’est-a-dire a quel espace vectoriel appartient le vecteur dont on parle.

Les objets mathématiques qui modélisent la physique doivent étre des objets géométriques,
c’est-a-dire indépendants du systéeme de coordonnées dans lequel on les exprime. Lorsqu’'une
propriété physique est définie en un point par un seul nombre indépendant du systéme de
coordonnées, nous parlerons de scalaire, par exemple la température et la masse volumique
sont des scalaires. Si en chaque point d'un espace on associe une propriété alors on parle de
champ, par exemple la température est un champ de scalaires. Lorsque dans un espace de
dimension 3 une propriété physique est définie en un point par un ensemble de trois nombres
indépendant du systéeme de coordonnées, nous parlerons de wvecteur, et de champ de vecteur si
on définit un vecteur en chaque point de cet espace. Par exemple le champ de vecteurs vitesse
du vent. Lorsqu’une propriété physique est définie en un point par un ensemble de plus de trois
nombres indépendant du systéme de coordonnées, nous parlerons de tenseur, et de champ de
tenseur si on définit un tenseur en chaque point de cet espace..

3.1.2 Propriétés des lois de composition

Dans ce qui suit nous notons @ l’addition vectorielle pour la distinguer de 'addition des
réels, et ® la multiplication d’un vecteur par un réel pour la distinguer de la multiplication des
réels.

Supposons que nous ayons un ensemble d’éléments sur lesquels on puisse appliquer deux
lois de composition. Ces éléments sont-ils des vecteurs ? Pour répondre il faut savoir si les deux
lois sont identiques a celles que nous avons définies. Elles le seront si elles vérifient les mémes
propriétés, c’est-a-dire :

(1) Addition de vecteurs.
(a) Commutativité :
udbv=vdu
(b) Associativité :
ud (VOwW)=udvaow
(c) Existence d’'un élément neutre appelé vecteur nul et noté 0, tel que :
ud0=u
(d) Pour tout vecteur u il existe le vecteur opposé u, tel que :
ud(u)=0

L’existence d'un opposé nécessite donc I'existence d’un élément neutre. De plus on
définit la soustraction vectorielle comme étant ’addition vectorielle avec 'opposé :

uov=ud (v)
On montre plus loin que u = (—1) ® u.
(2) Multiplication par un réel. V(a, 3) € R,
(a) Associativité :
a@(fou)=(axf)ou

Il s’agit ici d’'un abus de langage, il n’y a pas associativité puisque le signe ® du
membre de gauche de I'égalité est le signe opératoire de la multiplication d’un
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vecteur par un réel, alors que le signe x du membre de droite est celui de la
multiplication dans R.

(b) Distributivité par rapport a l'addition des réels :
(@+pf)Ou=(aou)®(fou)

Il s’agit ici aussi d’un abus de langage, il n’y a pas distributivité puisque le signe
+ du membre de gauche est le signe opératoire de I’addition dans R, alors que le
signe @ du membre de droite est celui de 'addition vectorielle.

(c) Distributivité par rapport a ’addition des vecteurs :
a@udv)=(adu)® (a®v)
(d) Existence d’'un élément neutre, le réel 1, tel que :

l1Gu=u

3.1.3 Quelques propriétés

Soient u un vecteur et k£ un réel :

(1) 0ou=0
DEMONSTRATION.
04+0)Gu=00u
0Ou+00u=00u+0
0Ou=0
O
(2) k©0=0
DEMONSTRATION.
k©(0&0)=ko0
ko0 ko0=kc050
Ek©0=0
O]
B)u=(-1)Ou
DEMONSTRATION.
0=00u
E©0=(k—k)©
Eoueu) =k+(— ﬂ@u
k@u@k@u_kQu@(kQ@u
=(=k)©
Ou=(-1)0©
u=(-1)o
0

(4) Sik©Gu=0alors k=0ouu=0
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DEMONSTRATION. Supposons k = 0 :

0Ou=0
Supposons k # 0 :
EoGu=0
Flokouw) =k100
(k'k)ou=0
u=20

3.1.4 Définitions mathématiques

DEFINITION 3.1.2. Espaces vectoriels, vecteurs

Soit K un corps commutatif (le corps des réels R ou le corps des complexes C), dont les
éléments sont appelés scalaires. Considérons un ensemble non vide & d’éléments notés
u,v,w,... Supposons qu’il existe entre les éléments de & une loi de composition interne
(une application de & x & dans &), notée @, et une loi de composition externe a gauche
sur & de domaine K (une application de K x & dans & ), notée ©®, telles que :

(1) A deuz éléments u et v de &, la loi @ fasse correspondre un élément w de &,
noté udv. En outre, la loi & posséde les propriétés (1)(a), (1)(b), (1)(c) et (1)(d)
que nous venons de voir.

(2) A un scalaire o € K et a un élément u de &, la loi © fasse correspondre un
élément de &, noté a ® u. En outre, pour f € K, la loi ® posséde les propriétés
(2)(a), (2)(b), (2)(c) et (2)(d) que nous venons de voir.

Les éléments u,v,w,... sont appelés des vecteurs. La loi ® est appelée addition vec-
torielle, et la loi ® multiplication par un scalaire. (&,®,®) noté E, est appelé espace
vectoriel sur le corps K, ou K-espace vectoriel. & est le support de l’espace vectoriel et les
lois de composition constituent une structure pour & .

Les quatre premiers axiomes se résument en disant que (&, @) est un groupe abélien (ou
commutatif) par rapport a ’addition vectorielle. Les quatre axiomes suivants définissent « 1’ac-
tion » du corps K sur ’ensemble &

Pour simplifier ’écriture, 'addition vectorielle @ est souvent notée + par analogie avec
I’addition des scalaires. De méme, la multiplication par un scalaire © est souvent notée X,
ou encore on pourra omettre le symbole, par analogie avec la multiplication des scalaires. Par
convention, la loi ® est prioritaire sur la loi &.

Si la seconde loi est définie pour tout nombre réel o, nous dirons que I’ensemble & muni des
deux lois @ et ® est un espace vectoriel sur ’ensemble des nombres réels, ou R-espace vectoriel,
ou encore espace vectoriel réel. Si la seconde loi est définie pour tout nombre complexe «, nous
dirons que I'ensemble & muni des deux lois @ et ® est un espace vectoriel sur ’ensemble des
nombres complexes, ou C-espace vectoriel, ou encore espace vectoriel complexe.

Dans ce qui suit nous nous limiterons aux espaces vectoriels sur I’ensemble des nombres
réels.
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3.2 REPRESENTATION ALGEBRIQUE

Pour effectuer des calculs sur les vecteurs, par exemple en trois dimensions, on dote 1’espace
ponctuel d'un systéme de coordonnées (O, z,y, z), c’est-a-dire d’un point origine O et, dans
le cadre de la physique classique, d'un systéme de coordonnées habituellement rectangulaire
(x,y, z), comme définis au paragraphe 7 p. 55.

A Tlaide des points de cet espace ponctuel, on peut construire des vecteurs de la fagon
suivante. A chaque point A = (x4,ya,z4) de Pespace ponctuel on associe le vecteur a = OA,
et a chaque vecteur a on associe le point A tel que OA = a. Ainsi en généralisant a n
dimensions, il existe une bijection ¢ entre ’espace ponctuel &, et 'espace vectoriel F,,, ils sont
« équipotents » :

v aceE,—»A=p(a)eé,
0e€E,—O=¢(0)ec&,

DEFINITION 3.2.1. Espace ponctuel

Soit £ un ensemble d’éléments appelés points et notés A, B,C, ... Supposons qu’a tout
couple (A, B) de points de £ pris dans cet ordre, on fasse correspondre un vecteur, noté
AB, la correspondance suivant les trois axiomes :

(1) AB=—-BA
(2) AB = AC + CB
(3) VO € &, Yue E,, IIMeé, tel que OM =nu

Nous dirons que [’ensemble £ constitue un espace ponctuel a n dimensions, noté &,.
L’espace vectoriel E,, est appelé espace associé a &E,.

L’ensemble des points correspondant aux valeurs des n coordonnées dans un certain do-
maine, constitue le support d'un espace ponctuel a n dimensions. Pour obtenir un espace ponc-
tuel, il faut structurer cet ensemble en ajoutant la correspondance que nous venons d’énoncer.

Si les axes de coordonnées portent la méme unité on parle d’espace métrique car on peut
y définir une distance ou métrique. Dans le cas contraire on parle d’espace affine. Par exemple
en thermodynamique 1'espace de Clapeyron (P, V') est un espace affine car on ne peut y définir
une distance.

Par abus de langage nous dirons que A est l'origine du vecteur AB, et B son extrémité. Les
coordonnées des points A et B définissent le vecteur AB. Dans un espace a trois dimensions,
ce vecteur est associé a un ensemble de six nombres réels ordonnés (x4, ya, 24, 5, yp, 25). Nous
dirons que ce vecteur est li¢ a son point origine A. Cependant, il n’est pas utile de conserver le
point origine dans la définition des vecteurs, les vecteurs seront des fonctions des coordonnées
du point origine. Les vecteurs que nous utilisons sont [ibres, ils n’ont pas de point d’application
spécifié.

En utilisant les axiomes 1 et 2 :

AB =AO +0OB
= 0B - 0A

Dans un espace a trois dimensions, on associe au vecteur A B les trois nombres réels ordonnés
(xp — TA,YB — Ya, 2B — 24), qui sont les coordonnées du point a son extrémité.
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Les vecteurs ont une existence propre indépendante du systeme de coordonnées. En effet, ils
modélisent la réalité alors que le choix d’un systeme de coordonnées est toujours arbitraire. Les
coordonnées du point a 'extrémité d'un vecteur dépendent du systeme de coordonnées choisi
et ont par conséquent le méme arbitraire. Par exemple, une force exercée ne dépend pas du
systeme de coordonnées utilisé pour définir le vecteur qui modélise cette force.

EXEMPLE 3.2.1. Vecteur force f dans le systéme de coordonnées (O, x,y, z) :
z

Fic. 3.3 — Coordonnées du vecteur force f

Dans le systeme de coordonnées (O, z,y, z), le point a lextrémité du vecteur f a pour
coordonnées (x¢,yys, zf). Par abus de langage on parle des coordonnées d'un vecteur pour parler
des coordonnées du point a son extrémité.

NOTATION 4. Nous utiliserons la notation indicielle pour les azes et pour les coordonnées :

F1c. 3.4 — Notation indicielle

Dans le systéeme de coordonnées (O, ', 2%, x3), le point a Uextrémité du vecteur f a pour coordon-

nées (x}, m%, x?c)

3.2.1 Base vectorielle

Nous sommes passés par les coordonnées d’un point pour traiter de vecteurs mais nous
pouvons nous abstraire momentanément de la notion de point. En effet, a chaque systeme de
coordonnées, qu’il soit rectiligne ou curviligne, orthogonal ou non, nous pouvons associer au
plus deux bases vectorielles :

— En plagant un vecteur de base tangent a chaque ligne de coordonnées
— En plagant un vecteur de base perpendiculaire a chaque hypersurface de coordonnées

Ces deux bases sont dites réciproques (voir le paragraphe 13.5 p. 115). Nous appellerons « base
tangente » la premiere de ces bases, et « base réciproque » la base perpendiculaire aux hy-
persurfaces de coordonnées. Tous les vecteurs peuvent s’écrire d’une maniére unique comme
combinaison linéaire des vecteurs de I'une de ces deux bases.
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EXEMPLE 3.2.2. Soient i,j,k les vecteurs de base unitaires (d’intensité un newton) deux
a deux orthogonaux de [’espace vectoriel des forces de la physique classique non relativiste.
Le vecteur force f s’écrit sous la forme d’une combinaison linéaire de ces trois vecteurs
force i,j, k :

f=ri+r+rk
Les vecteurs i, j, k forment la base orthonormée (i,j,k) dite base canonique, signifiant ici
« la plus simple ». Toute autre base sera définie par rapport a la base canonique.

k
JX
i !
i =

Fi1G. 3.5 — La force f comme combinaison linéaire des vecteurs force i, j, k

Elle préexiste donc, souvent de facon implicite, a toute autre base. Une fois posée, nous
pouvons nous abstraire du systéme de coordonnées (rectangulaires). Nous dirons que le
vecteur force f se décompose dans la base unitaire (i,j, k) de l’espace des forces, et que
les nombres f*, f? et f3 sont les composantes du vecteur force f dans cette base.

EXEMPLE 3.2.3. En coordonnées polaires les lignes de coordonnée p = c'¢ sont des cercles
centrés sur l'origine. Les lignes de coordonnée 0 = c**¢ sont des demi-droites issues de
lorigine.

)
0 = 60°
6 = 30°
p=3
x
0 = —30°
0 = —60°

Fi1c. 3.6 — Lignes de coordonnées polaires

Les wvecteurs unitaires de la base polaire sont construits tangentiellement auz lignes de
coordonnées polaires.
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€9

F1G. 3.7 — Vecteurs unitaires de la base polaire

DEFINITION 3.2.2. Composantes d’un vecteur

Tout vecteur se décompose de fagcon unique dans une base, sous la forme d’une combi-
naison linéaire des vecteurs de base. Les coefficients de cette combinaison linéaire sont
appelés les composantes du vecteur dans cette base.

REMARQUE 2. On trouve parfois le terme de « coordonnées » d’un vecteur dans une base d la place de
« composantes ». Nous ferons la distinction et parlerons de coordonnées pour un point dans un systéme
de coordonnées.

REMARQUE 3. Les vecteurs forces, positions, vitesses, accélérations, champs électriques, etc. appar-
tiennent a des espaces vectoriels différents, munis chacun d’une base vectorielle. En physique nous rame-
nons tous ces vecteurs dans le méme espace vectoriel, avec une unique base. Ce faisant, nous procédons
a lassimilation d’espaces isomorphes a l'un d’entre euz.

NOTATION 5. En notation indicielle les vecteurs de base sont notés avec un indice en bas :
f=flel + fles + fles

3
= Z fiei
i=1

Il faut s’assurer que les vecteurs que l'on utilise pour former une base sont linéairement
indépendants, c¢’est-a-dire tels que 1’'on ne puisse pas exprimer un vecteur en fonction des autres
car il serait redondant.

DEFINITION 3.2.3. Famille de vecteurs linéairement indépendants d’ordre p

Soient {uy,uy,...,u,} une famille de p vecteurs non nuls d’un espace vectoriel E. Ces
vecteurs forment un systeme linéairement indépendant d’ordre p, ou encore une famille
libre d’ordre p, s’il est impossible de trouver p nombres A1, Mg, ..., A, non tous nuls, tels
que :

)\1111 + )\2112 + -+ )\pllp =0 (4)

Une famille de vecteurs qui n’est pas libre est dite liée.
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REMARQUE 4. Interprétation géométrique :

Utilisons la représentation intuitive des vecteurs par des fleches. Un ensemble de vecteurs est linéaire-
ment indépendant s’il n’est pas possible de construire une figure fermée avec deux ou plusieurs de ces
vecteurs, méme en ajustant leurs longueurs. Aucun vecteur de cet ensemble ne peut alors étre exprimé
comme combinaison linéaire des autres car chacun définit une nouvelle dimension.

EXEMPLE 3.2.4. Montrons que les vecteurs u;(a,0,0), us(b, c,0),u3(0,0,d) sont linéaire-
ment indépendants :

)\1111 —+ /\2112 + /\3113 =0
At (a,0,0) + Ao (b, ¢,0) + A3 (0,0,d) = (0,0,0)
(/\1& + /\Qb, )\QC, /\3d) = (0, O, 0)

La seule solution est Ay = Ao = A3 = 0 par conséquent les vecteurs sont linéairement
indépendants.

Il faut également s’assurer que la famille de vecteur que l'on a choisi pour former une base
de 'espace vectoriel permet bien de générer tous les vecteurs de cet espace. Nous dirons que
cette famille est génératrice, et que chaque vecteur de ’espace vectoriel se décompose sur les
vecteurs de cette famille, ou encore que tout vecteur est une combinaison linéaire des vecteurs
de cette famille.

DEFINITION 3.2.4. Famille génératrice

Soient {uy,ua,...,u,} une famille de p vecteurs non nuls d’un espace vectoriel E. Ces
vecteurs forment une famille génératrice ssi

VVEE,H/\l,/\Q,...,)\Z)ER/V:/\1U1+)\QUQ+"'+)\pup

Nous pouvons maintenant donner une définition précise de la notion de base :

DEFINITION 3.2.5. Base d’un espace vectoriel
On appelle base d’un espace vectoriel E, une famille libre et génératrice de E.

Une définition alternative est possible. Dans un espace vectoriel le nombre maximal de vec-
teurs linéairement indépendants (c’est-a-dire 'ordre maximal d’apres la définition 3.2.3 p. 19)
est appelé dimension de cet espace. Par exemple pour une droite n = 1, pour un plan n = 2,
pour un volume n = 3.

DEFINITION 3.2.6. Dimension d’un espace vectoriel
L’ordre mazimal d’un espace vectoriel est appelé dimension de cet espace vectoriel.

NOTATION 6. Un espace vectoriel de dimension n, donc d’ordre mazximal n, est noté E, . Ey est
une droite vectorielle, F5 est un plan vectoriel.
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DEFINITION 3.2.7. Base d’un espace vectoriel
On appelle base d’un espace vectoriel, tout systeme libre de vecteurs d’ordre mazimal.

NOTATION 7. Soit un espace vectoriel E,,, sa base canonique est notée (e1,es, ..., e,) ou simple-
ment (e;).

La décomposition d’'un vecteur dans une base est unique. En effet, soient (e, ey, e3) une
base de F3 et u un vecteur de Fj3. La base étant par définition génératrice de Fjs :

u = ule; + uey + ey
Supposons 'existence d’une autre décomposition
u=ule, +ule, + u’e;
alors par soustraction :
(ul — ul) e; + (u2 — u2) ey + <u3 — u3) es=20

La base étant libre par définition :

La décomposition est donc unique.

Il n’existe pas de base globale lorsque le systeme de coordonnées est curviligne. Il est alors
naturel d’utiliser les vecteurs tangents aux lignes de coordonnées pour définir une base locale
en chaque point.

3.2.2 Base et repére naturels

DEFINITION 3.2.8. Base naturelle - Repére naturel

Soit (!, 22, ..., 2™) un systéme de coordonnées quelconques, curvilignes ou rectilignes. En
un point M, les vecteurs tangents aux lignes de coordonnées définissent une base locale :
. A OOM
Vi=1,...,n e = .
oxt

(e;) est la base naturelle du systéme de coordonnées (x;) au point M, et (M,e;) est le
repere naturel au point M.

En coordonnées curvilignes les e; forment un champ de vecteurs fonction de la position de
la base. En général les vecteurs de la base naturelle ne sont pas de norme unité et n’ont pas la
méme dimension physique.

EXEMPLE 3.2.5. Ezprimons les vecteurs de la base naturelle polaire (e,,ey) en fonction
des vecteurs de la base rectangulaire (e, e,) :

o — [9OM OOM dor OOM dy
p ap ) ep = -_— —_—

ox Op + dy OJp
_ (0OM _ 0OM dx  0OM dy
=\ ),

"= "oz 90 oy 00

@
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e, = @ e, + @ €y _ 9 in (0
ap dp N e, = cos(f) e, +sin(f) e, )
- _ Oz N 9y eg = —psin(h) e, + pcos(f) e,
=96 90

p ayant la dimension d’une longueur, les vecteurs e, et eg n’ont pas la méme dimension.
1l s’en suit que les composantes des vecteurs physiques exprimées dans la base naturelle
ne sont pas des composantes physiques. Par exemple, dans la base naturelle polaire les
composantes du vecteur vitesse ont pour dimensions m/s et s.

Sous forme matricielle, en utilisant la notation 2 p. 5 pour la dérivation partielle :

@Qﬁﬁiﬂ@ﬁ
- [=0, ] (=)

Exprimons les vecteurs de la base rectangulaire en fonction de ceux de la base naturelle
polaire :

o _<8OM> o _8OM@+8OM%
oz ), N YT 09p Oz 20 Oz
_ (oOM eZ@OM@_i_aOM@
e, = 7 ) Y dp Oy 00 Oy
5 a0 iy
e, = a—Zep + %ee e, = cos(f) e, — Smp( ) €y
= dp 00 = cos(0)
e,=—¢€,+—e e, =sin(f)e, + €y
dy dy v P P

Sous forme matricielle :

€\ _ |Pa 0. (e,
€y Py 0y| \€o

- o =] (2)

Norme des vecteurs de la base naturelle polaire :

lepll = /cos?(0) + sin?(9) N {wmzl
leall = /02 sin3(0) + p2 cos2(6) leall = »
La base naturelle polaire n’est pas normée. En revanche elle est orthogonale :
e, ey = (cos() e, +sin(f) e,) - (—psin(h) e, + pcos(d) e,)
= —cos(#)psin(0) + sin(f)p cos(d)
=0
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EXEMPLE 3.2.6. Vecteurs de la base naturelle en coordonnées cylindriques. Par analogie
auz coordonnées polaires :

e, = cos(¢) e, +sin(¢) e,

e, = —psin(¢) e, + pcos(¢) e,
e, =e,

e, cos(¢) sin(¢p) 0| (e,
ey | = |—psin(¢) pcos(d) 0| | e,
e, 0 0 1] \e,

La norme des vecteurs de la base naturelle en coordonnées cylindriques s’écrit

e, =1
lesll = p (6)
le.]| =1

EXEMPLE 3.2.7. Vecteurs de la base naturelle en coordonnées sphériques. A partir de
l’expression du vecteur position,

OM = ze, + ye, + ze,
= rsin(f) cos(¢) e, + rsin(f) sin(¢) e, + 7 cos(f) e,

nous trouvons l’expression des vecteurs de la base naturelle :

e, =0.M e, = sin(f) cos(¢) e, + sin(f) sin(¢) e, + cos(f) e,
eg=0M = eg = rcos(f) cos(¢) e, + 1 cos(d) sin(¢) e, — rsin(f) e, (7)
e, = 0,M ey, = —rsin(f) sin(¢) e, + rsin(f) cos(o) e,

e, sin(f) cos(¢)  sin(0)sin(¢p)  cos(h) e,

eg | = | rcos(f)cos(¢p) rcos(f)sin(¢p) —rsin(d)| | e,

€y —rsin(f) sin(¢) 7sin(6) cos(¢p) 0 e,

La norme des vecteurs de la base naturelle en coordonnées sphériques s’écrit

lesll = \/5in*(8) cos? ¢ + sin®(6) sin® ¢ + cos?(6)

leol = \/r? cos?(8) cos? ¢ + 2 cos?(6) sin® ¢ + r2 sin?(6)

lles|l = \/7"2 sin?(#) sin? ¢ + r2sin?(0) cos? ¢

e = v/5in(9) + cos*(6) eIl = 1

= el = \/7’2 cos2() + r2sin?(0) = llegl| = r (8)
ool = v/rZsin? (@) el = [r sin(®)

EXEMPLE 3.2.8. Les coordonnées galiléennes normales constituent un systéme de coordon-
nées rectangulaires pour l’espace de Minkowski, dont la base n’est pas normée. On obtient
dans Vy une base orthonormée si l'on substitue auxr coordonnées galiléennes t,x,y, z les
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coordonnées galiléennes réduites :

20 = ct, T =, =y, x° =2z (9)

Sauf précision contraire, on se placera toujours dans la base naturelle du systeme de coor-
données.

En annexe 27.3 p. 374, on montre l'existence de bases non holonomiques qui ne peuvent
étre la base naturelle d’aucun systeme de coordonnées.

3.2.3 Lois de compositions algébriques

On définit I'addition vectorielle des composantes et la multiplication des composantes d’un
vecteur par un réel de sorte que I'on retrouve les résultats de la représentation géométrique.

(1) L’addition vectorielle consiste & additionner les composantes respectives des vecteurs :

I
—
N
+
4
N
+
<
N
+
<
~—

(2) La multiplication d’un vecteur par un réel a consiste a multiplier chaque composante
par ce réel :

aGOu=ua@® (ul,uz,u3)
= (aul,auQ,aug)

_ (vl,v2,vg)

=V

3.2.4 Propriétés des lois de composition

(1) Addition vectorielle. Vu, v, w,

(a) Commutativité :

ul’ ) (Ul7 1)2, v3)

v=(
<u+v u+v u+v)

v , 2,@ +u
( +ul vt Fu?0? 3)

_ 01’ 2703) @ (ul,u2,u3)
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(b) Associativité :

uod VEBW :(ul,u,u) [(vl,vz,v3)@(wl,w2,w3)}

:(ul, ) <v1+w1,v2+w2,v3+w3)
(u + 0"+ w' u? + 0+ w? U 4 o+ w?)
(u + ot u? 4+ 0% u +v)@(w1,w2,w3)

- [t o (o o)

(uev)a

=udvoiw

(c) Existence d'un élément neutre appelé vecteur nul et noté 0, tel que :

0= (u', v u") @(0,0,0)
(u' +0,u” +0,u* +0)

1
,U, )

I
S

u

(d) Pour tout vecteur u il existe le vecteur opposé —u, tel que :

(ul,u ,u3) ©® (—ul, —u2, —u3)

(ul—u Ju? —u? u3—u3)

=(0,0,0)
0

De plus on définit la soustraction vectorielle comme étant I’addition vectorielle
avec 1’opposé :

uov=ud(—v)

(2) Multiplication par un réel. V(a, 3) € R2,

(a) Associativité :

OBou)=a0 o (v v )]
=a© (Bul, pu?, pu?)
= (Ozﬂul afu?, Ozﬁu3)

= (ax ) (u',u?u?)
=(axf)©u
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(b) Distributivité par rapport & 'addition des réels :
(a+B)ou=(a+p)o (u' v’ u’)

((a+ B!, (o + B)u?, (a+ Byu®)

= (aul + put, au® + pu?, oau® + Bu3)
(aul, au?, au ) (Bu Bu?, Bu )

= [a ©) (ul,u2,u3)} - {B ©) (ul,u2,u3)}

(@ou)® (fOu)

(¢) Distributivité par rapport & Paddition des vecteurs :

a®uedv)=a6 [(ul,u2, u3) = (vl, v, v?’)}
a® (u + 0" u? 0% uf 4 o?)
(u +v) (u +v) (u3+v3)}

u +0zv au +oz1)2 U +oz1)3)

au! au , QU ) ©® (avl,av2,av3)

(u LU ,u3)} ® [oz@ (Ul,v2,1}3)}

=(a0u)®(aoV)

= [
(o
(
|

(d) Existence d'un élément neutre, le réel 1, tel que :
1@u-1®(u u? ug)
= (1u1, 1u?, 1u3)
(ul, uz,ug)

u

3.2.5 Composantes d’un vecteur

Pour introduire les vecteurs nous nous sommes servi d’objets géométriques représentés par
une fleche, mais tous les vecteurs ne sont pas représentables par une fleche. Par exemple les
matrices carrées d’ordre deux a coefficients dans R ou C sont des vecteurs. En revanche, tout
vecteur peut s’exprimer comme une liste ordonnée de nombres qui sont ses composantes dans
une base.

D’apres le paragraphe 3.2.1 p. 17, a partir d’un systéme de coordonnées rectilignes obliques,
nous pouvons construire deux bases réciproques. Prenons I'une de ces deux bases, un vecteur
peut y étre projeté de deux facons : parallelement ou perpendiculairement aux vecteurs de base.

— En projetant parallelement on obtient les composantes contravariantes du vecteur

— En projetant perpendiculairement on obtient les composantes covariantes du vecteur

REMARQUE 5. Les composantes contravariantes dans une base sont égales aux composantes cova-
riantes dans la base réciproque.
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REMARQUE 6. Dans les bases orthonormées, les composantes contravariantes et covariantes sont
confondues.

Se donner une base et se donner des composantes (contravariantes ou covariantes) est équivalent
a se donner un vecteur. Réciproquement, dans une base donnée tout vecteur peut se décomposer
en composantes contravariantes ou en composantes covariantes. Un vecteur est donc la donnée
d’une base et, de composantes contravariantes ou covariantes. Dans une base donnée, nous
avons 'équivalence :
1,2 3y _
(u',u”,u”) = (ur, ug, uz)

Lorsque l'on décrit un vecteur en composantes covariantes on parle de covecteur ou wvecteur
covariant (voir paragraphe 11.5 p. 93). Ceci est un abus de langage, il n’existe qu'une seule
sorte de vecteur, que I’on peut exprimer de deux facons différentes dans une base donnée.

EXEMPLE 3.2.9. Soit (!, 22) un systéme de coordonnées rectilignes obliques dans lequel
le point M a pour coordonnées (z};,23,).

[ [/ [/ )] ]/
x%:2//////M/
[ L[]
[/ /)] ]/
NN

T = &

Fi1Gc. 3.8 — Systéme de coordonnées cartésiennes

A ce systéeme de coordonnées nous associons le repére (O, ey, e3) tel que la base (e, e3)
soit normée et les vecteurs de base pris le long des droites de coordonnées.

.TZ

@)

Fic. 3.9 — Composantes contravariantes du vecteur u

Dans cette base, le vecteur u = OM a pour composantes contravariantes u' et u? :
u= ulel + u2e2

La base étant normée, u' = z}; et u® = x3,.
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DEFINITION 3.2.9. Composantes contravariantes
Soit (e1,ea,...,€,) une base d’un espace vectoriel E,. On appelle composantes contrava-
riantes du vecteur u dans cette base, les nombres u',u?, ..., u" tels que :

u=u'e +u’es+---+ue,

n .
=) ue;
i=1

En appliquant la convention de sommation le vecteur u s’écrit en composantes contrava-
riantes,
u=u'e
ou l'indice ¢ varie de 1 a n.
Les indices de sommation sont dits muets, nous pouvons les remplacer par d’autres lettres,
par exemple :

u'e; = u'e;
Les autres indices sont dits libres ou réels.

Les composantes contravariantes sont représentées au moyen dun indice supérieur. La
décomposition d'un vecteur en composantes contravariantes est unique dans chaque base et

les composantes contravariantes (u!,u?, ..., u") représentent un unique vecteur dans la base

(e1,€9,...,€,).

Les vecteurs ont une existence propre, il sont indépendants de la base dans laquelle on
les exprime : leur norme, direction et sens ne varient pas par changement de base. Ils sont
invariants par changement de base, seules leurs composantes changent. Pour assurer cette
invariance, lorsqu’on les écrit sous la forme d’une combinaison linéaire des vecteurs de base,
leurs composantes contravariantes (les coefficients) doivent se transformer de fagon « contraire »
aux vecteurs de base.

EXEMPLE 3.2.10. Dans la base orthonormée (e,, ey, €,), soit u un vecteur de composantes

(z,y,2). Déterminons ses composantes contravariantes (u*, u?, u3) dans la base (e, e,, e3)

avec e1(a,0,0), ex(b,c,0), e3(0,0,d).

ze, + ye, + ze, = u'e; + u’ey + u’e;
= u'ae, + u® (be, + ce,) + u’de,

= (ula + u2b) e, + u2cey + u3de,

st bien que :
u'a +u®b =1z u? =y/c
ulc=y = uw=2/d
uld =2 u' = (x —by/c) /a

EXEMPLE 3.2.11. Soit un point M de coordonnées (6,2). Les unités du systéme de co-
ordonnées sont choisies arbitrairement. On considére la base orthogonale mon mnormée
(e1,ez) telle que |le;|| =2 et [|ex]| = 1.
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€2

|
|
|
|
|
|
O (S 6
FiG. 3.10 — Coordonnées et composantes contravariantes

Dans cette base, nous avons :
OM = 381 -+ 282

Les coordonnées (6,2) du point M et les composantes contravariantes (3,2) du vecteur
OM dans la base (e1,eq) sont différentes. En coordonnées rectangulaires les vecteurs de
base seront toujours normés, et nous choisirons les unités du systéme de coordonnées de
sorte que les coordonnées et les composantes contravariantes soient confondues.

REMARQUE 7. Lorsque le systéme de coordonnées est curviligne, par exemple polaire, les vecteurs
de base sont pris tangents aux lignes de coordonnées (ou sinon perpendiculaires aux hypersurfaces de
coordonnées). On ne peut pas définir de base globale puisque les vecteurs tournent, mais on peut définir
une base locale en chaque point.

Dans ce qui suit toute base vectorielle est liée a un systeme de coordonnées. Un changement de systéme
de coordonnées implique un changement de base. Un changement de base est di soit a un changement de
systéme de coordonnées en un point donné, soit a un changement d’origine de cette base dans ce méme
systéme de coordonnées. En physique le choix d’un systéeme de coordonnées est nécessaire et les équations
de la physique doivent étre indépendantes de ce choix.

Avec la définition 3.2.8 p. 21 de la base naturelle, le vecteur différentielle de OM s’écrit :

dOM .
dOM = Z o
dOM = dz'e; (10)

Les dx' sont donc les composantes contravariantes du vecteur différentiel dOM dans le repére
naturel ayant pour origine M et pour coordonnées ().
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4.1 SYSTEME D’EQUATIONS LINEAIRES

Une équation linéaire a coefficients réels ou complexes est une expression de la forme :
At + A + -+ Au =a
ol les A; et a appartiennent & R ou C, et ol les u* sont n inconnues.
Soit le systeme de m équations linéaires a n inconnues suivant :
Anul + A12U2 + -+ Alnu" = a1
A21u1 + A22U2 + -+ AQnu" = Q9

(11)

Apqut + A+ 4+ Aau™ = a,

Il est inutile de réécrire les inconnues pour chaque ligne. Simplifions I’écriture de ce systéme en
définissant le nouvel opérateur de multiplication matricielle X :

Ay A - Am ul ai
Ay Agy -+ Asy u? a

nooE e = I (12)
Aml AmZ e Amn u" Am

Le tableau de scalaires [A;;] est appelé matrice A.

L’écriture des inconnues u’ en colonne plutét qu’en ligne est justifiée au paragraphe 4.3
p. 33. Les propriétés des matrices découlent naturellement de cette notation et des propriétés
des systemes d’équations linéaires.

NOTATION 8. Notation ligne-colonne
Par convention le premier indice d’un élément de matrice A;; est son numéro de ligne, le second
est son numéro de colonne.

DEFINITION 4.1.1. Dimension d’une matrice
La dimension ou taille d’une matrice est son nombre de lignes et de colonnes.

La matrice [A;j]m, est de dimension m X n ou (m,n).
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4.2 ADDITION MATRICIELLE

Nous ne considérons que les systémes ayant autant d’équations que d’inconnues, m = n, qui
donnent alors des matrices carrées et qui admettent une solution unique ou aucune solution.

DEFINITION 4.2.1. Ordre d’une matrice
Une matrice est d’ordre n si elle est de dimension n X n.

Le raisonnement sur des matrices d’ordre deux est facilement généralisable aux matrices
d’ordre supérieur a deux. Soient les deux systemes d’équations linéaires

Ajut 4+ Apu® = a4 Byut 4+ Bpou? = by
{A21u1 + Agu® = ay o {leul + Byou® = by
Ces systemes s’écrivent en notation matricielle
1 1
e = () o B ee)- ()
Additionnons ligne a ligne les deux systemes de départ :
(A + Bu)ul + (A2 + B12)U2 =a;+b
{(Am + BQl)Ul + (Ag + 322)U2 =ag + by
Sous forme matricielle nous obtenons :
[An + B A+ 3121 X <U1> _ (al + bl)
Agy + Bar Az + Boo u? az + by
En définissant le nouvel opérateur d’addition matricielle H nous avons

Ay A 0 Bi1 Bis _ A+ B Aip+ By
Ay A Byy By Asy + Boy Ass + Boy

ap 0 by _ ay + by
asg by as + bo

On définit de méme la soustraction matricielle par :

[All A12‘| =) lBll BlQ‘| — [All - Bll A12 - BlQ‘|

ainsi que :

A21 A22 BZI BZQ A21 - BZI A22 - BZQ

L’addition et la soustraction de deux matrices de dimensions différentes ne sont pas définies.

Propriétés de l'addition matricielle
Soient A, B, C' trois matrices :
(1) Associativité :
AB(BHC)=(ABB)BC
(2) Existence d'un élément neutre appelé matrice nulle, notée 0, dont tous les éléments
sont nuls et telle que :

ABHO=A
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(3) Pour toute matrice A il existe une matrice opposée notée A telle que :
ABA=0

L’existence d’une matrice opposée nécessite donc l'existence d’une matrice nulle. De
plus on montre que la soustraction matricielle est ’addition matricielle avec la matrice
opposée :

ABB=ABBRB

(4) Commutativité :

AHB=BHA

L’addition matricielle est habituellement notée + et la soustraction — par analogie avec les
scalaires.

4.3 MULTIPLICATION MATRICIELLE

4.3.1 Multiplication d’une matrice par un scalaire

Reprenons le systéeme d’équations linéaires (11) p. 31. Nous pouvons multiplier chaque
équation par le scalaire a.. Le produit matriciel de la matrice A par le scalaire « sera noté :

OZAH OzAlg s OzAln

aA oA < aAa,
o X [A,U]mn _ . 21 . 22 2

OéAml O[Am2 ce O414mn

Le scalaire o est une matrice a un seul élément.

Propriétés de la multiplication d’une matrice par un scalaire
V(a, B) € R?,
(1) Associativité :
aX(fRA) =(axpfKA
Il s’agit ici d’un abus de langage, il n’y a pas associativité puisque le signe X du membre

de gauche de I'égalité est le signe opératoire de la multiplication d’une matrice par un
réel, alors que le signe x du membre de droite est celui de la multiplication dans R.

(2) Distributivité par rapport a 'addition des réels :
(a+p)KA=(aXAHEXA

Il s’agit ici aussi d'un abus de langage, il n’y a pas distributivité puisque le signe + du
membre de gauche est le signe opératoire de I'addition dans R, alors que le signe H du
membre de droite est celui de I'addition matricielle.

(3) Distributivité a gauche et a droite par rapport a ’addition des matrices :
aX(ABHB)=(ABB)Ra=(aXA)H (a«X B)
(4) Existence d’un élément neutre, le réel 1, tel que :

IKA=A
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(5) Commutativité :

aXA=AXa«a

4.3.2 Multiplication de deux matrices

Soient les deux systemes d’équations suivants :

{Anul + Apu® = ay ; {anl + Biov® = u'
e

1 2 1 2 2
Agju™ + Apu” = ay Bojv” + Byv” = u

Injectons le second dans le premier :

A (B! + Biov?) + Arp(Bav' + Byv?) = ay
A21 (anl + 312’02) + 1422(3217}1 + B22U2) = Q2

(A1 By + AIZB21>U1 + (A11 By + 1412322)712 =a
(A91By1 + A21321)U1 + (A1 Byo + AQQBQQ)U2 = Qa9

Sous forme matricielle :

A1 By + A1eBay A1 Big + A19Bas X vl _ (@
Ao By + As1Byy A1 Big + Ay Bao

Or nous avons aussi

A A u! [ By B vt . ut
[A21 A221&<U2 - \as ot By By X v ) \u?

En injectant la seconde relation dans la premiere :

A Ap < Bi1 B < ! _[™
Ay A By Ba v? a2
En effectuant le calcul on constate ’associativité du produit matriciel et 'on a donc :

All A12 X Bll BlQ — AllBll+A12321 A11312+A12BZQ
A21 A22 BZl BZQ A21311+A22321 A21312+A22322

On constate que chaque élément de la matrice produit est la multiplication d’une ligne de A
par une colonne de B. Par conséquent la condition nécessaire et suffisante pour multiplier deux
matrices dans 'ordre AB est que le nombre de colonnes de A soit égal au nombre de lignes de
B. Les matrices sont alors dites compatibles. On justifie ainsi ’écriture en colonne des inconnues
(12) p. 31.

NOTATION 9. La multiplication matricielle est souvent posée comme suit :
[Bn 312]
By Bao

[An A12} [AnBu + A19Bo1 A1 Bia + A12Ba
A9 Aga| |A21B11 + A2 Bo1 A21Bia + A2 B2
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Propriétés de la multiplication matricielle

(1) Associativité :
AX(BXR(C)= (AR B)XC
(2) Distributivité a gauche et a droite par rapport a 'addition matricielle :

AR (BEC)=(BEC)NA=AXBHAKXC

(3) En général non commutativité :

AXB+#BKA

La multiplication matricielle est souvent notée x ou encore on pourra omettre le symbole, par
analogie avec la multiplication des scalaires.

4.4 MATRICE COLONNE ET MATRICE LIGNE

Nous noterons les matrices colonnes et les matrices lignes avec des parentheses plutét qu’avec
des crochets. Pour une base donnée, un ensemble ordonné de nombre est un vecteur. Par
conséquent, pour une base donnée, les matrices colonnes et les matrices lignes sont des vecteurs.
Les éléments de ces matrices sont les composantes covariantes ou contravariantes d’un vecteur.
Les inconnues u1, u2 forment un vecteur. Nous avons les deux possibilités suivantes :

— On pré-multiplie A par une matrice ligne

Ay A
(u1 uz) lAi A;j = (A11u1 4+ Asquz  Ajpul + A22u2)

Le couple u1, u2 forme une matrice ligne et le résultat est aussi une matrice ligne.

— On post-multiplie A par une matrice colonne
All A12 ury A11U1 + A12u2
A21 A22 u2 - A21U1 + A22u2
Le couple u1, u2 forme une matrice colonne et le résultat est aussi une matrice colonne.

Toute matrice carrée peut prendre en entrée un vecteur et donner en sortie un autre vecteur,
autrement dit peut transformer un vecteur en un autre vecteur.

REMARQUE 8. La notation 9 p. 34 adoptée pour la multiplication matricielle implique que les deux

écritures sutvantes
A11 A12 ul All A12
|:A21 Azz} (ul u2) ct <U2> |:A21 Azz}

n’ont pas de sens car les matrices ne sont pas compatibles.

Nous n’obtenons pas le méme systeme d’équations linéaires selon que 'on pré-multiplie ou
que 'on post-multiplie.
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4.5 MATRICE TRANSPOSEE

DEFINITION 4.5.1. Matrice transposée
Soit A;; un élément de la matrice A. La matrice B est la transposée de A ssi :

\V/Z7j Bij = Aji

NOTATION 10. La transposée de A est notée AT.

Si A est une matrice m x n alors A7 est une matrice n x m. Par conséquent la transposée
d’une matrice colonne donne une matrice ligne et réciproquement.

Propriétés de la transposition matricielle

Soit k un scalaire :

Si AT = A alors A est symétrique, si AT = —A alors A est antisymétrique.

EXEMPLE 4.5.1. Nous avons :

Aput + Apu? ’ 1 2 1 2
A + A = (Allu + Apu® Anu +A22U)

A A ul T:(ul u2) A A
A21 A22 U2 A12 A22

o ul ’ A Agg ’
2 Aoy Ao

Nous retrouvons la propriété (AB)T = BT AT,

4.6 NOTATION INDICIELLE DES MATRICES

I’addition matricielle est notée :

Pour la multiplication matricielle nous utilisons la convention de notation ligne-colonne pour
les éléments des matrices. Elle est alors notée :

Vi,j Ciy= ZAikBkj

k
= Z BijAir
k
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REMARQUE 9. Pour la multiplication matricielle, soit le dernier indice de la premiére matrice est
égal au premier indice de la seconde matrice, soit le premier indice de la premiére matrice est égal au
dernier indice de la seconde matrice.

Nous avons les équivalences suivantes
1 2
Apu + Apu® = a

Aijuj = Q; = {

Agut + Agpu® = ay
Ay Agpl (u! . Aput + Appu? _
lAm AQQ] <U2> N <A21U1 + Agu? < Adu=a

{Auul —+ A21U2 = b1

De méme

Ajiuj = bz = 1 9
Appu + Apu” = by

Ay Ayl (u! . Aput + Agu? T
< [Al? AQQ] <U2 o Algul —|—A22U2 A A u= b

Les matrices A;; et Aj; sont transposées I'une de I'autre. Grace a la notation indicielle, démon-

trons une propriété de la transposition matricielle.

THEOREME 4.6.1. Soient A = [Al, et B = By, alors :

(AB)" = BT AT
DEMONSTRATION.
T
(AB)" = <Z Az‘kBkj> = [Cijlhp = [Cilpm
k
En posant
BT =D = [Dij]pn Dij = B]'i
=
A" = FE = [Eijlum By = Aji
on a :

B"A" = DE =) (DyEw;) = Y _(Bridjr) = > _(AjBii) = [Cjilpm

4.7 MATRICE IDENTITE

DEFINITION 4.7.1. Matrice identité
La matrice identité ou matrice unité, notée I, est une matrice carrée d’ordre n, telle que
pour toute matrice carrée A du méme ordre n :

Al =TA=A

En notation indicielle :

I = [5ij]nn
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4.8 INVERSE D’UNE MATRICE CARREE

DEFINITION 4.8.1. Inverse d’une matrice
Une matrice carrée A est inversible s’il existe une matrice carrée B de méme ordre, appelée
inverse de A, telle que :

AB=BA=1

En notation indicielle :

> AuwBi; = BiAy; =0y
% %

NOTATION 11. La matrice inverse de A est notée A~1L.

L’inversion matricielle a les propriétés suivantes. Soit &£ un scalaire non nul :
(A Ht=4
(kA =k tA™!
(AB) ™' =pB7tA™!

La matrice inverse est unique.

DEMONSTRATION. Supposons B # C' telles que :

AB=BA=1
AC=CA=1

B = BI = B(AC) = (BA)C = IC = C

U
Soient A = [A], et B = [B],, alors :
(AB)"' = BtA™!
DEMONSTRATION. Par associativité du produit matriciel :
(AB)(B'A™) = A(BB™) A = AIA™ = AA7 =1
De méme :
(B'A)(AB)=B"' (A'A)B=B'IB=B"'B=1
U

Si A est inversible alors AT est inversible et les opérations de transposition et d’inversion
-1
commutent : (A1) = (AT)
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DEMONSTRATION.

-1
Si A~! existe alors on peut prendre sa transposée et (A_l)T existe, donc (AT) existe. O

4.9 DETERMINANT D’UNE MATRICE CARREE

Soit le systeme d’équations :
Anzy + Az = ay Ly
Aoy + Agary = as Lo

On résout par substitution :

Anzy + Aprs = a Ly

Ay + Aiim Ty = i—; a2 Ly x j—i
<A12 - Azim) T2 = a1 — j—; as Ly — Ly
I Z—; - j—: L2 Ly

(A12A21 - A11A22) T9 = Ag1a; — Apag Ly x Ay

_ G2 @ Agra; — Aqras

Ay Ag AAsy — AnAs

. Agiay — Apiay

© ApAy — AnAs

. Appay — Agpay

© ApAy — AnAs

L’expression Ajj; Az — AsAis, appelée déterminant, doit étre non nulle pour que le systéeme
soit soluble. On le note :

X1

X2

|

ael) =30 4
= A Az — Ay A
On remarque que 1'on a alors :
o — a; A / A Ap
! ay Al [Ayn  Ag
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Pour trouver I'expression du déterminant d’une matrice 3 x 3 nous définissons d’abord un
mineur d’une matrice.

DEFINITION 4.9.1. Mineur d’une matrice
Le mineur;;j(A) est le déterminant obtenu a partir de la matrice A en supprimant la i°
lrgne et la 7¢ colonne.

EXEMPLE 4.9.1. Soit la matrice

An A A
A A2 Ay A
Azt Az Ass
Le mineury3(A) est le déterminant suivant :
A Ap

= A11A32 - A31A12

A31 A32

Nous définissons a présent un cofacteur d’une matrice.

DEFINITION 4.9.2. Cofacteur d’une matrice

Cyi(A) £ (=1)"mineur;;(A)

EXEMPLE 4.9.2. En reprenant [’exemple précédent
C23(A) = (—1)5mineur23(A)
= Az A1z — A As

En notation indicielle, le déterminant de la matrice A s’écrit :

det(A4) =>_ Ai; Ci;(A) (13)
= Ai; Ci(4)

Le déterminant de la matrice 3 x 3 peut s’écrire de 6 fagons, correspondant au choix d’une ligne
parmi trois ou d'une colonne parmi trois :

det(A) = A1 Cii + A12Crp + A3 Cys
= Agy Co1 + Agp Cop + Azz Co3
= Az C31 + Aszp C3p + Aoz Cs3
= A1 Ci1 + Az Cop + Az Cyy
= A2 Cp + Agp Cop + Aszp Cs
= A13C13 + Agz3 Coz + A33 Cs3
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EXEMPLE 4.9.3. En reprenant l’exemple précédent

All A12 A13
Ay A Ay A Ay A
A21 A22 A23 :All 22 23 —A12 21 23 +A13 21 22
A32 A33 A31 A33 A31 A32
A31 A32 A33

La différentielle du déterminant n’est pas le déterminant de la différentielle de la matrice.
La différentielle de (13) p. 40 donne :

ddet(A) = Y (dAy; Cij(A) + Ay dCyj(A))

J

J J

Pour une matrice 3 x 3 :
ddet(A) = dA;Cy1 + dA1Cra + dA13C13 + ApdChy + ApdChy + Ap3dChs
= dA O + dApCry + dA3C3
+ Apd(AxpAsy — AspAgs) + A1ad(Agz Azt — Aoy Asz) + Arzd(AzAsp — Az Ago)
= dA O + dApCre + dA3C3
+ dAgi (A1 Ass — A13Asg) + d A (A1 Ass — A13Asy) + dAgs(A11 Az — ApAs)
+ dAz1 (A1 Aoy — A13Ass) + dAsy(A11 Aoz — A13Agr) + dAsgs (A1 Azy — A1aAgy)
= dA O + dApCre + dA3C3
+ d Ay Coy + dAxpCoy + dAz3Chs
+ dA31C31 + dA3C3p + dA33Cs3

En notation indicielle et en généralisant :

ddet(A) = Z Z Ci;(A)dA; (14)






Formes quadratiques

Les carrés des éléments de longueur, par exemple dans le plan s? = 22 4+ y2, sont des formes
quadratiques, dont nous allons donner la définition.

DEFINITION 5.0.1. Monéme
Un monome est un produit de puissances de variables, d’exposants entiers non négatifs,
multiplié par un coefficient réel ou complexe.

EXEMPLE 5.0.1. 527y est un monéme a deuz variables x,y, de coefficient 5.

DEFINITION 5.0.2. Degré d’un mondme
Le degré d’un monome est la somme des exposants de ses variables.

EXEMPLE 5.0.2. Le monome 5x5y? est de degré 8.

DEFINITION 5.0.3. Polyndme
Un polynome est une somme dont chaque terme est un monome.

EXEMPLE 5.0.3. 525223 — 2y* + 3 est un polynéme.

DEFINITION 5.0.4. Degré d’un polynome
Le degré d’un polynome est le degré le plus élevé de ses termes.
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EXEMPLE 5.0.4. deg(5x%y223 — 2y* + 3) = 11.

DEFINITION 5.0.5. Polyndome homogéne ou forme algébrique
Un polynome est homogene de degré r si chacun de ses termes et de degré r.

EXEMPLE 5.0.5. Le polynéme 42522 + 323y* — xy®23 est homogéne de degré 7.

DEFINITION 5.0.6. Forme
On appelle forme tout polynome homogene.

DEFINITION 5.0.7. Forme linéaire
On appelle forme linéaire tout polynome homogene de degré 1 par rapport a ses n variables

ub u?, . un

f=au' + au® + -+ a,u”

EXEMPLE 5.0.6. f(x,y,z) est une forme linéaire :
f(z,y,2) = ax + by + cz

DEFINITION 5.0.8. Forme quadratique
On appelle forme quadratique tout polynome homogéne de degré deux par rapport a ses n
variables ut, u?, ..., u" :

Q= aputut + aputu® + .4 aputu” 4 agutut + asguPu® + - -+ aguuiu

+ o apuut + anouu® + -+ appuu”

Nous ne considererons que les formes quadratiques sur le corps des réels, c’est-a-dire telles
que leurs coefficients a;; € R. Les formes quadratiques ne doivent pas étre confondues avec les
équations du second degré, celles-ci n’ont qu'une seule variable et les termes sont de degré deux
ou moins.
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EXEMPLE 5.0.7. Forme quadratique
unaire Q(z) = ax?
binaire Q(z,y) = ax® + bry + cy?
ternaire Q(z,y, z) = ax® + bry + cxz + dy® + eyz + f2°

DEFINITION 5.0.9. Forme quadratique définie
Si le vecteur nul O est le seul vecteur tel que Q(0) = 0 alors Q est définie ou anisotrope.
Les signes de () sont tous positifs ou tous négatifs.

DEFINITION 5.0.10. Forme quadratique indéfinie
S’il existe un vecteur non nul v tel que Q(v) = 0 alors Q) est indéfinie, et Q) et v sont
isotropes. QQ a a la fois des signes positifs et des signes négatifs.

La métrique de I'espace de Minkowski est une forme quadratique indéfinie.

DEFINITION 5.0.11. Forme quadratique positive
Si pour tout vecteur u le scalaire Q(u) est positif ou nul, alors Q) est positive :

Vue E, Q(u)=0

DEFINITION 5.0.12. Forme quadratique négative
Si pour tout vecteur u le scalaire Q(u) est négatif ou nul, alors Q) est négative :

Vue E, Q(u) <0

DEFINITION 5.0.13. Forme quadratique définie positive
La forme quadratique est définie positive si on a :

u=0 : Q0)=0
Yu#0 : Q(u) >0

La métrique de I'espace de la physique classique non relativiste est définie positive.

DEFINITION 5.0.14. Forme quadratique définie négative
La forme quadratique est définie négative si on a :

u=0 : Q0)=0
Yu#0 : Q(u) <0
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EXEMPLE 5.0.8. Montrons que la forme différentielle quadratique,
Q = da? + 3dxdy + 4dy* + d2*
est définie positive.
Q = dx? + 3dxdy + %dy2 + gdy2 + dz?
2
= (d:c + %dy) + %al;y2 + d2?

Tous les termes sont des carrés de coefficients positifs, donc @) est positive et n’est nulle
que lorsque dr = dy = dz = 0, par conséquent elle est définie positive.

EXEMPLE 5.0.9. La forme quadratique,
Q (a:l, z?, x3) =38 <x1)2 - (x2)2 — 6zia® + <x3)2
n’est pas définie positive. En effet,
Q(1,0,3) = -1

5.1 MATRICE SYMETRIQUE ASSOCIEE

bx/2 + cy

=@ )| "))

=u’ Au

ax® + bry + cy® = (:c y) [aaz . by/Q]

a b/2 ¢/2| [z
aaz2+bxy+cxz+dy2+eyz+f22:(:c Y z) b/2 d e/2| |y

c/2 e/2 f z
= u’ Au
Toute forme quadratique peut s’écrire sous forme matricielle,
1
ai; Qi -+ Qin u2
Qz(ul - un) a1 Gz - Qg “
An1 Ap2 -+ App um

=u’ Au
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et sous forme indicielle avec la convention de sommation :

(15)

1
a1y + Qpp)uu”

2
Ao + ap2)uu”™ + ...

aljuj
G,quj
Q= (ul u2 un) /
Apju’
; ,
=u (aijuj)
= a;;u'e’
ul Au = a;ju'w’
L’égalité u'u? = vw/u’ permet d’écrire :
1,1, 1 1,2 1
Q = anuu + 5(a12 + ag)uu® + -+ 5(
1 2,1 1
+§<CL12+CL21)U u —|—‘|—§(
1 1
+ 51 + an)u"u + -+ appuu”

Posons B = (A + AT) soit :

1
2

1
biy = a1, bz = by = 5(a12 + an),

Nous avons :

Q= buutu' + boutu® + - 4 byutu”

+ bpulut + - 4 by ulu £ .

+ bipuut 4 -+ by

La matrice est maintenant symétrique

\V/Z,] bij:bj'
et :
bll b12
Q=(ut w o wr) [t b2
bln b2n

Plus généralement, tout polynéme P des 2n variables
11 1,2 1 2.1
P =apu v +apu v+ Fapu v +anu v+ - +agy,
peut s’écrire sous forme matricielle,

ailr  aig

an a
Pz(u1 u? - u") 2b Tz

ap;  aig

a a
:(Ul U2 U") 21 22

n,n
AU

bln
an

bnn

ul’uQ’-.-

u2fun+ e

A1n
A2n

n 1,2 n
s ut et vt vt e U

+apuvt+ - Fap,uton
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et sous forme indicielle avec la convention de sommation :

CLlj’U]:
P = (ul u? u") azj:v]
anjvj
= ui (aijvj)
= aijuivj
u’ Av = au't’ (16)

5.2 REDUCTION DE GAUSS

Par changement de variables, toute forme quadratique réelle (de coefficients réels) peut
s’écrire comme combinaison linéaire de carrés de formes linéaires :

Q = MTT + N5 + -+ + N7

ou les coefficients \; valent +1 ou —1, et la matrice symétrique associée est diagonale.

EXEMPLE 5.2.1. Soit une forme quadratique binaire :
Q(z,y) = ax® + bxy + cy?

2, b i o, b, ©e?
=alz°+ -2 —y - — c
a y 4a2y 4a2y 4

N ORI S SR O
_ax2ay C4ay

7 = /lall + by/(20)]

yle—02/(4a)ly

= Q(Z,7) = MZ* + Xof

Y

EXEMPLE 5.2.2. Soit une forme quadratique ternaire :
Qz,y,2) =zy +yz+xz
=z(y + 2) + yz
=(x+2)(y+2)—=z
(x + 2)(y + 2) est de la forme (a — b)(a +b) avec :
{a:x+z {2a:x+y+22

2

b=y+=z 2b=y—=

ey, 2) = slEeFy+22)+ =2 % l@+y+22) = o) =2
—i(x—i-y—i-Qz)z—i(y—x)z—z?




Formes quadratiques 49

5.3 LoOI D’INERTIE DE SYLVESTER

La loi d’inertie de Sylvester stipule que le nombre p de coefficients +1 et le nombre ¢
de coefficients —1 sont des invariants de la forme quadratique réelle. Ils ne dépendent pas du
changement de variables. Les nombres p et ¢ sont appelés indices d’inertie, (p, q) est la signature
de la forme quadratique, p + ¢ est son rang. Une forme définie positive a pour signature (p, 0),
une forme définie négative a pour signature (0, q).






Applications linéaires

6.1 DEFINITIONS

DEFINITION 6.1.1. Application
Une application est une relation entre deur ensembles pour laquelle chaque élément de
I’ensemble de départ posséde une image et une seule dans [’ensemble d’arrivée.

DEFINITION 6.1.2. Application linéaire

Une application linéaire (ou transformation linéaire ou opérateur linéaire) est une appli-
cation d’un espace vectoriel dans un autre espace vectoriel (ou le méme), qui conserve
l’addition vectorielle et la multiplication par un scalaire. Elle prend en entrée un vecteur
et donne en sortie un vecteur.

Soient E et F' deux espaces vectoriels sur le méme corps R, et soit f une application de
E dans F' :

f E—F
x— f(x)=v
f est linéaire si elle est :
(1) Additive : Yu,v € EX E, f(u®v)= f(u)® f(v)
(2) Homogéne de degré un :YVu € E, VA€ K, f(A®u) =X f(u)

Les deux conditions de linéarité peuvent étre remplacées par la seule condition suivante :

Vu,veEExE, VAER, fAOudv)=10f(u)® f(v)

Nous dirons que f préserve les opérations de combinaison linéaire car peu importe que f soit
appliquée avant ou apres ’addition vectorielle ou la multiplication par un scalaire.
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REMARQUE 10. Dans (2) posons A = 0. En utilisant les propriétés 5.1.3 p. 1/ :
fOOu) =006 f(u)
f(0)=o0

Si f est linéaire alors f(0) = 0.
f(0) = 0 est donc une condition nécessaire pour que f soit linéaire.

Nous n’avons besoin que de transformer les vecteurs de base. En effet, la transformation
linéaire d'un vecteur u quelconque s’écrit :

flu)=f (ulel +uley + -+ u"en)
=u'f(e)) +u’f(ey) +---+u"f(ey)

6.1.1 Exemples

EXEMPLE 6.1.1. Soit a un scalaire. L’homothétie vectorielle de rapport a :
h:E—FE
X—oaOX
est une application linéaire. En effet :
h(x) =a®x
hx®y)=a® (xdy)
=(a0x)®(a0y)
= h(x) @ h(y)
et,
hrAOX)=a6 (AOx)
=al©Ox
=20 (a®x)
=\ 0O h(x)

EXEMPLE 6.1.2. Soit D(R,R) l’espace vectoriel des fonctions dérivable de R dans R, et
soit F(R,R) l’espace vectoriel des fonctions de R dans R. L’application dérivation,

d:D(R,R) = F(R,R)
fef

qui a toute fonction f associe sa dérivée f', est linéaire. En effet, la dérivée de la somme
de deux fonctions est la somme de leur dérivée,

d(f +g) = df +dg
et la dérviée d’une fonction multipliée par une constante est égale a cette constante fois
la dérivée de cette fonction :

d(Af) = Adf
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6.2 TRANSFORMATIONS ACTIVES ET PASSIVES

Tout systeme d’équations linéaires,
1

{aH ut + a2 u? =w
2

a91 ul + 92 u? =

est une application linéaire de chaque vecteur u(u!,u?) vers son vecteur image v(v',v?) qui
peut s’écrire sous forme matricielle

e o) ()= ()
asy agy ) \u?) — \0?
Elle s’écrit aussi sous forme indicielle :
Vi ayu' =0l
On vérifie que 'on a bien les propriétés d’additivité et d’homogénéité de degré un,
A(uy + up) = A(uy) + A(us) et A(Au) = AA(u)
qui caractérisent les applications linéaires. L’application étant bijective :
det A #0

Les transformations linéaires peuvent étre interprétées de deux fagons. Pour donner une repré-
sentation graphique a ’action d’une matrice sur un vecteur, nous supposerons que les inconnues
sont les composantes contravariantes d'un vecteur, c¢’est-a-dire les coordonnées des points aux
extrémités des vecteurs :

(1) Transformation ponctuelle linéaire

(v!,v?) sont les coordonnées du point @) image du point P(u',u?) dans le méme
systeme de coordonnées.

EXEMPLE 6.2.1. Le systéme d’équations suivant,

vl = %u1—4u2
v? = %u1+u2

transforme le vecteur P(2,1) en son image Q(—3,5/3).

On parle alors de 'aspect alibi! de la transformation, ou bien d’une transformation
active. La plupart du temps on supposera que 'on effectue cette transformation.

Q-+
+P

F1G. 6.1 — Le point P passe en @)

1. du latin « ailleurs ».
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(2) Changement de systéme de coordonnées
(v!,v?) sont les coordonnées du méme point P dans un nouveau systéme de coor-
données. On parle alors de I'aspect alias de la transformation, ou bien d’une transfor-
mation passive. Les deux systéemes de coordonnées sont reliés par la relation v = Au.
Pour trouver dans I’ancien systeme de coordonnées, les coordonnées du vecteur de base
(1,0) de ce nouveau systeme, on résoud le systeme d’équations suivant :

1=2ut —4u? 1= (L+4)d! ut =5
{ i N (2 3) — 11
3

0=1u'+u? w2 = —Lt u2:—1—21

3
Pour trouver le vecteur de base de coordonnées (0, 1) on résoud le systéme :

0:%u1—4u2 ut = 8u? ulz%
= =
1=l 44 1= (3 1)w ot

3

F1G. 6.2 — Nouveau systeme de coordonnées

En appliquant une transformation linéaire a un systeme de coordonnées rectangulaire, on
obtient un systeme de coordonnées dont les lignes de coordonnées sont rectilignes et obliques
(Fig.6.2).

6.3 TRANSFORMATION AFFINE

Lorsque 'on combine une transformation linéaire et une translation on obtient une trans-
formation affine,

v=Au+b

ol b est un vecteur constant. En posant u = 0, nous voyons que l'origine du nouveau repere
se trouve a l'extrémité du vecteur b.

6.4 TRANSFORMATION ORTHOGONALE

Une matrice carrée A est orthogonale ssi :
AAT = ATA =1 & AT = A7!
Le déterminant d’une matrice orthogonale est de carré unité. S’il vaut +1 la matrice est dite
directe. Par exemple les matrices identité et les matrices rotation d'un angle 6 autour d’un axe

A quelconque sont des matrices directes. Si le déterminant vaut —1 la matrice est dite indirecte.
Une transformation est orthogonale ssi sa matrice est orthogonale.



Espace euclidien

7.1  HISTOIRE DE LA GEOMETRIE EUCLIDIENNE

Vers 300 av. J.-C., le mathématicien grec Euclide d’Alexandrie rédige un traité de mathé-
matique constitué de 13 livres, intitulé « Eléments de géométrie », dans lequel, entre autres, il
axiomatise la géométrie du plan. Il fonde ainsi ce qui a partir du 17¢ siecle sera appelée géomé-
trie pure ou géométrie synthétique, c’est-a-dire la géométrie sans 1'utilisation d'un systeme de
coordonnées. Son systeme axiomatique est un ensemble de

— notions primitives, qui sont des objets mathématiques tels que les points, les lignes
ou les plans, qui n’ont pas de propriétés intrinseques et dont les définitions importent
peu, si ce n’est pour se faire une représentation mentale. En revanche leurs relations
mutuelles sont d’importance pour la théorie

— 5 axiomes (et 5 notions communes qui sont aussi des axiomes) qui sont des proposi-
tions concernant les notions primitives, ces propositions étant supposées vraies et non
démontrables dans le systeme en question. Ce sont des abstractions issues du monde
physique. Le 5° axiome est appelé axiome des paralleles et énonce que « Pour une
droite donnée et un point n’appartenant pas a cette droite, il n’existe qu'une seule
droite passant par ce point et qui ne coupe pas la droite donnée ».

— postulats (ou conjectures) qui sont des propositions démontrables ou non dans le sys-
teme axiomatique, c’est-a-dire qui sont soit des théorémes du systeme, soit des indéci-
dables du systeme.

— définitions
— propositions démontrées, ou théorémes

En 1899, dans « Grundlagen der Geometrie », le mathématicien allemand David Hilbert
donne une formulation rigoureuse et moderne de la géométrie euclidienne, il montre qu’il faut
en fait 20 axiomes pour la géométrie d’Euclide, les axiomes manquants étant contenus implici-
tement dans les définitions et figures des « Eléments ».

On attend d’un systeme axiomatique qu’il soit consistant, on dit aussi cohérent. Il 'est s’il
est impossible d’y démontrer une proposition et son contraire, autrement dit si le systeme ne se
contredit pas. Dés lors qu'un systéme contient une contradiction (ou incohérence) logique, tout
peut y étre démontré, et ce systeme perd toute utilité. On souhaite également qu’un systeme
axiomatique soit complet, ce qui signifie que pour toute proposition P énongable et compré-
hensible dans le systeme, I'on puisse démontrer P ou non-P, c’est-a-dire, si ses axiomes nous
permettent d’engendrer toutes les vérités logiques (tautologies) exprimables dans ce sytéme.
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Un indécidable d'un systeme axiomatique S est un énoncé formulable dans S mais dont S
ne peut démontrer s'il est vrai ou faux (du type « Je mens », ou « Cette phrase est fausse »).
S est donc complet s’il ne contient pas d’indécidable. Lorsque 'on découvre un indécidable I
dans un systeme axiomatique S, on peut l'ajouter aux axiomes de ce systéme et créer ainsi un
nouveau systeme axiomatique S’ dans lequel I n’est plus un indécidable.

Vers 1824, les mathématiciens Carl Friedrich Gauss, Janos Bolyai et Nikolai Ivanovich Loba-
chevsky développent la géométrie hyperbolique dans laquelle le 5¢ axiome d’Euclide est remplacé
par « Pour une droite donnée et un point n’appartenant pas a cette droite, il existe plus d’une
droite passant par ce point et qui ne coupe pas la droite donnée ». En 1868, Eugenio Beltrami
montre que la consistance de la géométries euclidienne implique la consistance de la géométrie
hyperbolique, et réciproquement. Si la géométrie euclidienne est consistante alors la géomé-
trie hyperbolique I’est aussi. Par conséquent 1’axiome des paralleles est indépendant des autres
axiomes, il n’est donc pas nécessaire pour former un systéme axiomatique, en le supprimant on
crée la géométrie absolue. Dans cette géométrie, I’axiome des paralléles peut étre énoncé mais
ne peut étre démontré, c’est un indécidable. La géométrie absolue est donc incomplete.

En 1931, Kurt Godel démontre les deux théoremes qui portent son nom. Le premier théoreme
de Godel énonce que tout systeme formel (dont les systémes axiomatiques) effectif (dont le
nombre d’axiomes est fini) assez puissant (dans lequel on puisse faire de I'arithmétique) est
soit inconsistant donc inintéressant puisque tout y est vrai et faux a la fois, soit incomplet,
donc contient au moins un indécidable. Ils ne peuvent étre a la fois consistants et complets.
Le second théoreme de Godel énonce que la consistance d'un systéme formel fait partie de ses
indécidables, autrement dit un systéme consistant ne peut savoir qu’il 'est (un homme saint
d’esprit ne peut savoir qu’il 'est, mais il peut le poser comme axiome, ce que fera également
un fou). Gédel a donc universalisé 'incomplétude déja connue pour la géométrie absolue.

Si donc on ajoute un indécidable comme axiome a un systeme S pour en faire un systeme
S’, il existera au moins un autre indécidable I’ dans S’, qui est aussi un indécidable de S.

En 1637 René Descartes introduit le systeme de coordonnées rectilignes et montre que les
problemes de géométrie peuvent se résoudre par 'algebre, fondant ainsi la géométrie analytique.
Si on identifie un point & une paire de nombre réels ordonnés (z1, z5), et la distance entre deux

points (z1,xs) et (y1,y2) par \/(xl —y1)? + (9 — y2)?, alors tous les axiomes d’Euclide peuvent
étre démontrés, ils deviennent des théoremes de la théorie des nombes réels. En 1870 Félix
Klein fait de méme et construit une geométrie analytique pour la géométrie hyperbolique. Ce
n’est qu'en 1957 qu'Emil Artin démontrera que les approches synthétique et analytique sont
équivalentes. L’étape suivant consiste a remplacer les points par des vecteurs (chapitre 3 p. 11)
et & introduire un produit scalaire (chapitre 11 p. 87) pour avoir une distance. Nous formons
alors les espaces vectoriels (chapitre 16 p. 133) qui permettent de définir 'espace euclidien sans
passer par les axiomes d’Euclide.

7.2  GEOMETRIE DANS L’ESPACE

On généralise le plan a un espace a trois dimensions, plat, sans courbure. On passe ainsi
de la géométrie plane a la géométrie dans 'espace. Cet espace n’a pas d’existence propre, il
est purement mathématique. Il permet de faire toute la physique classique (non relativiste),
c’est le modele le plus simple de 1’espace physique. Pour mesurer sa courbure il ne s’agit plus
de tracer un triangle, car on peut toujours se placer dans un plan de cet espace. Un espace de
dimension trois est plat ssi le volume d’une sphere de rayon r vaut %m“g, le volume d'un cube
de coté r vaut r3, etc. On généralise a des espaces de dimension supérieure a trois grace aux
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hyperspheres, aux hypercubes... Ces espaces plats sont appelés espaces euclidiens ou espaces
affines euclidiens (nous verrons que les espaces pseudo-euclidiens sont aussi des espaces plats).
Pour chaque dimension il n’existe qu'un seul espace euclidien car tous les espaces euclidiens de
méme dimension sont équivalents (isomorphes).

DEFINITION 7.2.1. Isomorphisme
Un isomorphisme entre deux ensembles structurés est une application bijective qui préserve
la structure, et dont la réciproque préserve aussi la structure.

En physique, les notions de distance et d’angle sont nécessaires pour situer deux points
I'un par rapport a l'autre. Le produit scalaire dote ’espace topologique d’une métrique (une
distance) et d'une mesure des angles.

DEFINITION 7.2.2. Espace métrique
Soit E un ensemble non vide d’éléments appelés points et notés A, B,C,... Soit d une
distance sur F,

d :ExE—R"
vérifiant les trois propriétés suivantes :
(1) Symétrie : d(A, B) = d(B, A)
(2) Séparation : d(A,B) =0 A=DB
(3) Inégalité triangulaire : d(A, B) < d(A,C) + d(C, B)

Nous dirons que le couple (E,d) constitue un espace métrique.

7.3 SYSTEMES DE COORDONNEES

DEFINITION 7.3.1. Coordonnées ’
Les n valeurs ordonnées (p*,p?,...,p") noté simplement (p'), permettant de repérer un
point P sont appelées les coordonnées de ce point.

Réciproquement, un point P est 'ensemble des n valeurs ordonnées (p',p?, ..., p").

DEFINITION 7.3.2. Systéme de coordonnées

Un ensemble de n variables (x',x% ... 2™) est un systéme de coordonnées d’un espace
topologique a n dimensions, si chaque ensemble de valeurs pris par ces variables détermine
de fagcon unique un point de cet espace, et si chaque point de cet espace topologique est

déterminé par un ensemble unique de valeurs de ces variables.

Si cette bijection entre chaque point de [’espace topologique et les valeurs des coordonnées
n’est pas réalisée, le systéme de coordonnées est dit dégénéré. Il est non dégénéré s’il
assigne un unique ensemble de coordonnées da chaque point et réciproqguement, de sorte
qu’il existe une bijection entre les deux.
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Deux droites sécantes définissent un plan et peuvent servir de systeme de coordonnées pour
ce plan. Ce systeme de coordonnées rectilignes est appelé systéme de coordonnées cartésiennes.

REMARQUE 11. Pour des raisons historiques, partout ailleurs dans le monde le systéme de coordonnées
cartésiennes désigne un systeme de coordonnées rectilignes et orthogonales.

Les coordonnées sont obtenues par projection des points selon des droites paralleles aux
droites de coordonnées. De ce fait, le systeme de coordonnées cartésiennes en deux dimensions
ne peut exister que dans le plan. En revanche le plan admet aussi des systemes de coordonnées
curvilignes. Lorsque les deux droites sécantes sont normales, le systéme est appelé systéeme de
coordonnées rectangulaires ou systéme de coordonnées cartésiennes normales. Un systeme de
coordonnées a donc deux caractéristiques, il peut étre curviligne ou rectiligne, orthogonal ou
non orthogonal.

Imaginons trois droites non coplanaires sécantes en un point, elles forment un systeme
de coordonnées cartésiennes d’un espace a trois dimensions nécessairement plat, c¢’est-a-dire
euclidien ou pseudo-euclidien. L’ensemble R™ des n-uplets de nombres réels (un n-uplet est
une liste ordonnée de n objets) muni du produit scalaire euclidien est un espace euclidien de
dimension n. Les n-uplets de réels ne sont en fait que les coordonnées cartésiennes des points
de I'espace euclidien.

DEFINITION 7.3.3. Hyperplans
Les hyperplans sont des espaces topologiques sans courbure, de dimension n — 1 plongés
dans un espace topologique de dimension n.

DEFINITION 7.3.4. Hypersurfaces
Les hypersurfaces sont des espaces topologiques de dimension n—1 plongés dans un espace
topologique de dimension n.

DEFINITION 7.3.5. Courbe paramétrique

Dans un espace topologique a n dimensions de systéme de coordonnées (x;), une courbe
paramétrique de parameétre X est [’ensemble des points tels que chaque coordonnée est une
fonction de X\ :

Vi=1,...,n, r' = 2'(\)

En physique les parameétres habituels sont le temps ou I'abscisse curviligne (la distance
parcourue le long de la courbe a partir d'un point de la courbe pris pour origine).
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DEFINITION 7.3.6. Ligne de coordonnée
Dans un systéme de coordonnées ('), une ligne de coordonnée est le lieu des points pour
lesquels seule la coordonnée x? varie. Soient X un parameétre et ¢ des constantes :

z) = 27 (\)
Vi, at=c

En un point d’un espace topologique de dimension n se croisent n lignes de coordonnée.

EXEMPLE 7.3.1. Courbe en coordonnées sphériques sur une sphére de rayon a

AV 0=\
¢ = ()

DEFINITION 7.3.7. Hypersurface de coordonnée
Une hypersurface de coordonnée est [’ensemble des points dont une des coordonnées reste
constante :

ZL‘] — Cste

Dans un espace topologique de dimension 2, les hypersurfaces de coordonnée sont simple-
ment les lignes de coordonnée. Par exemple I'hypersurface de coordonnée z' = ¢! se confond
avec la ligne de coordonnée a2.

Dans un espace topologique de dimension 3, les hypersurfaces de coordonnée sont les surfaces
de coordonnée, elles se coupent deux a deux suivant les lignes de coordonnée.

7.4  METRIQUE DE L'ESPACE EUCLIDIEN

Coordonnées rectangulaires ou cartésiennes normales

Dans ce systeme de coordonnées les lignes de coordonnées sont des droites qui se coupent a
angle droit. Ces systémes de coordonnées ne sont possibles que dans les espaces plats, c’est-a-
dire euclidiens ou pseudo-euclidiens.

Dans le plan, en coordonnées rectangulaires (z,y) le carré de la longueur, appelée métrique,
est donné par le théoreme de Pythagore :

&= 2% 4y
C’est la forme quadratique associée au plan en coordonnées rectangulaires :
Qz,y) = 2* +y°
Elle a pour signature (2,0) et pour rang 2. D’apres la définition 5.0.13 p. 45, elle est définie
positive. La loi d’inertie de Sylvester nous dit qu’elle sera définie positive quel que soit le systeme
de coordonnées employé. La métrique s’écrit :

5% = Gua®® + gyyy°
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Les coefficients de la métrique, g,, = 1 et g,, = 1, sont les composantes du tenseur métrique
du plan en coordonnées rectangulaires. En notation matricielle puis en notation indicielle avec
la convention de sommation sur les indices répétés :

S

= 52‘jl‘ll‘]

ou 6;; est le symbole de Kronecker. Un tenseur métrique dont toutes les composantes sont
constantes n’est possible que dans les espaces plats (euclidiens et pseudo-euclidiens).

On généralise a l'espace, en coordonnées rectangulaires (z,y, z) la métrique est donnée par
la double application du théoreme de Pythagore, d’abord dans un plan puis dans 1’espace :

2
s? = (\/:c2 —|—y2) + 22

=22+ y2 + 22
= 9111’2 + gyyy2 + gzzz2
1 0 0| [z
= (a: Y z) 01 0|y
0 01

= (Sij.TZ.T]

Gza» Jyy» 9= sont les composantes du tenseur métrique de 'espace euclidien en coordonnées
rectangulaires. La forme quadratique associée a 1’espace euclidien en coordonnées rectangulaires

Qz,y,2) =2 +y* + 2°

a pour signature (3,0) et pour rang 3. La signature est souvent donnée sous forme explicite
(+ 4+ +). Elle est définie positive.

Pour pouvoir 'intégrer le long d’une courbe, la métrique est donnée sous forme différentielle :
ds® = dz® + dy* + d2* (17)

ds? est le carré de I’élément de longueur (élémentaire dans le sens de infinitésimal).

REMARQUE 12. L’opérateur carré est prioritaire sur celui de différentiation, par exemple
da?/dx = 2z
de? = 2xdx
dx? est donc un infiniment petit du premier ordre. En toute rigueur il faudrait écrire
(ds)? = (dz)* + (dy)* + (dz)®

pour le carré de la distance infinitésimale qui est un infiniment petit du deuziéme ordre. Néanmoins nous
supprimons les parenthéses pour alléger la notation, la confusion étant peu probable.

Coordonnées cartésiennes

Dans ce systeme de coordonnées aussi appelées coordonnées affines, ou rectilignes obliques,
les lignes de coordonnées sont des droites. Nous verrons que ces systemes de coordonnées
peuvent toujours se ramener par changement de variables a un systéeme de coordonnées rectan-
gulaire. Les coordonnées cartésiennes ne sont donc possibles que dans les espaces plats.
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@) x T
Fia. 7.1 — Coordonnées cartésiennes (z’,1/)

Transformation des coordonnées cartésiennes en rectangulaires

r=12"+y cos(a)
T , .
y =y sin(a)
Transformation des coordonnées rectangulaires en cartésiennes
' =1z —1y cos(a) ¥=x—

_ tan o
T . / y = y

= /
sin(«) Yy sin(a)
En coordonnées cartésiennes la métrique du plan s’écrit :
ds? = da® + dy?
ox ox ? y dy ?
— v d / " d / s d / I d /
(sG] + (G G
= (da’ + cos(a)dy’)” + (sin(a)dy’)”
= da”® + 2 cos(a)dx'dy’ + cos?® ady’? + sin? ady"
= da"? 4 2 cos(a)da'dy’ + dy” (18)

En coordonnées cartésiennes (et cartésiennes normales), la métrique est une somme a coefficients
constants, ici 1 puis 2 cos(a) et a nouveau 1. Une conséquence de la réduction de Gauss est que la
métrique en coordonnées cartésiennes peut toujours se ramener a une métrique en coordonnées
rectangulaires.

Sous forme différentielle, la métrique s’écrit :
ds® = Gurpda® + 2gurydr’dy’ + gy dy’”

Gu'ats Garyy' s Gyryy SONE les composantes (constantes) du tenseur métrique du plan en coordonnées
cartésiennes.

Coordonnées curvilignes

Dans ce systéme de coordonnées qui peut étre orthogonal ou oblique, les lignes de coor-
données ne sont pas des droites. Au moins un coefficient de la métrique (une composante du
tenseur métrique) est fonction des coordonnées.
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Coordonnées orthogonales

Dans ce systeme de coordonnées qui peut étre rectiligne ou curviligne, les lignes de coor-
données se coupent a angle droit. La métrique ne contient que des carrés, elle n’a pas de terme
croisé (ou rectangle), du type xy.

Coordonnées obliques

Dans ce systeme de coordonnées qui peut étre rectiligne ou curviligne, les lignes de coor-
données ne se coupent pas a angle droit. La métrique contient au moins un terme croisé.

Coordonnées polaires

C’est I'archétype des systemes de coordonnées curvilignes orthogonales du plan. En faisant
varier la distance radiale a I’origine p et ’angle 6 on parcourt I’ensemble des points du plan. Les
coordonnées polaires (p, #) forment donc un systéme de coordonnées pour le plan. Contrairement
aux coordonnées rectilignes, elles sont applicables ailleurs que dans le plan, par exemple a la
surface d’'une sphere. Pour le mettre en place dans le plan, il faut se donner les mémes éléments
que pour le systeme de coordonnées rectangulaire en deux dimensions, c’est-a-dire deux points
du plan et une unité de longueur. Il n’est pas nécessaire de se donner une unité d’angle car le
tour et ses fractions sont des unités naturelles, en revanche il faut se donner une orientation
(un sens de parcours positif pour les angles).

@)

F1c. 7.2 — Coordonnées polaires (p, 6)

C’est un systeme de coordonnées curvilignes orthogonales car les cercles coupent leurs rayons
a angle droit. Il est dégénéré a 'origine des coordonnées, en ce point I'angle 6 est indéterminé,
cependant la dégénéréscence est facilement levée en passant aux coordonnées rectangulaires.

Transformation des coordonnées polaires en rectangulaires

x(p,0) = pcos(f
{ (6,6) = peos() p=0 et 0<6 <2 (19)

y (p,0) = psin(6)

Transformation des coordonnées rectangulaires en polaires
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arctan(y/x) si x > 0
arctan(y/x) +msiz <0ety >0

{p(x,y):,/x2+y2 arctan(y/x) —msizx <0et y <0

N

avec atan2(y,x) = .
0 (z,y) = atan2(y, z) +7/2six=0ety >0

—7m/2siz=0ety<0

indéfiniesix =0et y =0

En coordonnées polaires la métrique du plan s’écrit :

ds* = da* + dy? (20)
Ox Ox 2 Ay dy ?
=|—d — df —d — df
(ap T >+<3p T

= (cos(8)dp — psin(0)dh)* + (sin(0)dp + p cos(h)do)?
= cos?(0)dp* + p*sin®(0)d0* — 2p cos(#) sin(0)dpdf
+ sin?(0)dp® + p? cos?(0)dH? + 2p cos(0) sin(8)dpdf
= dp® + p*db® (21)
= Gopdp”® + goedt?

olt g,y = 1 et gygg = p? sont les composantes du tenseur métrique du plan en coordonnées
polaires. La composante ggg est fonction de la coordonnée p. La transformation de coordonnées
(19) permet de retrouver un tenseur métrique avec des composantes constantes. Lorsque les
composantes sont fonction des coordonnées, la métrique ne peut étre donnée que sous forme
différentielle car elle varie d’'un point a l'autre.

Coordonnées cylindriques

Elles sont identiques aux coordonnées polaires, avec la coordonnée supplémentaire z. C’est
un systeéme de coordonnées curvilignes orthogonales pour ’espace a trois dimensions. Lorsqu’on
I'utilise en deux dimensions pour une surface cylindrique en fixant p, le centre du systeme de
coordonnées n’appartient pas au cylindre. Pour que le centre du systeme de coordonnées soit
sur la surface cylindrique, on peut la dérouler pour en faire un plan, et utiliser les coordonnées
rectangulaires ou polaires a sa surface. Les lignes de coordonnées sont alors des droites du plan,
mais aussi des courbes dans l'espace a trois dimensions dans lequel est plongé le cylindre.

FiG. 7.3 — Coordonnées cylindriques (p, ¢, 2)
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Transformation des coordonnées cylindriques en rectangulaires

x = pcos(e)
T y = psin(¢) p =0, 0< o< 2m, —00 < 7 < 400
/
2=z

Transformation des coordonnées rectangulaires en cylindriques

p =z +y?

¢ = atan2(y, x)

2=z

est le cylindre d’axe z.

est le demi-plan limité par I'axe z.
est le plan parallele au plan (z,y).
En coordonnées cylindriques la métrique s’écrit :

ds? = da® + dy? + d2*

T

La surface de coordonnée p = ¢
La surface de coordonnée ¢ = ¢
La surface de coordonnée 2’ = ¢5%

[0z Ox or  \° (oy oy \° [0z 0z 9z )\’
= (—dp+8¢d¢+—dz> ( dp +8¢d¢>+ dz ) (—dp+a¢d¢+—dz>
— (cos(¢)dp — psin(¢)dg)” + (sin(¢)dp + p cos(¢)de)” + d="

= dp® + p*d¢® + dz*

Coordonnées sphériques

C’est aussi un systeme de coordonnées curvilignes orthogonales pour ’espace a trois dimen-
) s

sions. Lorsqu’on 'utilise en deux dimensions pour une sphere en fixant le rayon, le centre du
systeme de coordonnées n’appartient pas a la sphere.
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Fia. 7.4 — Coordonnées sphériques (r, 0, ¢)

Transformation des coordonnées sphériques en rectangulaires

x = rsin(0) cos(¢)

T . {y=rsin@)sin(¢) >0,

0<l<m, 0<op<2n
z = rcos(f)
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Transformation des coordonnées rectangulaires en sphériques

r = /x2+y2+22
T 6 = atan2 (\/x2+y2,z)

¢ = atan2 (y, r)

Pour trouver 'expression de la métrique en coordonnées sphériques, partons de son expres-
sion en coordonnées rectangulaires :

ds® = da® + dy* + d2*

En différentiant la transformation 7" :

dx = O,z dr + Opx df + Ogx do dx = sin 6 cos ¢ dr + r cos 6 cos ¢ df — r sin 0 sin ¢ do
dy = Oyydr + Ogydf + Opydp = { dy =sinfsin¢dr + rcosfsin ¢ df + rsin 6 cos ¢ d¢
dz = 0,zdr 4 Opz df + Oz do dz = cosOdr — rsinfdf

La somme des carrés donne l’expression cherchée :

ds* = dr® + r*d6? + r*sin’(0) d¢* (22)

Transformation des coordonnées sphériques en cylindriques, et cylindriques en sphériques

p = rsin(f) r— /p2+22

z = rcos(0) 0 = atan2 (p, z)
¢=0¢ o=0¢
Dans un systéme de coordonnées générales, la métrique de ’espace euclidien en trois dimen-
sions s’écrit :
ds® = gy1(dx)? 4 2g10dat da? + 2g1sdatda® + goo(da?)? + 2g9sdr’da® + gss(da®)?
= gijdxid:cj

On les appelle métrique euclidienne et tenseur métrique euclidien.

7.5 LONGUEUR D’UN ARC DE COURBE

Dans l'espace euclidien, supposons que la trajectoire d’'un point M de coordonnées cur-
vilignes (z%) soit donnée en fonction d'un parametre A (habituellement le temps ou P’abscisse
curviligne), z* = 2°(\), variant sur un intervalle (Ao, A;). La longueur I" de I’arc de courbe décrit
par M est alors donnée par 'intégrale de la métrique définie positive :

T:/ ds
S0
S1
\/gijdl‘idl‘j (23)
0

S

En faisant apparaitre le parameétre A :

- dzrt dxi
T = Sy
AO % ax ax
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La longueur de I'arc de courbe est indépendante du choix du parametre. En effet, soit un
nouveau parametre fonction de 'ancien :

1= ¢(A)
dy = —8‘2(3) d\
dat dx’ 0¢(N)
Vi T A o

On a alors :

r—/h  dat do [0600T°
S N7 dp | on

A1 i j
:/ Jg,; T 4 00N
A\ dp dp OX

0
/ ¢() dzt di
- 9ij o - dp
#(Xo) ’ dp dp

En coordonnées rectangulaires :

r— / Jdz? + dy? + d2?
S0

Il nous faut les fonctions x, y, z qui définissent la courbe. Les coordonnées peuvent étre fonction
les unes des autres, cependant nous prenons le cas plus général des équations paramétriques.

EXEMPLE 7.5.1. La fonction y = sin(a? + 1) peut étre paramétrée de plusieurs facons :
T =1 T = t2 T = t2 +1
ou ou
y = sin(t? + 1) y =sin(z + 1) y = sin(z)

Sans perte de généralité, nous supposons que les coordonnées sont fonction du méme pa-
rametre t. La courbe a pour équations paramétriques z' = z'(t). Pour ¢ variant de tq a t1, sa

longueur s’écrit :
t1
T:/ ds(t)
to
t1
_ / Jaz2 () + dy?(6) + d=2(1)
to
f ox 2 dy 2 0z 2
—/to <Edt> + <adt> + (adt>
h oz’ oy 2 0z\°
-JAG) (@) (5

Dans les espaces euclidiens, nous pouvons passer librement d’un parametre quelconque a une
)
paramétrisation par l’abscisse curviligne. Elle a pour expression en fonction du parametre ¢

dzt dxi
Yii dr drt 4
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et la courbe a pour longueur
I'= S(tl)

Le passage d'un parametre a l'autre s’effectue grace a la relation :
ds dxt dxi
at ~ V9 a dt
EXEMPLE 7.5.2. Soit la courbe paramétrique :
r=3t—1 =3
y=4+2 j=4
ot le point désigne la dérivation par rapport a t.

s@:Ax@?ﬁm

=5t
Avec cette relation nous pouvons paramétrer la courbe avec ’abscisse curviligne :

3

=21
5
4s

— =9
YT

En coordonnées cartésiennes, supposons que les coordonnées x et y soient fonction du pa-
rametre ¢. La relation (18) p. 61 donne la longueur d'une courbe € : x = z(t);y = y(t) :

r:[h@@

= / 1 \/de(t) + 2 cos(a)dz(t)dy(t) + dy?(t)

to

f o\’ oz Oy dy 2
= il 2 hdndad 4 =
/to J(@t) + 2 cos(a) 5 8t+<8t> dt

En coordonnées polaires, supposons que les coordonnées p et @ soient fonction du parametre
t. La longueur d’une courbe & : p = p(t); 0 = 0(t) s’écrit :

r:l?%@

:Z“¢w@+mwm)

holfop\t ., (00
[ ()
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7.6 COURBURE D’UNE COURBE

En coordonnées rectangulaires d’'un espace euclidien, la courbure d'une courbe ¢ : % = x(t)
est le taux de variation de la tangente a cette courbe en fonction de la distance (abscisse
curviligne) :

d?xt Az
.’
7 ds? ds?

k(s) =1/0
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8.1 LA SPHERE

La sphere est 'archétype de ’espace non-euclidien de dimension 2. Elle est paramétrisable
par les deux angles 6 et ¢, ce dernier angle étant dégénéré aux podles. Bien entendu la sphere
n’a pas de poles, le probleme est uniquement dii au systeme de coordonnées utilisé. Au mieux
il existe un systéme de coordonnées n’ayant qu'un seul pole. Par conséquent il n’existe pas de
systeme de coordonnées qui couvre la sphere sans dégénéréscence, ’atlas d'une sphere comprend
au minimum deux cartes.

Sur une sphere de rayon 7, utilisons les coordonnées sphériques (r, 8, ¢) avec r constant. La
métrique s’écrit :

ds* = r?df* + r?sin®(0) d¢?

Ici ggg = r* avec r constant, gy = 0 et ggy = r?sin?(f) est fonction de la coordonnée 6. Tl
n’existe pas de systeme de coordonnées global a la surface de la sphere pour lequel g;; = 4,5, la
courbure de la sphére est intrinseque, contrairement a celle du cylindre. Localement en chaque
point on peut définir un espace tangent de méme dimension que la sphére, un plan, pour lequel
gi; = 0;;. La sphere est un espace non-euclidien, dit sphérique.

REMARQUE 13. Sur un cylindre de rayon p, utilisons les coordonnées cylindrique (p,¢,z) avec p
constant. La métrique s’écrit :

ds® = p?d¢® + dz*
Les coefficients de la métrique sont bien des constantes, sa signature est (++). La courbure du cylindre
est extrinséque.

Passons en coordonnées polaires sphériques (p, ¢) a la surface de la sphere. On pose p = 0r
le déplacement a la surface de la sphére (p = wr d’'un podle a lautre) :

p=0r
dp = rdf
dp® = r*df?
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En coordonnées polaires sphériques, la métrique de la sphere s’écrit :
ds* = dp* + r?sin®(p/r) dp* (24)
= Goplp® + gspde’

ol g,, = 1 et gy = r?sin?(p/r) sont les composantes du tenseur métrique de la sphére en
coordonnées polaires sphériques. Elles sont différentes des composantes du tenseur métrique
du plan en coordonnées polaires. ((21) p. 63). La métrique (et le tenseur métrique) détermine
la courbure intrinseque d'un espace, mais dépend du systéme de coordonnées employé. Nous
chercherons une fonction du tenseur métrique (et de ses dérivées) qui donne la courbure de
I’espace mais qui ne dépende pas du systeme de coordonnées. Nous verrons également les
conditions pour qu'une matrice soit effectivement un tenseur métrique.

8.2 METRIQUE D’UNE SURFACE

Soit une surface non plane plongée dans un espace euclidien de dimension 3. C’est un
exemple général d’espace non-euclidien de dimension 2. En coordonnées cartésiennes (z'), une

surface est 'ensemble des point P de coordonnées (z!, z?, 23) satisfaisant la relation

1,2
flzt 2% 2%) =0
Sous certaines conditions que I’on suppose réalisées, on peut réécrire cette relation sous la forme
3 1,2
x° =gz, z7) (25)

qui montre le caractére bidimentionnel de la surface. Les coordonnées z' et 2 varient librement
dans le plan 23 = 0 et la fonction g donne la valeur de 23. La situation est donc asymétrique et
de plus la fonction f ne permet pas de représenter toutes les surfaces, par exemple les surfaces
fermées. Par analogie avec (25) on introduit deux parameétres u' et u? qui varient dans un
domaine A du plan (u!,u?). Les trois fonctions

Vi=1,2,3 2'=2'(u',u?)

sont un sous-ensemble bidimentionnel de points dans I’espace euclidien de dimension 3 en coor-
données cartésiennes (). Les fonctions z(u', u?) sont supposées suffisamment différentiables
dans le domaine de définition A. La situation est a nouveau symétrique. C’est la représentation
d’une surface en parameétres de Gauss. On peut concevoir u' et u? comme des coordonnées de
surface, de la surface. Le choix des parametres de Gauss est sans limites, nous pouvons changer
de parametres en posant les deux relations inversibles suivantes :

Vi=1,2 v =v/(ut,u?)
v! et v? sont aussi des coordonnées pour la surface. Supposons donc que I'on ait
Vi=1,2,3 7' = 2" (u', u?)

cela nous place de fait sur la surface. La métrique de la surface peut toujours s’écrire localement
en coordonnées cartésiennes normales grace au théoreme de Pythagore en trois dimensions :

ds*(u',u?) = (do')?(ut, u?) + d(2?)?(u', u?) + d(2®)*(u', u?)
= 3 (de ()

Elle contient toute l'information concerant la courbure intrinseque de la surface, autrement
dit toute l'information dont on a besoin concernant la surface. Nous n’avons pas besoin de
plonger la surface dans un espace de dimension supérieur pour étudier sa courbure intrinseque.
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Comme ’on reste au niveau local, nous pouvons considérer le plan tangent a la surface en ce
point. En choisissant correctement 1’orientation du systeme de coordonnées au point considéré,
cela revient en fait & poser z° = 0 et a prendre le plan (x!,2?) comme plan tangent. La
métrique locale de la surface peut toujours s’écrire en coordonnées cartésiennes normales grace
au théoreme de Pythagore en deux dimensions :

4s(u ) = (da 2 (u! o) + d(a?)(u', )
2
= > (da P )
i=1
2 (ox | Ox 2
—z;<au1du +au2du>

i

2 (9rt\? ox' 07! or'\?
— d 1\2 2 d ld 2 bl d 2\2
;(87&) (du’)” + oul Ou? wan +<8u2> (du?)
= gndulalu1 + legduldUQ + gggdUQdUQ

= FBdu'du' + 2Fdu'du® + Gdu?du®

appelée premiere forme quadratique fondamentale de la surface considérée.

2 0t 0
ds?(ut, u?) = du du®
= gjpdu’ du® (26)
ou l'objet géométrique a deux indices et quatre composantes
) o
ox' Ox'
A
A : 27
Iik ; ouw? Ouk (27)

est appelé tenseur métrique. Le nombre d’indices est appelé 'ordre du tenseur, le tenseur mé-
trique est d’ordre deux. Dans un espace de dimension 7, le tenseur métrique a n? composantes.
L’égalité

(de")? + (dz?)? = g1 (du')? + 2g10dut du® + goo(du?)?
montre que les termes carrés g;; et goo du tenseur métrique indiquent le carré de 1’échelle qui
a été appliquée en chaque point au systeme de coordonnées rectangulaires. Le terme rectangle

g12 apparait lorsque le systéme de coordonnées u’ est oblique. Le tenseur métrique donne en
quelque sorte 1’écart au systeme de coordonnées orthonormées.

EXEMPLE 8.2.1. Si le systéme de coordonnées (u',u?) est tel que

{xl(ul) = 2u’
2% (u?) = u?

alors un point de coordonnée u' = 1 a aussi pour coordonnée ' = 2. L’échelle u' est
deur fois plus grande que l’échelle . D’aprés (27) p. 71

oz >
g11 = (%) =4

(dz")? + (dz?)? = 4(du')? + (du?)?
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D’apres (26) p. 71, si les coordonnées de Gauss sont fonction du parametre «, la longueur
d’une courbe du point a au point b a pour expression :

b
L= / ds
b
:/ \/ gikdud du®
/ a oul Juk p
= 7, — — A
o 9% 9e Dax
Notez que lorsque la variation de L est nulle, 6L = 0, le trajet entre les points a et b est
extrémal.
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L’espace de la relativité restreinte, appelé espace de Minkowski ou espace-temps de Poincaré-
Minkowski, est I’exemple prototypique d’un espace pseudo-euclidien.

9.1 REFERENTIELS ET PRINCIPE DE RELATIVITE

DEFINITION 9.1.1. Référentiel
Un référentiel est un espace muni d’un systeme de coordonnées, et un temps mesuré par
une horloge fixe dans cet espace.

DEFINITION 9.1.2. Principe de relativité
Parmi tous les référentiels possibles, il existe un ensemble infini continu de référentiels
dans lesquels les lois de la physique s’écrivent sous la méme forme mathématique.

DEFINITION 9.1.3. Référentiels équivalents
Les référentiels dans lesquels les lois de la physique s’écrivent sous la méme forme ma-
thématique sont dits équivalents.

DEFINITION 9.1.4. Référentiel galiléen

Les référentiels équivalents qui se déplacent d’un mouvement de translation rectiligne uni-
forme (a vecteur vitesse constant) par rapport auzx étoiles lointaines sont appelés référen-
tiels galiléens.
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DEFINITION 9.1.5. Configuration standard
Deux référentiels galiléens sont en configuration standard si :

— les centres des référentiels se croisent et se superposent a l'instant to =ty = 0

— on utilise les coordonnées galiléennes (t,x,y, z), les repéres sont orthonormés
directs, l'aze du temps est représenté normal a Oz, a Oy et a Oz

— le mouvement rectiligne n’a lieu que selon les axes Ox et O'x’ paralléles et de
méme sens (confondus car les centres se superposent), ve, = Vg = Vez = Uy =0

— le mouvement de translation est tel que les axes Oy et O'y' sont paralléles, donc
aussi les axes Oz et O’z (pas de rotation statique)

— le mouvement uniforme de R’ est dans le sens des x croissants. La vitesse d’en-
trainement de R’ dans R selon l'aze Ox est positive ou nulle, Ve, = ||Ue]| = ve > 0

9.2 INVARIANTS RELATIVISTES

On postule I'existence d’'une vitesse limite notée c. Cette vitesse est donc invariante par
changement de référentiel galiléen, elle a méme valeur pour tous les observateurs galiléens
sinon nous pourrions la dépacer par changement de référentiel. A un changement de référentiel
correspond une transformation des coordonnées spatio-temporelles, chaque référentiel ayant a
priori son propre systéeme de coordonnées spatio-temporelles. La transformation de coordonnées
spatio-temporelles que 1’on cherche doit laisser invariante c.

A partir de la vitesse limite on peut trouver un deuxiéme invariant relativiste qui fait in-
tervenir les coordonnées spatio-temporelles. Soient deux référentiels galiléens R et R’ en confi-
guration standard avec la vitesse relative d’entrainement V. Imaginons qu’a 1'origine spatiale
0(0,0,0) de R se produise un flash a l'instant initial ¢, = ¢;, = 0. Pour simplifier, on suppose
que la lumiere se propage a la vitesse limite c¢. Un observateur dans R verra une sphere de
lumiere de centre O s’étendre dans l'espace, d’équation :

4yt 422 = (ct)2

En relativité restreinte comme en physique non relativiste, un observateur dans R’ verra aussi
une sphere de lumiere s’étendre dans I'espace. Cependant, par invariance de ¢, en relativité la
sphere de lumiére vue par un observateur dans R’ n’a pas pour centre O mais O', et a pour
équation dans R’ :

l‘lQ + y/Z + 2/2 — (Ct/)Q

L’équation de la sphere de lumiere est invariante par changement de référentiels galiléens, c¢’est
un invariant relativiste.

9.3 FEQUATION DE LA SPHERE DE LUMIERE

L’équation de la sphére de lumiere étant la méme dans tous les référentiels galiléens cela
suggere de poser au choix

As? = AP — (A:c2 + Ay? + Az2) ou As* = Ax? + Ay? + A2 — AP
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Nous choisissons la convention de genre temps, 'autre étant la convention de genre espace :
As® = AP — Ax? — Ay? — AZ? (28)

Cette expression rappelle celle du carré de la distance euclidienne en trois dimensions d’espace.
Or, si s? est nul dans un référentiel galiléen R, alors il est nul dans tout autre référentiel galiléen
R’, autrement dit s et s’ sont proportionnels :

s=as

9.4 ESPACE HOMOGENE ET ISOTROPE, TEMPS HOMOGENE

L’espace étant supposé homogene (toute expérience donne le méme résultat indépendam-
ment de endroit ou elle est faite), le facteur de proportionnalité o ne peut étre fonction des
coordonnées. Le temps étant également supposé homogene (toute expérience donne le méme
résultat indépendamment de I’époque a laquelle elle est faite), a ne peut étre fonction du temps.
L’espace étant supposé isotrope (toute expérience donne le méme résultat indépendamment de
I'orientation choisie dans 'espace), « ne peut étre fonction de la direction de la vitesse relative
des référentiels. o n’est donc fonction que de la norme de la vitesse relative des référentiels :

s=a(V)s

9.5 LOI DE COMPOSITION INTERNE

Si 'on considére trois référentiels d’inertie nous avons
s1 = a(Viz)sg
89 = a(Va3)s3
s1 = a(Vi3)ss
soit,
s1 = a(Viz)a(Vaz)ss
a(Viz) = a(Vig)a(Vas)

Cette relation est impossible car Vi3 dépend non seulement des valeurs Vi, et Va3, mais aussi
de 'angle entre les vecteurs V5 et V3. Par conséquent « est une constante et nous avons :

a=a«
Cela laisse deux possibilités, & = 0 donne s = 0 ce qui est impossible, donc @ =1 et :

s=4s (29)



76 Espaces pseudo-euclidiens

9.6 INTERVALLE D’UNIVERS

s est une distance spatio-temporelle quadridimentionnelle, invariante par changement de
référentiel galiléen, donc absolue dans 'espace-temps. Cette distance dans I’espace-temps entre
deux évenements est appelée intervalle d’univers ou distance d’univers ou intervalle d’espace-
temps ou métrique de l’espace-temps. Elle a méme valeur dans tout référentiel galiléen. A partir
de (28) p. 75, considérons deux événements infiniment proches (¢, x,y, z) et (t +dt, z + dx,y +
dy,z+dz) :

ds® = A2dt? — dz® — dy? — d2* (30)

Si les deux événements appartiennent a une trajectoire décrite avec une vitesse v(t), nous
avons dz? + dy? + dz? = v*(t)dt* :

ds* = | —v*(1)] dt’ (31)

Si v(t) est inférieure & ¢ alors ds? > 0 et s est réel dans la convention de genre temps. Pour un
déplacement a la vitesse limite, I'intervalle d’univers ds est nul.

Nous sommes ainsi conduits, en relativité restreinte, a douer la variété d’univers Vj de la
métrique définie par la forme quadratique différentielle (30), appelée métrique de Minkowski.
Cette métrique étant a coefficients constants en coordonnées rectangulaires appelées coordon-
nées galiléennes (t,x,y, z), elle définit V; comme un espace pseudo-euclidien : le « pseudo »
vient du fait que la métrique n’a pas que des signes positifs ou que des signes négatifs, le « eu-
clidien » vient des coefficients constants en coordonnées galiléennes. A cet espace on donne le
nom d’espace-temps de Poincaré-Minkowski.

L’espace-temps de la relativité restreinte est un espace riemannien pseudo-euclidien. Nous
verrons qu’il est osculateur (tangent a I'ordre deux) a I'espace-temps pseudo-riemannien de la
relativité générale.

Substituons aux coordonnées ¢, z,y, z les coordonnées galiléennes réduites (9) p. 24 : La
métrique prend alors la forme :

= ()" = (1)~ (0" o)

Appelons 7,4 le tenseur métrique de I'espace de Poincaré-Minkowski dans ce systeme de coor-
données, les indices grecs variant de 0 a 3 :

ds? = napda®da”

avec :
1 0 0 0
mesl =g o0 1 o (32)
0 0 0 -1
Le déterminant de cette matrice est négatif :
n=1x-1x-1x-1
=-1 (33)

En convention de genre espace il est aussi négatif :

n=—-1x1x1x1
=—1
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L’espace-temps de Poincaré-Minkowski peut bien entendu étre rapporté a un systeme de coor-
données curvilignes (y*) quelconque et la métrique s’écrit

ds? = gapdy®dy”
ou les g,5 sont fonction des coordonnées curvilignes. D’apres la loi d’inertie de Sylvester 5.3
p. 49, le déterminant g est négatif également en coordonnées curvilignes. La forme quadratique
associée a 'espace de Minkowski de la relativité restreinte, (28) p. 75 :

Q(taxayv Z) = 021’2 - '12 - y2 - 22

a pour signature (1,3) et pour rang 4.

9.7 LONGUEUR D’UN ARC DE COURBE

Dans un systéeme de coordonnées quelconque (z%) de 'espace de Minkowski, la longueur
d’une courbe € : x® = z*(\) pour A\; = A = )¢ a pour expression :

F:/ ds

S0

:/ \/ ENapdrda?
S0

dz® daxP
ENaf — —c
T8 "X
ou la fonction indicatrice ¢ est définie par :
e=1 si nup dx®dz” >0 (34)
e=—1 si nus dax®dx’® < 0

Soit r(z®) le quadrivecteur position d’'un évenement de la courbe et soit

u(A) =r'(A)
= dz®/d\
ot le prime désigne la dérivation par rapport au parametre A. Le vecteur r’ est en tout point
tangent a la courbe, il forme un champ de vecteurs tangents. Si le parametre est le temps propre
7 de la particule qui décrit la courbe (temps affiché par une horloge liée a la particule), alors

u(7) est la quadrivitesse de cette particule.
Pour A\ > A > )\, la longueur s’écrit

r= [ aejax

Ao

ou |[u(A)|| est la pseudo-norme de u(\).

La métrique étant indéfinie, un arc de courbe peut avoir une longueur nulle.
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EXEMPLE 9.7.1. Considérons la courbe paramétrique, pour 1 > X >0 :

7 = B
z' = 3sin A
r? = 3cos A
z3 = 4\

dz® )
(H) = (5,3 cos A\, —3sin \, 4)

ds\_ ~da* da’
“\ax) T Tan
=52 — (3cos \)* — (—3sin \)® — 42

Si bien que :

1
0dA
0

0

=
|

DEFINITION 9.7.1. Courbe nulle
Une courbe est nulle si ['un de ses arcs est de longueur nulle. Un arc représente plus d’un
point, et correspond a un intervalle c > X = d avec ¢ > d.

DEFINITION 9.7.2. Arc de courbe nul en un point
Un arc de courbe est nul au point de parametre X = \g st le vecteur tangent a [’arc de
courbe en ce point est nul :

ds

— =0
dA|,,

En ce point I’abscisse curviligne s arréte de croitre (ou de décroitre) avec le parameétre A.

DEFINITION 9.7.3. Ensemble nul d’une courbe
L’ensemble des valeurs du parametre X pour lesquelles l’arc de courbe est nul s’appelle
l’ensemble nul de la courbe.

Un arc de courbe peut étre nul sans que sa longueur soit nulle, car il suffit que I'un de ses
segments soit de longueur nulle. En revanche, un arc de courbe de longueur nulle est nécessai-
rement nul.
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9.8 COURBE REGULIERE

Pour une métrique définie positive, ’abscisse curviligne est bien définie comme une fonction
strictement croissante du parametre de la courbe (ce parametre est lui aussi une fonction
strictement croissante de I’abscisse curviligne). Nous pouvons librement passer de I'un de ces
parametres a 'autre. Ce n’est plus le cas pour un arc de courbe nul, I’abscisse curviligne ne
peut plus étre définie.

DEFINITION 9.8.1. Courbe réguliére
Une courbe est régquliere si elle n’a pas de point nul, c’est-a-dire si en tout point

ds/d\ >0 ou ds/d\ <0

Soit une courbe réguliere donnée en fonction de son abscisse curviligne z® = z%(s).

dr _ dr d\
ds d\ ds
~u())
[u(N)]]
=t()\)

t(\) = dx®/ds est le vecteur tangent unitaire en chaque point de la courbe. Lorsque le parametre
A est le temps propre de la particule qui décrit la courbe, t(7) est sa quadrivitesse unitaire.
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Espaces riemanniens - Variétés

10.1 ESPACES RIEMANNIENS

Les espaces proprement riemanniens regroupent les espaces euclidiens (plats) et non eucli-
diens (courbes). La métrique proprement riemannienne est une forme différentielle quadratique
définie positive. Les espaces pseudo-riemanniens regroupent les espaces pseudo-riemanniens
plats, c’est-a-dire pseudo-euclidien, et pseudo-riemanniens courbes. La métrique pseudo-rieman-
nienne est une forme différentielle quadratique indéfinie.

Les espaces riemanniens regroupent les espaces proprement riemanniens et pseudo-rieman-
niens. Dans le systéme de coordonnées (2'), leurs métriques s’écrivent :

ds® = g;j(z")dz'dx’

Les variétés généralisent les espaces riemanniens en levant la contrainte sur 1’écriture de la
métrique. Le tableau suivant récapitule les différents espaces :

Variété Proprement r. | Proprement r. Pseudo-riemann. | Pseudo-riemann.
ou Pré-euclidien Pré-euclidien

espace Euclidien Non-euclidien Pseudo-euclidien | Pseudo-r. courbe
Métrique définie positive | définie positive indéfinie indéfinie
Signature + N/A + et - N/A
Représentation | plat courbe plat courbe

Sys. de coord. | rectiligne curviligne rectiligne curviligne
Coeflicients constants f(x) constants f(x)

Application @ classique Méca. analytique | Relat. restreinte Relat. générale
Exemple plan sphere esp. de Minkowski | trajec. Mercure

Par « Métrique » on entend forme quadratique associée au tenseur métrique ou bien matrice
représentative du tenseur métrique. Les coefficients de la métrique sont les composantes du

tenseur métrique.
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10.1.1 Propriétés du tenseur métrique

PROPRIETES 10.1.1. Propriétés du tenseur métrique d’un espace de Riemann
es composantes g;;(x*) sont différentiables de classe C?, leurs dérivées partielles
1) L tes gi;(x* td tiables de cl C?, 1 d tiell
secondes par rapport aux coordonnées existent et sont continues
(2) Les g;; sont symétriques : gi; = gj;
(3) La matrice G est telle que sa forme quadratique différentielle associée est une
distance : g;;dx'dz? doit étre invariante par changement de coordonnées
(4) Définie : Vu, gjju'v/ =0=u=0
(5) Positive : Yu, g;ju'u? =0
orsque (G est définie positive, le déterminant g et gq1, ga2, - - - , gnn SONt tous positifs. Dans
L G est défini iti le dét i t get tt itifs. D

les espaces pseudo-riemanniens les propriétés (4) et (5) sont remplacées par la propriété
moins restrictive :

(4) La matrice G est inversible (ssi son déterminant est non nul g # 0). Elle est dite
non singuliere ou définie

REMARQUE 14. G est symétrique

Supposons que ce ne soit pas le cas et décomposons le tenseur métrique en une partie symétrique et une
partie antisymétrique :

Vi,j g5 = 2 (g5 + gie) + 5 (5 — Gs)
La contribution & ds® de la partie antisymétrique est nulle,
3 (9i5 — g50) da*da’ = § (gijda’da’ — gjida’da’)
=1 (gijdxidxj —gijdxjd:bi)
(gijdxidxj = gijdxidxj)

(eI

et la métrique est symétrique.

J

La métrique d’un espace riemannien étant symétrique, calculons le nombre d’éléments dif-
férents de la matrice G, appelés composantes indépendantes du tenseur métrique. Comptons
les éléments diagonaux plus les éléments de la partie triangulaire supérieure de la matrice. Cela
représente la moitié¢ des n? éléments, plus la moitié restante des n éléments diagonaux, soit

n* n nm+1)

2 2 2 (35)

éléments différents.

~

REMARQUE 15. Si la matrice G

(1) est définie et positive, ’espace est dit proprement riemannien : pour tout vecteur v non nul,
Gij viv? >0
g et 11,922, . - ., Gnn SONt tous positifs. De plus, G=' est aussi définie positive. On peut faire
le rapprochement avec la définition d’un espace proprement euclidien.

(2) nlest pas définie positive, la métrique peut étre positive, négative ou nulle, elle est indéfinie
et Uespace est dit pseudo-riemannien. On peut faire le rapprochement avec la définition d’un
espace pseudo-euclidien.
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REMARQUE 16. Un espace riemannien existe en lui-méme et n’a nul besoin d’étre plongé dans un
espace de dimension supérieure pour étre représenté.

EXEMPLE 10.1.1. Montrons que le champ de matrice suivant est le tenseur métrique d’un
espace riemannien :

1 (2> 0
0 o &

On suppose que la métrique associée a cette matrice est invariante par changement de
coordonnées.

(1) Les éléments de la matrice sont des polynomes en x' et 2%, donc de classe C2.

(2) La matrice est symétrique

(8) Par hypothése la métrique associée est invariante par changement de coordonnées

(4) g =% {(:E2)2 {($1)2 — 1} - 1}. On suppose que [(:)31)2 — 1} — 1 # 1 pour que la
matrice soit inversible.

Calculons la longueur de la courbe €()\) d’équations paramétriques x* = x*(N\) :

t=22—1
€\ : {2 =2\ 0< AL
25— )\3
Le carré de la dérivée de la distance élémentaire s’écrit :

ds\*_ ~da'da?
“\an) TN

En notation matricielle :

ds\"_ (da'\" , (da!
“\ax) ~\an )

@x-12—-1 1 0]/ 2
= (2 4 33 1 (2X2)% 0| [ 4\
0 0 6] \3\

= 64)\% + 64)\* + 16)\?

donce =1.

T'(\) :/Olds:/ol (8X° +4)) dA = [2>\4+2>\2E:4
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10.2  VARIETES

10.2.1 Définitions

Tout systéme de n variables indépendantes x%(i = 1,...,n) occupant un certain domaine
constitue une variété a n dimensions. En général il n’est pas possible de couvrir une variété
avec un seul systeme de coordonnées qui ne soit pas dégénéré (voir la définition 7.3.2 p. 57).
Lorsque I'on ne peut pas lever la dégénérescence par changement de coordonnées on couvre la
variété avec des cartes, en référence aux cartes de géographie, chaque carte étant un systeme
de coordonnée couvrant une partie de la variété. L’ensemble des cartes nécessaire pour couvrir
toute la variété forme un atlas.

Plus le triangle tracé sur une sphere est petit, plus la somme de ses angles tend vers 7 et
son aire vers celle d'un triangle plat. Au voisinage infinitésimal d’un point, c’est-a-dire « locale-
ment », la surface de la sphéere est assimilable au plan qui lui est tangent en ce point, autrement
dit a l'espace euclidien tangent de méme dimension.

DEFINITION 10.2.1. Homéomorphisme
Deuz espaces topologiques sont homéomorphes s’il existe une application d’un espace dans
l'autre, qui soit continue, bijective, et d’inverse continue.

C’est un isomorphisme topologique.

DEFINITION 10.2.2. Variété
Une variété (ou variété topologique), de dimension n, est un espace topologique localement
homéomorphe a un espace euclidien E, de méme dimension n.

Ces espaces sont localement équivalents.

DEFINITION 10.2.3. Variété différentielle
Une variété différentielle (ou différentiable) est une variété sur laquelle on peut faire du
calcul différentiel.

La plupart des variétés en physique sont des variétés différentielles, ce qui signifie qu’elles
sont continues et différentiable dans le sens suivant : une variété est continue s’il existe au
voisinage de tout point d’autres points dont les coordonnées ne different qu’infinitésimalement.
Nous dirons qu’elles sont continuement paramétrisables, les parameétres étant les coordonnées
de la variété. Une variété est différentiable s’il est possible de définir un champ scalaire en tout
point de la variété qui puisse étre partout différentié. L’association des points et des valeurs des
parametres peut étre vu comme une application allant des points de la variété vers les points
d’un espace euclidien de méme dimension. Localement, une variété ressemble donc a un espace
euclidien.

Soient P et () deux points d’une variété, infiniment proches, de coordonnées respectives
2t et a' + da'. La distance infinitésimale entre P et Q, c’est-a-dire aussi le tenseur métrique,
détermine la géométrie locale de la variété au point P. Dans le cas le plus général, le carré de
la distance est une fonction des coordonnées et de leurs différentielles :

ds®* = f (a:i, dxi)
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La distance s’exprime dans un systéme de coordonnées mais c¢’est un invariant (par changement
de coordonnées), sa valeur est la méme dans tous les systemes de coordonnées.

10.2.2 Exemples

EXEMPLE 10.2.1. La géométrie de Finsler est une variété différentielle de dimension 2,
dont le carré de la distance exprimée en coordonnées & et  a pour expression :

ds? = (dg*,a¢*)”?

EXEMPLE 10.2.2. L’espace euclidien de la mécanique classique est une variété différen-
tielle a trois dimensions. Les parameétres sont les trois coordonnées de position.

EXEMPLE 10.2.3. L’espace-temps de la relativité restreinte est une variété différentielle a
quatre dimensions. Les paramétres sont les trois coordonnées d’espace et celle de temps.

EXEMPLE 10.2.4. L’espace des configurations d’un systeme dynamique a n degrés de li-
berté est une variété différentielle a n dimensions. A chaque point de cet espace correspond
une configuration du systéme.

ExXEMPLE 10.2.5. L’espace des phases d’une particule en mécanique classique est un
exemple abstrait de variété différentielle a six dimensions. Les parameétres sont les trois
coordonnées de position et les trois quantités de mouvement.

EXEMPLE 10.2.6. Un autre exemple abstrait est donné par l’ensemble des rotations d’un
systeme de coordonnées rectangulaires dans un espace a trois dimensions. Les parameétres
sont les angles d’Fuler et ’ensemble des rotations est une variété a trois dimensions. Les
coordonnées d’un point sont les trois angles d’Fuler.
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11.1 REPRESENTATION GEOMETRIQUE

Tout comme les vecteurs, le produit scalaire est une notion issue de la mécanique classique.
Il permet d’exprimer le travail d’une force. En notant f l'intensité d’une force, d le déplacement
du point d’application de cette force sous l'effet de cette force, et 8 I'angle que font la force et
le déplacement, le travail W (work) de la force lors de ce déplacement a pour expression :

W = fd cos(0)

Le travail est une mesure de 'effet mécanique d’une force en ’absence de déformations. A 1'ori-
gine il permettait d’évaluer ’énergie fournie par un cheval pour déplacer une charge, autrement
dit le travail du cheval. La notion de travail suggere de définir une nouvelle opération sur les
vecteurs.

Notons d le vecteur déplacement. Le produit scalaire de la force par le déplacement est la
projection du vecteur force sur le vecteur déplacement :

f-d=fdcos(f,d)

REMARQUE 17. Notez qu’en physique nous effectuons le produit scalaire de vecteurs qui n’appar-
tiennent pas forcément au méme espace vectoriel.

Considérons 1'espace ordinaire de la géométrie classique appliquée a la physique. A tout
couple de vecteurs (u,v) la multiplication scalaire fait correspondre un nombre noté u - v,
appelé leur produit scalaire, tel que :

u-v = [ulflfjv]cos(u,v)
Dans le cas particulier ou u et v ont méme direction,
u-v = |[ulf|v]
et le produit scalaire d’'un vecteur par lui-méme donne le carré de sa norme euclidienne :
u-u = |u?

NOTATION 12. Le produit scalaire d’un vecteur avec lui-méme est noté :

A
u-u:u2
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PROPRIETES 11.1.1. Propriétés du produit scalaire euclidien
(1) Symétrie :
w-v = ull[v] cos(6)
= [[vllfa]f cos (=0)
=v-u

(2) Distributivité par rapport a l'addition vectorielle

Fi1c. 11.1 — Distributivité du produit scalaire

Posonsu; &uy =uj :
(u®uy)-v=uz-v
=[Jus|[|v]] cos (v 153)

=|fus|[[[v][ cos[(V,ur) + (11, u3)]

=[Jus|[|v]| [cos (¥;11) cos (T, 1) — sin (v, ) sin (107, 03 ) |
. —_—

||u2|| S (u17u2)

[[us]|

—_—
——\ [wf[ + [[uof[cos (u,u2)
= [Jus|[[v] |cos (V, 111) sl — sin (v, ul)
3

= [|v] [I[us]f cos (V,07) + Juz|| cos (V.10 ) cos (X7, 1z) — [|uz| sin (v, 1) sin (%, 1 ) |
(0 @ ) - v = |[v][[|wy ] cos (V.01 + || v [[uz] cos (¥,103)
=u;-v+usg- v

Il s’agit d’un abus de langage, il n’y a pas distributivité puisque le signe & du
membre de gauche est le signe opératoire de [’addition vectorielle, alors que le
signe + du membre de droite est celui de l’addition dans R.

(3) Associativité par rapport a la multiplication par un scalaire
Posonsa©Gu=w :

(a@u)-v=w-v
= [[wll[lv]l cos(6)

= alfull[}v][ cos(¥)

=ax(u-v)
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1l s’agit ici aussi d’un abus de langage, il n’y a pas associativité puisque le signe
® du membre de gauche est le signe opératoire de la multiplication d’'un vecteur

par un scalaire, alors que le signe X du membre de droite est la multiplication
dans R.

(4) Définie :Yu, u-u=0 = u=0
u-u=20
[[ull[[u][ cos (w, @) = 0
lu* =0
u=20
(5) Positive : Yu, u-u >0

11.2 REPRESENTATION ALGEBRIQUE

Par la suite, le produit scalaire a été défini de fagon purement algébrique par ses propriétés.

DEFINITION 11.2.1. Produit scalaire euclidien
Sotent \ et p deux scalaires, et soient u,v,w trois vecteurs d’un espace vectoriel E.
Supposons qu’il existe une loi de composition externe, de E x E dans R, notée -, telle
qu’a tout couple (u,v) de vecteurs de E elle fasse correspondre un scalaire de R, noté
u- v, ayant les propriétés suivantes :
(1) Symétrie :u-v=v-u
On trouve parfois le terme « commutativité » bien que ce terme soit réservé auz

lois de composition internes, l’application produit scalaire étant une opération
externe.

(2) Bilinéarité, c’est-a-dire :
(a) Distributivité a gauche par rapport a l'addition vectorielle :
u-(vbw)=u-v+u-w

La symétrie implique la distributivité a droite.

(b) Multiplication da gauche par un scalaire :

AGu)-v=Ax(u-v)

La symétrie implique la multiplication a droite.

2a et 2b sont équivalents a la linéarité a gauche :

u-Aoveuow)=Ax (u-v)+pux(a-w)

La symétrie implique la linéarité a droite. La bilinéarité regroupe la linéarité a
droite et a gauche.

(4) Positive : Yu, u-u >0

Cette loi s’appelle multiplication scalaire euclidienne de u par v sur le R-espace vecto-
riel E, et le scalaire u - v est appelé produit scalaire euclidien des vecteurs u et v.
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On parle de produit scalaire (tout court) lorsque les propriétés (3) et (4) sont remplacées
par la propriété suivante :

(3) Non dégénéréscence : ¥v, u-v=0=u=0
Cette propriété est moins contraignante car si la loi est définie alors elle est non-dégénérée.
En effet, par contraposée, supposons la loi dégénérée alors

Ju#0/Vv, u-v=0
En particulier pour u = v nous avons
Ju#0/u-u=0

et la loi n’est pas définie.

Le produit scalaire n’est pas associatif car (u-v)-w n’a pas de sens mathématique, le
terme entre parenthéses étant un scalaire. Le produit scalaire ne fait pas partie intégrante de
la structure d’espace vectoriel, mais est une structure supplémentaire qui peut ou non étre
introduite. Les espaces vectoriels munis d’un produit scalaire portent un nom particulier :

DEFINITION 11.2.2. Espaces vectoriels pré-euclidiens
Un espace vectoriel muni d’un produit scalaire (tout court) est appelé espace vectoriel
pré-euclidien.

DEFINITION 11.2.3. Espace vectoriel euclidien
Un espace vectoriel muni d’un produit scalaire euclidien est appelé espace vectoriel eucli-
dien, ou proprement euclidien ou purement euclidien.

L’espace vectoriel euclidien est un cas particulier d’espace vectoriel pré-euclidien.

DEFINITION 11.2.4. Espace vectoriel pseudo-euclidien
Un espace vectoriel muni d’un produit scalaire indéfini (qui peut étre positif, négatif ou
nul) est appelé espace vectoriel pseudo-euclidien ou improprement euclidien.

L’espace vectoriel pseudo-euclidien est un cas particulier d’espace vectoriel pré-euclidien.

REMARQUE 18. Les espaces vectoriels pré-euclidiens sont des espaces plats. L’existence d’un produit
scalaire n’est possible que dans ces espaces, et par conséquent les définit pleinement. Dans un espace
courbe, le produit scalaire n’est défini que localement dans l’espace pré-euclidien tangent.
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11.3 EXPRESSION ANALYTIQUE DU PRODUIT SCALAIRE

Soient u et v deux vecteurs d'un espace vectoriel pré-euclidien Fs, exprimés en composantes
contravariantes dans une base quelconque (e, e;). En utilisant la bilinéarité et la symétrie du
produit scalaire :

u-v= (ulel D u2e2) . (vlel D v2e2)
= (vlel D 11262) . ulel + (vlel D 11262) . U2€2

ulel . (vlel &, v2e2) + u2e2 . (vlel &, v2e2)

= ulel . v1e1 + ulel . 11262 + U262 . vlel + U2€2 . U2€2

= ulvlel -e; + U1U281 -ey + u%leg e+ UQUQGQ + €9

Généralisons a un espace a n dimensions :
Soient u = u'e; et v = 1v’e; deux vecteurs d’un espace vectoriel pré-euclidien £, :

u-v=u'e - v'e,

u-v=uvle; e (36)

Cette relation est valable que la base soit orthogonale ou non, normée ou non, car nous n’avons
pas fait d’hypothese. Lorsque la base est orthonormée :

u-v = §;ut’ (37)

DEFINITION 11.3.1. Vecteurs orthogonaux
Deux vecteurs u et v d’un espace vectoriel euclidien sont orthogonauz ssi leur produit
scalaire est nul :

u-v=20

11.4 COMPOSANTES COVARIANTES

Le produit scalaire permet de définir les composantes covariantes. A partir d'un systeme
de coordonnées rectilignes obliques (x!,x?), construisons une base normée (e, e;). En proje-
tant le vecteur u perpendiculairement aux vecteurs de base, nous obtenons ses composantes

covariantes :
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T
0 € Uy

Fi1c. 11.2 — Composantes covariantes du vecteur u
Nous avons :

U =1u-e;

Uy = U - €5

REMARQUE 19. A chaque aze de coordonnée on associe un vecteur de base tangent normé, sur lequel
on définit deux composantes, l'une contravariante, l'autre covariante. La variance, c’est-a-dire le fait
d’étre covariant ou contravariant, ne s’applique qu’aux composantes.

REMARQUE 20. Bien qu’ayant un indice supérieur, les coordonnées ne sont ni contravariantes ni
covariantes. Les coordonnées du point a ['extrémité d’un vecteur se confondent avec ses composantes
contravariantes, ce qui justifie la position haute de leur indice.

REMARQUE 21. La représentation du produit scalaire comme projection orthogonale donnée figure 11.2
ne s’applique plus lorsque le produit scalaire n’est pas euclidien. Nous verrons par exemple que dans une
base orthonormée de l’espace pseudo-euclidien de la relativité restreinte, les composantes contravariantes
et covariantes ne sont pas confondues (paragraphe 17.8 p. 146).

DEFINITION 11.4.1. Composantes covariantes
Soit (e;) une base d’un espace vectoriel euclidien E,. On appelle composantes covariantes
d’un vecteur u, les n scalaires u; tels que :

- A
Vi U; = u- €

Elles sont représentées au moyen d’indices inférieurs.

REMARQUE 22. Lorsqu’un vecteur de base est multiplié par deuz, la composante covariante corres-
pondante l’est aussi, d’ot son nom.

REMARQUE 23. La position de l’indice de numérotation des vecteurs de base (e;) indique un lien avec
la covariance (voir le paragraphe 12.8.2 p. 107).
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Bien que la base (e1, es) soit normée :
u # uie] + uUges
THEOREME 11.4.1. Pour que n quantités rapportées a une base d’un espace vectoriel E,

soient les composantes d’un vecteur, il faut et il suffit que ces quantités soient toutes covariantes
ou toutes contravariantes par changement de base.

Une égalité entre deux vecteurs est indépendante de la base dans laquelle on 'exprime
puisque les termes de 1'égalité (les vecteurs) sont invariants par changement de base. Une
égalité entre deux vecteurs qui est vraie dans une base, est vraie dans toutes les bases.

11.5 COVECTEURS

A tout vecteur u on peut associer son covecteur @ = (uy, us), qui n’est autre que le vecteur u
exprimé en composantes covariantes. Représentons u = v+w et projetons perpendiculairement
ces vecteurs sur les axes de coordonnées z! et 22 :

FiG. 11.3 — Composantes covariantes

Dans la base normée (e, es) associée au systéme de coordonnées :

(Ul,’U2> ) (wl, U}Q) = (U1 + Wi, V2 + U)Q)
== (u17u2)
VBW=1u
et :

a® (ug,ug) = (qug, qusg)

Les lois de compositions sont similaires a celles écrites en composantes contravariantes (para-
graphe 3.2.3 p. 24). En effet, d’apres les définitions 3.1.2 p. 15, ces lois définissent les vecteurs,
et les vecteurs sont indépendants du choix de la base, donc du choix des composantes puisque
des composantes contravariantes dans une base sont covariantes dans la base réciproque.
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11.6 NORME

11.6.1 Norme euclidienne

Dans un systeme de coordonnées rectangulaires, le théoreme de Pythagore donne la longueur
d'un vecteur quelconque u(u!, u?, u?), appelée norme euclidienne de ce vecteur :

Jull = /() + (w2)? + (w?)?

=4/ 5Z-juiuj

Nous retrouvons I'expression analytique (37) p. 91 du produit scalaire euclidien dans une base
orthonormée. Dans 'espace euclidien en coordonnées quelconques :

Jul =/ gijuiud

On pose alors la définition suivante :

DEFINITION 11.6.1. Norme euclidienne d’un vecteur
Le carré de la norme euclidienne est le produit scalaire euclidien du vecteur avec lui-
méme :

luf*=u-u

[ull = vu?

11.7 DEFINITION D’UNE NORME

On définit une norme par ses propriétés.

DEFINITION 11.7.1. Norme
Soit E un espace vectoriel sur le corps des réels R. L’application :

¢ E—RT
s 6(u)
est une norme si elle satisfait aux propriétés suivantes :
Séparation : Yu e E, ¢(u)=0=u=0
Homogénéité : Va e R, Vu e E, ¢(a®u) = |a| X ¢(u)
Inégalité triangulaire : V(u,v) € E*,  ¢(u) + ¢(v) = ¢(udv)

Remarquons que la définition de la norme ne nécessite pas Uexistence d’un produit scalaire. A
partir de 'inégalité triangulaire et de I'’homogénéité, nous tirons la propriété de non-négativité :

¢(u) + || —ul| = ¢(u® (—u))

\

¢(u) + [ = 1|p(u) = ¢(0)
¢(u) + ¢(u) >0
¢(u) >0
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La norme est donc toujours positive ou nulle. On vérifie que la norme euclidienne || - || est bien
une norme :
[ul[ =0
\/(u1)2 + (u2)2 + (u3)2 = 0
ul = = ud =
u=20

lud v =(uav)?
=uw+vi+2u-v
[afl® + [[v[I* + 2[[ull||v]

<
< ([l + [v)?

DEFINITION 11.7.2. Vecteur normé
On appelle vecteur normé ou vecteur unitaire, un vecteur de norme unité. En divisant un
vecteur quelconque u par sa norme, on obtient un vecteur normé :

11.7.1 Pseudo-norme

Dans un espace vectoriel pseudo-euclidien, le produit scalaire est indéfini, le carré de la
norme de tout vecteur peut étre positif, négatif ou nul, comme c’est le cas dans 1'espace-
temps pseudo-euclidien de la relativité restreinte. Nous parlerons alors de pseudo-norme. En
coordonnées galiléennes réduites (9) p. 24 dans 'espace de Minkoswski, la pseudo-norme d’un

vecteur quelconque u(u®, ul, u? u?) est définie par :

lall = /2 [(0)? = (u)? = (u?)2 — (u3)?]
ol ¢ est la fonction indicatrice qui vaut 41, de sorte que le terme sous le radical soit positif.

Cette définition nous assure que |[u|| > 0, mais il est possible d’avoir ||u|| = 0 pour u # 0. Un
tel vecteur s’appelle un vecteur nul (ne pas confondre avec le vecteur zéro 0(0,0,0)).
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Tenseur métrique

12.1  DEFINITION

L’expression analytique du produit scalaire de deux vecteurs, relation (36) p. 91, fait appa-
raitre le produit scalaire de tous les vecteurs de base pris deux a deux, e; - ;. Nous pouvons
former une matrice carrée a partir de ces produits scalaires.

DEFINITION 12.1.1. Tenseur métrique
La matrice [g;;] définie par ses composantes g;; telles que

o o A
Vi, j gij = €; - €;

est appelée tenseur métrique ou tenseur fondamental, noté G.

On retrouve les propriétés du produit scalaire. On ajoute le fait que les composantes du
tenseur métrique sont fonction des coordonnées lorsqu’elles ne sont pas rectilignes puisque les
vecteurs de base varient d'un point a I’autre (donc dans les espaces pré-euclidiens en coordonnées
curvilignes, et dans les espaces ayant une courbure intrinseque).

EXEMPLE 12.1.1. Dans la base naturelle, le tenseur métrique de [’espace euclidien a pour
composantes en coordonnées cylindriques (en utilisant (6) p. 23) :

Ep° @y 0 0 1 0 0
G| 0 eses 0 |=Gl0 p2 0 (38)
0 0 e, e, 0 0 1
et en coordonnées sphériques (en utilisant (8) p. 23) :
e, e, 0 0 1 0 0
G|l 0 e-e 0 | =G0 0 (39)
0 0 e;-es 0 0 7r?sin?(0)

EXEMPLE 12.1.2. A la surface d’une sphére de rayon r, plagons nous dans la base na-
turelle (eg, e,) associée aux coordonnées sphériques (0, ¢), ou 0 est la colatitude et ¢ la
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longitude (voir la figure 7.4 p. 64). Le tenseur métrique a pour composantes

2
€p-€p €p- e¢ o T 0
& [eqs €y €4 eJ =G [O r? sinQ(G)]

ou r est constant.

Au paragraphe 20.8 p. 204 nous montrons que la matrice G se transforme de fagon a rendre
invariante la distance entre deux points par changement de coordonnées, donc par changement
de base. Les matrices qui se transforment de la sorte portent le nom de tenseur. Toutes les
matrices ne sont pas des tenseurs, tous les tenseurs a deux indices peuvent étre représentés sous
forme de matrices. Nous verrons que la représentation matricielle des tenseurs a des limites que
n’a pas la notation indicielle.

EXEMPLE 12.1.3. Soit (e,, e,) une base orthonormée de l'espace vectoriel euclidien Es
(le plan euclidien aussi noté R?). Le tenseur métrique a pour composantes :

G[ex~ex ex-eyl :Gll O}

Bro @y Eyo @y 01

EXEMPLE 12.1.4. Soit (e,, e,) la base d’un systéme de coordonnées cartésiennes de [’es-

pace vectoriel euclidien E,, telle que |le,|| = a et ||e,|| = b. Le tenseur métrique a pour
composantes :

Gler e exeyl o a? ab 0025(6)
€, €, €€, ab cos () b
La symétrie du produit scalaire implique la symétrie des g;; quelle que soit la base :

V’l,j elwej:ej-el-

Vi, i 9i = gji (40)
Grace au tenseur métrique le produit scalaire s’écrit :
u-v = ggu'v! (41)

En utilisant la non dégénérescence du produit scalaire :

SiVv, u-v=0, alorsu=0
& Si Ve, gijuivj =0, alorsu’' =0

= SiVj, gju'=0, alorsu’ =0

guu' + gnu + -+ guu" =0

gi2u' + goau® 4 -+ - + gpou” =0 1 9 n
alorsu =u"=---=u"=0
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gt gn o Gni| (Ul 0 ut 0
gz g2 o gne| | WP 0 u? 0

= Si . . = 1. alors =
Jdin 9n2 *°° YGnn u" 0 u” 0

La condition nécessaire et suffisante pour que g;;u'v’ soit non dégénérée est que le déterminant
de la matrice carrée GG soit non nul :

g#0 (42)

12.2 TENSEUR METRIQUE ET COMPOSANTES

En utilisant les définitions 11.4.1 p. 92 et 3.2.9 p. 28 :

= Zul (ei . ej)
= Zgijui

Les g;; permettent de passer des composantes contravariantes aux composantes covariantes,
autrement dit d’abaisser les indices :

Ces relations sont des relations entre composantes. Si ¢ et 7 varient de 1 a 3, I'écriture
indicielle condense trois relations, comme le ferait une écriture vectorielle.

EXEMPLE 12.2.1. Soit u un vecteur d’un espace vectoriel euclidien Fy. Pour la premiere
composante covariante,

Uy =u-e;
= (ulel + u2e2) -eq
=u'(e;-e;) +u’(ey-e)

= gn u' + goy u?

et pour la seconde composante covariante :
Ug = U - €9
= (u'e; +u’ey) - e,
=u'(e; - &) +u(ey - )

1 2
=G12Uu + gl
En écriture matricielle nous avons le systéme :

1 2
g11u +gau” =u 1
1 ) ! ) 1 PN g1 ga1 u2 _ (wm (44)
g12U° + goou” = Uy g12 G22| \u Us
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12.3 REPRESENTATIONS DU PRODUIT SCALAIRE

Avec le tenseur métrique le produit scalaire de deux vecteurs (36) p. 91 s’écrit (relation (41)
p. 98) :

u-v = g;u'v’

NOTATION 13. On trouve aussi la notation
u-v=g(uv)

qui montre explicitement que le tenseur métrique prend en entrée deux vecteurs et donne en sortie un
scalaire.

En utilisant les relations (43) p. 99 :
u-v= ’LLjUj (45)
Le tenseur métrique n’apparait plus dans ’expression du produit scalaire et tous les termes
sont précédés d'un signe positif,

n

u-V:u1v1+u2v2+...unv

mais chaque terme est algébrique, c’est-a-dire positif, négatif ou nul.

EXEMPLE 12.3.1. Dans [’espace vectoriel euclidien E,, montrons que le vecteur u de
composantes contravariantes (3/5,4/(5p)) est normé. Les composantes sont données dans
la base naturelle polaire locale (e,,eg), c’est-a-dire la base présente en tout point du plan
mais différente en chaque point (on devrait parler des bases naturelles polaires au pluriel) :

3e—|—4€ = 3/5
u=—- — u
5 r 5p 0 4/5p

Montrons également que u est orthogonal au vecteur normé v :

v—_—4€ —|—ie = VvV e
— 5 P Ep ! 350

Avec la relation (15) p. 47 :

2 _ i _ (3/x 4 L O35 _ (s, 4 5\ _ 9 16p _
o =il = (35 4s) |y 3] () = (o o) (4) = 5+ =1
2 ij _ (—4/r 3 L0y (=Ys) _ (4 3 ~s\ _ 16 9 _
I = = (o ) [o 3] () = o ) (o) = 5+ 35 =
ind — (3/5 4 L0 (=5) _ (35 4 sy _ 12 120
u-v=g;uv —(/5 /5p) lo pzl <3/5/p> —</5 /5P) <3p//5> B 25+252_0
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12.4 NOTATION MATRICIELLE DES COVECTEURS

Nous pouvons écrire le produit scalaire sous forme de multiplication matricielle :
ol
2

v
(u1 Uy ... un) = wot Fug® + -+ u"

Un

et donc représenter les covecteurs par des matrices lignes. La symétrie du produit scalaire
devient :

vl ul
v? u?
(Ul Ug ... un) . = (’Ul Vg ... Un) .
™ u”

En revanche I'écriture matricielle de 1’égalité 44 p. 99 n’est plus possible car on aurait

1
gin ga1| (U
=(u; u 46
[912 922] <U2> ( ! 2) (46)
qui ne respecte pas la notation que 1’on a choisi pour la multiplication matricielle. Au paragraphe
14 p. 123 nous changeons de notation matricielle pour le tenseur métrique.

REMARQUE 24. Un covecteur n'est pas la transposée d’un vecteur car leurs composantes ne se trans-
forment pas de la méme facon par changement de base :

(i w) # (t u2)

12.5 TENSEUR METRIQUE DUAL

Cherchons I'expression des composantes contravariantes d’un vecteur en fonction de ses
composantes covariantes. Nous devons résoudre (inverser) le systeme des n équations linéaires
a n inconnues v’ des relations (43) p. 99 :

\V/’L giju] = U;
D’apres (42) p. 99 le déterminant g de la matrice G est différent de zéro, par suite le systéme
admet une solution unique. La méthode de résolution de Cramer donne alors :

- C;i(G
vj 'U/'] — Z ]( ) ui
i g
En posant,
. Cu(d
vij g2 Sl (47)
g
nous obtenons les relations cherchées :
Vi ! = g7, (48)

oll les ¢g¥ sont les éléments de la matrice inverse de la matrice G, appelé tenseur dual ou
tenseur conjugué du tenseur métrique. Il permet de passer des composantes covariantes aux
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composantes contravariantes, autrement dit d’élever les indices. La notation avec deux indices
supérieurs sera justifiée au paragraphe 20.8 p. 204.

G étant symétrique, il en est de méme de [g*]. De plus les déterminants de matrices inverses
sont inverses 1'un de l'autre :

GG '=1 (49)
det (GG—l) —det]
detG x detG™' =1

det[g’] = ; (50)

Les relations (43) p. 99 et (48) p. 101 nous donnent :

Vk u, = gkjuj

Vi g™up = g% g’

Vi ul= gikgkjuj
Par conséquent

9% gr; = 0 (51)

qui exprime en notation indicielle que les matrices sont inverses I'une de 'autre. En particulier
pour un espace a n dimensions :

> 9" gri = > 0;
i=1 i=1
Avec la convention de sommation sur les indices répétés en haut et en bas :
9" gk =9,
=0+ 04+
=n (52)
Notez que d;; = 1 d’apres la définition 2.3.1 p. 7.

EXEMPLE 12.5.1. Dans la base naturelle polaire le tenseur métrique a pour composantes :
a e, e, €, € —G 1 0
€ -€e, €p-€g 0 p?
Les éléments du tenseur métrique sont fonction des coordonnées, par exemple ici gog = p°.
On les appelle des fonctions métriques. Le déterminant du tenseur métrique polaire vaut :

g=1xp*—=0x0

L’inverse du tenseur métrique dans la base naturelle polaire a pour composantes :

=% Y

b o] 5
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EXEMPLE 12.5.2. A la surface d’une sphére de rayon r le tenseur métrique a pour com-
posantes :

2
r 0
G [O r? sinz(ﬁ)]
Le déterminant du tenseur métrique vaut :
g = r*sin*(0)

L’inverse du tenseur métrique s’écrit :

9] = 7 sirlﬁ(e) [ﬁ 8182(9) 792]

B ll/g? 1/(r? soin2(9))] (54)

EXEMPLE 12.5.3. Le tenseur métrique de Schwarzschild
La métrique de Schwarzschild s’écrit :

ds® = e“c?dt* — ePdr? — r?dh? — r?sin®(0)do
ot « et § sont des fonctions de r et t. En coordonnées galiléennes réduites, (9) p. 2/ :
ds® = good(z°)? + gnid(z")? + goad(2?)? + gszd(z®)?

avec N
=e
goo , oo 0 0
gu = —€ 0 —% 0 0
o = —12 ¢ Glog o0 - 0 (55)
gss = —1r2sin*(0) 0 0 0 —r?sin?(9)
Le déterminant de G s’écrit
g = —e®e’rsin’(0) (56)
Les composantes du tenseur dual s’écrivent :
—e? 0 0 .
91 o 0 —r2sin?(9) —e>efrisin®(6)
e 0 0 ad
gl = 1y 2 0 N = rt sm%(g)
910 0 —r2sin%(0) —e®ePrisin®(6)
e 0 0 a .
g2 = 1 0 —ef 0 - g% = ee’r? 51?25‘9)
910 0 —rZsin?() —e®ePrisin®(0)
@0 0
10 e“efr?
33 B 33 _
=—10 0 = =
I 910 g 2 g —e2ePrisin?(6)
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900 — @
gl = —¢P e @ 0
5 1 PN |: 7,]:| _ O —6_5
9= Y 0 0
0 0
g¥ = 1
r2sin?(0)

o O O

1

T rZsin2(0)

12.6 DIFFERENTIELLE DU DETERMINANT DU TENSEUR METRIQUE

La relation (14) p. 41 donne la différentielle du déterminant du tenseur métrique :

dg =33 dg; Cy(G)
iog
La relation (47) p. 101 donne l'expression du cofacteur :
dg = gg”dg;
Opgda® = gg" Orgi;da”
g = 99" 0kgi;

(57)

(58)

REMARQUE 25. Ce dernier résultat s’obtient également par :
9= _9; Ci5(G)
vk Okg = Z Olgi; Ci5 (G)]
_ Z 91] (G)] g
89” oxk
Le C;;(G) ne contenant pas explicitement g;; :

vk kg =) [Cij(G) Orgij]

J

Avec (52) p. 102 :
Vk Org = Z [Cii(G) 9i59" Orgis)

- gz Jakgz]

= gg”gij,k

12.7 TENSEUR METRIQUE ET NORME

La définition du carré de la norme d’un vecteur 11.6.1 p. 94
[uf*=u-u

peut s’écrire grace au tenseur métrique.
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DEFINITION 12.7.1. Norme d’un vecteur
Le carré de la norme d’un vecteur a pour expression

[l = giju'’

Nous avons également :
[ul* = guiu;

= u;u’

12.8 TENSEUR METRIQUE ET BASES

12.8.1 Base orthonormée

DEFINITION 12.8.1. Base orthogonale
Une base (e1, €, ..., e,) d’un espace vectoriel euclidien E,, est orthogonale ssi ses vecteurs
sont orthogonaur deux a deux :

\V/l%lﬁ ei-ejzo
Vi # j, gi =0 (59)

G est donc diagonale. L’inverse d'une matrice diagonale étant diagonale :
Vi#k, g% =0
Les relations (51) p. 102 pour ¢ = j deviennent :
Vi=1,...,n gikgki =1 sans sommer sur ¢
Les termes non diagonaux étant nuls, ¢+ = £ :
Vi=1,...,n giig" =1 sans sommer sur i

soit, dans toute base orthogonale :

1 1 1
911=F7922=3, cor sy Gnn =

g (60)

nn

DEFINITION 12.8.2. Base orthonormée
(e;) est une base orthonormée d’un espace vectoriel euclidien ssi ses vecteurs sont normés
et orthogonauzr deux a deuz :

VZ,] e; - ej = 5ij

Vi,j  gij = 0y

Dans toute base orthonormée d’un espace vectoriel euclidien, les composantes covariantes
et contravariantes sont confondues. En effet, en partant des relations (43) p. 99 et avec la
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définition 12.8.2 ci-dessus :

Vi U; = gijuj
= 5iju3

:ui

Il est souvent avantageux de se placer dans une base orthonormée.

THEOREME 12.8.1. Théoréme de Gram-Schmidt
Tout espace vectoriel pré-euclidien admet des bases orthonormées.

La démonstration est donnée en annexe 27.2 p. 373.

EXEMPLE 12.8.1. Dans [’espace de la physique classique non relativiste, plagons nous
dans la base orthonormée (e, ey, e,). Le tenseur métrique a pour composantes :

Bro @ @po@y BmoEy 1 00
Gle,-e, e,-e, e,-e.| =G0 1 0
ez e e ey e el 0 0 1

EXEMPLE 12.8.2. Plagons-nous dans ['une des deux bases canoniques (eg, e, es,es),
c’est-a-dire les plus simples, de l’espace-temps de la relativité restreinte :

ot i est le nombre imaginaire tel que i

2

eo(1,0,0,0) eo(i, 0,0,0)

e1(0,4,0,0) e1(0,1,0,0)
. ou

e»(0,0,1,0) e»(0,0,1,0)

e3(0,0,0,1) e3(0,0,0,1)

—1. Dans la premiére base canonique (conven-

tion de genre temps), le tenseur métrique a pour composantes :

€€y €y €1 €y-€y €p-ej3 1 0 0 0
€€ €;-€ €1-€ €1-€3| 0 —1 0 0
U € €y €2-€1 €9 -€9 €9-ej3 = 0 0 —1 0
€3-€y) €e3-€; €3-€3 e€3-e3 0 0 0 -1

L’espace-temps de la relativité restreinte est pseudo-euclidien (en coordonnées rectangu-
laires son tenseur métrique est diagonal et ses composantes valent +1). Sa base canonique
est pseudo-orthonormale. Calculons ’inverse du tenseur métrique :

—1

1 0 0 O 1 0 0 0
0 -1 0 O 0 -1 0 O
0 0 -1 0 00 -1 0 (61)
0 0 0 -1 0 0 0 -1

Le tenseur métrique de [’espace-temps de la relativité restreinte est égal a son inverse.
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12.8.2 Base orthogonale non normée

Dans une base orthogonale non normée, les composantes covariantes et contravariantes ne
sont pas confondues. Soit (e, e;) une base orthogonale d'un espace vectoriel euclidien Es, telle
que ||e1|| =2 et |les]| =1 (Fig. 12.1).

@)
N

S

€

Fi1G. 12.1 — Base orthogonale non normée

Pour avoir,
u= ulel + u2e2

la composante contravariante u' est divisée par 2 pour compenser la multiplication par 2 de
la norme du vecteur de base e;. Elle varie contrairement (contra-variante) a la norme de son
vecteur de base e;.

La composante covariante uq, telle que
Uy =u-e

est multipliée par 2 en méme temps que le vecteur de base e;. Elle varie comme (co-variante)
la norme de son vecteur de base e;.

Bien que la base soit orthogonale nous avons quand méme u # uje; + uses, car lors d'un
changement de base la composante covariante u; et le vecteur de base e; sont multipliés dans
le méme rapport, ne laissant pas invariant uje; +uses. En utilisant les relations (43) p. 99 nous
avons :

uy = gnul
= (e;-e)u'
= Jles|*u!
= 4ut

La composante g;; = e; - e, et de facon générale toutes les composantes g;;, est covariante au
carré puisqu’elle varie comme ||e;||?. Nous la dirons deux fois covariante.

REMARQUE 26. Par abus de langage nous dirons que le tenseur est deux fois covariant alors que ce
sont ses composantes qui le sont.

La double covariance du tenseur métrique permet l'indépendance du produit scalaire par
changement de base, relation (36) p. 91.
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Pour la seconde composante :

Le tenseur métrique s’écrit :
€ -€e €e;-€x| 4 0
€€ €269 |10 1

12.8.3 Base oblique normée

Fi1c. 12.2 — Base oblique normée

Le tenseur métrique s’écrit :

[el-el el-eQ]:[ | cos,(a)]

€y €1 €9 €
Son déterminant vaut

g=1—cos’a

=sin®«
et son inverse s’écrit :
i 1 1 — cos(a)
Z_] _
|:g } o SiIlQOé [— COS(O&) 1 <62>

12.8.4 Base oblique non normée
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EXEMPLE 12.8.3. Soit {e1(2,0), e2(—1,3)} une base de l’espace vectoriel Ey. Le tenseur
métrique s’écrit :

gi1 = €1-€; g =4
gz=er-e G12 = —2 N Gl4 _21
g21 = €2 € go1 = —2 -2 10
g22 = €3+ €3 g22 = 10

Cette base est oblique et non normée. Déterminons les composantes de son inverse [g"].
L’inverse d’une matrice vaut un sur le déterminant fois la transposée de la comatrice :

M= detl 7 [com(An)]*
Or :
g=4x10—(=2) x (—2)
= 36
La comatrice de toute matrice symétrique est symétrique. Ici elle a pour composantes :
10 2
com G l 20 4]

Toute matrice symétrique étant égale d sa transposée (com G)T = com G, et :

-4 )

Déterminons linverse du tenseur métrique grace aux relations (51) p. 102 :

gng' + gag® =64 4g" —2¢* =1 gt =5/18
119" + g126%* = 6% N 4g'% —2¢** =0 N g =1/18
929" + gaag® = 0 —2¢" +10¢* = 0 ¢*' =1/18

9219"° + 92097 = 6% —2g12 1 10g2 =1 ¢ =1/9
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13.1 FORMES LINEAIRES

Nous donnons une définition alternative a la définition 5.0.7 p. 44 d’une forme linéaire.

DEFINITION 13.1.1. Forme linéaire
Soit E un espace vectoriel sur le corps des réels R. Une forme linéaire est une application
qui d un vecteur v de E associe, ou fait correspondre, un scalaire o de son propre corps
R et qui est linéaire :
T:F—R
v (V) =«
Va,ve ExX E, VAeR, Z(AQudv)=Ai(u)+ Z(v)

L’équivalence entre les deux définitions est démontrée un peu plus loin, théoreme 13.1.2
p. 113.

EXEMPLE 13.1.1. Produit scalaire avec un vecteur donné
Soit v un vecteur donné d’un espace vectoriel E sur le corps R. Le produit scalaire avec
le vecteur v, noté f,, prend en entrée un vecteur x de E et donne en sortie un scalaire

de R :
fo(x)=v-x
= ’UifEi

De plus, le produit scalaire possede les propriétés de linéarité de la définition 13.1.1 p. 111
d’une forme linéaire :

(1) Additivité :
fox)+ foly) =v-x+v-y
=v-(x+Yy)
= fo(x+y)
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(2) Homogénéité :
afy(x) = a(v-x)
=v - (ax)
= fu(ax)
Par conséquent, f, est une forme linéaire. Reprenons le produit scalaire (45) p. 100 :
u-v=u
Nous pouvons l’écrire
a(v) = u’

ou u prend en entrée un vecteur et donne en sortie un scalaire. Notons que par symétrie
du produit scalaire :

a(v) = o(u)

EXEMPLE 13.1.2. Soit E = R? un espace vectoriel de dimension 2, et soit v un vecteur
de E de composantes (v',v?). L application,
#:R* =R
v(vh,v?) = E2(v) = 20 + 302

est une forme linéaire sur R%. En effet, & prend en entrée un vecteur et donne en sortie
un scalaire (sous la forme d’un polynéme homogéne de degré un des variables v* et v?).
Nous pouvons vérifier les deux conditions de linéarité :

(1) Additivité : soient u,v,w € E3 tels que w = u @ v,
T(udv)=I(w)
= 2w' + 3w?
= 2(u' + ') + 3(u® + v?)
= 2u' + 3u® + 2v' + 30?
= Z(u) + Z(v)
(2) Homogénéité : Soient u,v € E? tels queu= A0V,
T(ANOV)=Z(u)
= 2u' + 3u?
=2(\vh) + 3(\0?)
= A(20! + 30v?)
= \z(v)

EXEMPLE 13.1.3. Soit E = R"™ un espace vectoriel de dimension n, et soit v un vecteur

de E de composantes (v, v?, ... v"). L’application qui d un vecteur associe le carré de
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sa norme est une forme quadratique (voir la définition 12.7.1 p. 105) :
Z:R" =R
V(0,02 . 0" 1 B(V) = V]2 = gyt

Elle n’est pas linéaire (puisque quadratique). En effet, soient u,v € E? :

z:R*" =R
Fuev) =uev|?
# [lull® + [Jv?
# Z(u) + 2(v)

Montrons I'équivalence avec la définition 5.0.7 p. 44 d’une forme linéaire.

2 n

THEOREME 13.1.1. Tout polynéme homogéne de degré un des n variables v',v? ... v™ est
une application linéaire qui au vecteur v(vt, v, ... v") de l'espace vectoriel E sur le corps des
réels fait correspondre un réel.

DEMONSTRATION. C’est la généralisation a R™ de I'exemple 13.1.2 p. 112 :

z:R"—= R
Va; €R, v(hv? ... 0" = 2(V) = avt +agv? -+ ao”
TAOudv)=a(u' +v1) +a(M? + 0P 4+ Fa, (" 4 o")
= agut + agvt + Aasu® + asv? + - - - 4+ Aau + a, "
= A\Z(u) + z(v)
O

Réciproquement :

THEOREME 13.1.2. Toute forme linéaire de R™ dans R peut s’écrire comme un polynome

homogéne de degré un par rapport a n variables v*,v?, ... V"™ :
7:R"—=R
v(vl, v ") e B(V) = vt +ap® -+ a”
ou Vi a; € R.
DEMONSTRATION. Dans la base (e, es,...,e,) de R", soit v le vecteur de composantes
(vl 02, ..., v"). En utilisant Iadditivité puis ’homogénéité,

le, @v’e, @ - @",)

e)) + 2(viey) + -+ (v"e,)

z(v) =z(v

ouVia; €R, a; = Z(e;). O
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13.2 EXPRESSION ANALYTIQUE D’UNE FORME LINEAIRE

Dans la base (e;) de 'espace vectoriel F, soit u un vecteur :

z(u) = #(u'e;)

ou
W) a; € R, a; = i’(e»

La forme linéaire Z(u) est donc parfaitement déterminée par les n scalaires a;, sa décomposition
étant unique. Ainsi on peut déterminer une forme linéaire par correspondance des vecteurs de
base avec des scalaires déterminés.

13.3 ESPACE VECTORIEL DUAL

Considérons I'ensemble des formes linéaires définies sur E. Pour en faire un espace vectoriel
adoptons pour cet ensemble les deux lois de composition :

(1) Addition vectorielle

La somme de deux formes linéaires est une forme linéaire :
F(u) + j(u) = u'a; + u'b;

=Uuc

(u)

Il
A

(2) Multiplication par un scalaire

La multiplication par un scalaire d’une forme linéaire est une forme linéaire :

ai(u) = a(u'a;)

Ces deux lois de composition vérifient les propriétés énoncées au paragraphe 3.2.3 p. 24. Par
conséquent, ’ensemble des formes linéaires munies de ces deux lois forment un espace vectoriel
appelé dual' de E et noté E*, dont les formes linéaires de E en sont les vecteurs.

1. dual signifie « deux »
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13.4 BASE DUALE

Soit u un vecteur d’un espace vectoriel E, et soit la forme linéaire &’ telle que :
Vi é&'(u)=u'

e

Cette forme linéaire est particuliere puisqu’elle donne en sortie la i composante contrava-

riante du vecteur qu’elle prend en entrée. Alors :

#(u) = a;u’
= a;¢'(n)
i = a;

Le systéme des n formes linéaires é constitue donc une base de 1’espace vectoriel dual E*. Les
a; sont les composantes de la forme linéaire . De plus

Vi &(u) = & (u'e;)
Vi wl = u'é(ey)
donc :

Vi,j & (e;) =0

DEFINITION 13.4.1. Base duale
La base (¢*,¢&%,...,ée") de E* telle que

Vi,j & (e;) £ o

est appelée base duale de la base (e, es,...,e,) de E.

13.5 BASE RECIPROQUE

DEFINITION 13.5.1. Base réciproque
La base (€,...,€,) de l'espace vectoriel E,, telle que

VZ,j €€ = 5ij (63)
est appelée base réciproque de la base (eq,...,e,) de E,.

Si la base (e;) est la base formée par les vecteurs tangents aux lignes de coordonnées, alors
sa base réciproque ¢, est la base formée par les vecteurs perpendiculaires aux hypersurfaces de
coordonnées. Elles sont confondues si elles sont orthogonales et normées car avec e; - €; = 1, si
e; =2 alors ¢y = 1/2.

Cette définition est proche de la définition 13.4.1 ci-dessus de la base duale. Cependant on
reste dans 'espace E et on utilise un produit scalaire. Dans les espaces définis sans produit
scalaire, donc sans métrique, la base réciproque s’appelle base duale, et les covecteurs s’appellent
des formes linéaires ou vecteurs duauz.
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Soit B la matrice de passage de la base réciproque vers la base d’origine (la matrice de
passage est habituellement définie comme étant la transposée de B, voir la définition 19.2.1
p. 166) :

Y1 e, = Z Bij Gj
J

\V/Z,k? ei-ek:ZBijej-ek

J
Vi,k g = Zsz 5jk

J
Vi, k  gi = Bix
Par conséquent :

Vi e, = Z gij 6]'
J

Le tenseur métrique GG permet de passer d'une base réciproque a sa base d’origine. Nous voyons
que cette relation qui s’appliquait a des composantes, relations (43) p. 99, s’applique ici a des
vecteurs. Par analogie, les vecteurs de la base réciproque seront notés avec un indice supérieur,
ce qui permettra I'emploi de la convention de sommation. En remplagant €; par €/, la derniére
relation s’écrit

Vi e = gi e
et la définition 63 p. 115 devient :
Vi,j e;-el 26 (64)
Avec les relations (51) p. 102 :

Vi,j e;-e =6
Vi,j gwe' e =gy g"
vk, e el = gkj

Soit A la matrice de passage de la base d’origine vers la base réciproque :
V’l ei = Z Aij ej
J
Vi,k e -e' = ZAijej-ek
J
J
Vi,k g% = Ay,

Le tenseur métrique [¢*] permet de passer d’une base a sa base réciproque :

Vi e =g”e; (65)
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Si la base d’origine n’est pas orthonormée, les vecteurs de la base réciproque ne sont pas de
norme unité :

Vi,j e -e =6
Vi e -e =1
Vi e [le’]| cos (e, e') =
1

||lei|| cos (e, €)

Vi le'l] =

13.6 INDEPENDANCE LINEAIRE DES VECTEURS RECIPROQUES

Soit (ey, ey, ..., e,) une base de E,, pour démontrer que les vecteurs réciproques (e',e?, ..., e")
forment aussi une base de FE,, nous devons montrer qu’ils sont linéairement indépendants :

Nel=0 = Vj \=0
Posons ;e = 0. Soit u = u'e; un vecteur quelconque de l'espace vectoriel E,, :
)\jej ‘u= )\jej - u'e,
0 -u=\u'(e e
0= )\juiézj
0= )\juj

Cette égalité devant étre vérifiée quels que soient les u/, tous les \; sont nuls et les vecteurs e’
sont linéairement indépendants.

EXEMPLE 13.6.1. Dans un espace vectoriel euclidien Es, soit une base (e, e3) telle que

“(2) ()

ot les vecteurs de base sont exprimés dans la base rectangulaire (e, e,). Déterminons sa
base réciproque (e',e?).
(1) En utilisant la définition de la base réciproque (64) p. 116. Posons e'(a,b) et
2
e(c,d) :

elej=1 (a+2b=1 a=1-2b (a= -2 =2

ele,=0 \3a+4b=0 \3-26=0 \b=3/2 ~ © \3/2

e’-e =1 c+2d=0 c=-—2d e=1 . 1

e?.e,=0 |3c+dd=1 |-2d=1 l\d=-1/2 ~ € \-1/2
(2) En se servant de l'inverse du tenseur métrique (65) p. 116 :

5 11 o 125 —11
G[n 251 = [9]]_1[—11 5]

25 (1 11 /3 -2
1 11 9, . 2 _ &b _
e =3 (o) - (1) - (53)
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11 /1 9 (3 1
2 _ 21 W o o _
e“=g7e +gey = 4<2>+4<4> (_1/2>

EXEMPLE 13.6.2. Soit {e; (a,0,0),e5(0,b,0),e3(0,0,c)} une base de E3. Déterminons
sa base réciproque. Soit €' (xy,xa,3) :

e;-e' =1 (a,0,0) - (21, s, z3) = 1 azy =1 T =1/a
82'8120 = (0,[),0)'(.1‘1,1‘2,.1‘3):0 == bSL’Q:O ={{xy=0
e;-el =0 (0,0,¢) - (21,72, 23) = 0 cry =0 z3=0

Par conséquent e! = (%, 0, O). De méme on trouve e* = (0, % O) eted = (O, 0, %) Lorsque
la base est orthonormée, a = b= c =1, elle se confond avec sa base réciproque.

EXEMPLE 13.6.3. Soit (e, ey) une base normée d’un espace vectoriel, telle que (€1, ) =
70°. Construisons sa base réciproque.

(1) En utilisant la définition de la base réciproque (64) p. 116 :

1
e e =1 1 1 1
= = ~ 1,064
{el ey =0 = el |lei|| cos (e, e!)  cos20
2
e“.e =0 5 1
= = ~ 1,064
{e2 ey =1 = [l ||le2|| cos (e2,€2)  cos20

(2) En se servant du tenseur métrique (65) p. 116 :

1 cos(70 g —1 —1  cos(70
[cos(?()) g )] = l97] = sin?(70) [005(70) —(1 )]

1 11 12
€ =g e t+g-e

e; cos(70) .
= 2

" sin?(70)  sin?(70)

e? = g?le; + g%,
~ cos(70) e
~ sin?(70) Bio sin?(70)

En exprimant e, et ey dans la base rectangulaire (e,,e,) :
1 1 1 COS(70) cos(?())
e = ——— —
sin?(70) \0/  sin?(70) \sin(70)

- <— cos(?()%/ sin(70)>
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o cos(70) (1 n 1 cos(70)
© ~ sin%(70) \0/ " sin%(70) \sin(70)

- <1/ Sig(70)>

e €9

€

O - a
e

Fi1G. 13.1 — Bases réciproques

EXEMPLE 13.6.4. Déterminons la base réciproque de la base polaire naturelle (e,, ep).

(1) En utilisant la définition de la base réciproque (64) p. 110 :

e’ -e,=1 1
= e’|l = =1 = e’ =e
(oaly = W= ”
0
e -e,=0 1 1 ey
o L_ = Il=r=2 > =
e’ -ep=1 lleq]] p P

(2) En se servant de l’inverse du tenseur métrique en coordonnées polaires (53)

p. 102 :
l97] = l(l] 1/0p2]

6
e’ = g”e, + g ey
:ep
6 0 00
e =g pep+g €9

=ey/p’?

EXEMPLE 13.6.5. Déterminons la base réciproque de la base (e, €1, €z, €3) de la relativité
restreinte.
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(1) En utilisant la définition de la base réciproque (64) p. 116. Pour le vecteur réci-
proque € porté par la coordonnée temporelle :

e’ ey =1
e’ e =0
e ey=0
e e3=0
En convention de genre temps :
€y €y = 1
— eO - €
eo =€

Pour le vecteur réciproque e porté par la premiére coordonnée spatiale :

el-e=0
el e =1
el es=0
el-e;5=0
€ e = —1
e = —el
De méme e*> = —e, et € = —e5.
(2) D’aprés (61) p. 106 le tenseur métrique en relativité restreinte est égal d son
tmverse :
eO 1 0 0 0 €
e! o 0 —1 0 0 (S5
e’ | 0 0 -1 0 (S)
el _O 0 0 —1 €3
€o
_| ™=
= | =
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13.7 COMPOSANTES CONTRAVARIANTES DANS LA BASE RECIPROQUE

A partir de la définition 3.2.9 p. 28 des composantes contravariantes dans la base réciproque :
OM =g
_ Z diet
i

Vi OM -e; = Zuiei-ej

Vi uj = Zuiéji-
par conséquent :
Vi uj=u (66)
et
OM = use’ (67)

EXEMPLE 13.7.1. En reprenant [’exercice 13.6.3 p. 118, représentons les composantes
contravariantes du vecteur u = OM dans la base réciproque (e',e?) non normée (Fig.
13.2) :

Fi1c. 13.2 — Composantes contravariantes dans la base réciproque

13.8 COMPOSANTES COVARIANTES DANS LA BASE RECIPROQUE

A partir de la définition 3.2.9 p. 28 des composantes contravariantes dans la base d’origine :
OM = v'e;
Vi OM -€; =u'e; -
\V/j Uj = uiei . ej

Vi oou; = 'l
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par conséquent :
Vi u; =l (68)
et
Vi OM -e' =u'

EXEMPLE 13.8.1. En reprenant [’exercice 13.6.3 p. 118, représentons les composantes
covariantes du vecteur u = OM dans la base réciproque (€', e®) non normée (Fig. 15.3) :

uy = u?] M
/
u /
2
/
e ,/
0] K
/
€ =e' u = ul

Fi1G. 13.3 — Composantes covariantes dans la base réciproque
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DEFINITION 14.0.1. Forme bilinéaire
Soit E un espace vectoriel sur le corps des réels R. Une forme bilinéaire est une application
qui a deux vecteurs u et v de E X E associe un scalaire de son propre corps R,

B:ExE—R
u,v— B(u,v) =«
et qui est linéaire dans chacun de ses deuxr arguments. B est linéaire dans le premier
espace vectoriel,
Vu,v,w € B}, VA€ R, Bu®v,w)=B(u,w)+ B(v,w)
B(A®u,v) = AB(u,v)

et B est linéaire dans le second espace vectoriel :

B(u,v® w) = B(u,v) + B(u,w)

B(u,A®v)=AB(u,v)

Les formes bilinéaires généralisent les formes linéaires, en ce sens qu’elles prennent en entrée
deux vecteurs plutot qu'un seul. On appelle les formes linéaires des une-formes, et les formes
bilinéaires des deuz-formes, ce qui permet de généraliser aux n-formes qui prennent en entrée
n vecteurs et donnent en sortie un scalaire.

DEFINITION 14.0.2. Forme bilinéaire symétrique
Une forme bilinéaire est symétrique si :

Yu, v B(u,v) = B(v,u)

EXEMPLE 14.0.1. Le tenseur métrique est une forme bilinéaire symétrique. En effet :
g: ExFE—-R

w, v guv)=a
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g est linéaire dans ses deux arguments :
giu'v’ = gy (ai + bi) v = (gijai + gz-jbi) v = ga'v? + g;b'v?
giju'v?! = g’ (aj + bj) =’ (gijaj + gijbj) = giu'a’ + giju't’
@7 ()\u’) v = )xgz-juivj = g,-jui ()\vj)

et g est symétrique :

g(u, V) = g(V7 U_)

DEFINITION 14.0.3. Forme bilinéaire antisymétrique
Une forme bilinéaire est antisymétrique si :

Yu, v B(u,v) = —B(v,u)

On en déduit :
B(u,u) = —B(u,u)
=0

14.1 EXPRESSION ANALYTIQUE D’UNE FORME BILINEAIRE

Dans la base (e;) de l'espace vectoriel F,,, soient u et v deux vecteurs :
B(u,v) = B(u'e;,v’e;)
= u'v! B(e;, e;)
= u'v’ a;
ol
Vi,ja;,; € R, a;; = DBle;,e;)

La forme bilinéaire B(u, v) est donc parfaitement déterminée par les n? scalaires a;;, sa décom-
position étant unique. Ainsi on peut déterminer une forme bilinéaire par correspondance des
couples de vecteurs de base avec des scalaires déterminés.

EXEMPLE 14.1.1. Considérons la forme bilinéaire sur Eo X Ey :
B(u,v) = au*v' + b(u'v?) + b (u*v') + cuv?

ou a,b, b, c sont des scalaires.

14.1.1 Expression analytique d’une forme bilinéaire symétrique
Lorsque la forme bilinéaire est symétrique
Qij = Qji

sa décomposition est déterminée par les n(n + 1)/2 scalaires a;;.
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EXEMPLE 14.1.2. Considérons la forme bilinéaire sur Fy X Fy :

B(u,v) = au'v' + b(u'v? + v®v?) + cu?o?

ot a,b,c sont des scalaires.

14.1.2 Expression analytique d’une forme bilinéaire antisymétrique
Lorsque la forme bilinéaire est antisymétrique
Qij = —0jj

sa décomposition est déterminée par les n(n — 1) scalaires a;.

EXEMPLE 14.1.3. Considérons la forme bilinéaire sur Fo X Ey :
B(u,v) =10 (ulv2) —b (uzvl)
=b (u1v2 - uQUl)

ot b est un scalaire.

14.2 FORME QUADRATIQUE ASSOCIEE A UNE FORME BILINEAIRE

Soit B une forme bilinéaire symétrique et soit ) la forme quadratique telle que :
Q:F—R
u— Q(u) = B(u,u)
@ est la forme quadratique associée a la forme bilinéaire symétrique B. Supposons B symétrique,
en utilisant la linéarité des formes bilinéaires :
Qu+v)=Bu+v,u+v)
= B(u+v,u)+ B(u+v,v)
= B(u,u) + B(v,u) + B(u,v) + B(v, V)
— Q(u,w) +2B(u,v) + Q(u,v)

Soit () une forme quadratique du R-espace vectoriel E dans le corps des réels R et soit B
la forme bilinéaire symétrique telle que :

B:ExFE—R
w,v = B(u,v) = 3 [Q(u+v) - Qu) — Q(v)]
B est la forme bilinéaire symétrique associée a la forme quadratique @). Toute forme quadratique
définit une forme bilinéaire et réciproquement. Les formes bilinéaires symétriques et les formes
quadratiques se déterminent mutuellement. Les théories des formes bilinéaires symétriques et

des formes quadratiques sont essentiellement les mémes.
Nous avons alors :

QAGOu)=BAOu,AGu)
= M\ B(u,u)
= N*Q(u)
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Pour A\=0:

14.3 EXPRESSION ANALYTIQUE D'UNE FORME QUADRATIQUE

Q(u) = B(u,u)
= B(u'e;,u’e;)

= u'u’ B(e;, e;)

EXEMPLE 14.3.1. Considérons la forme bilinéaire sur Fo X Ey :
B(u,u) = au'u' + b(u'v® + v’u') + cuu?
= a(u')? + 2b(uu?) + c(u?)?

ot a,b,c sont des scalaires.

14.4 MATRICES ET FORMES BILINEAIRES

Une transformation linéaire est une matrice carrée prenant en entrée un vecteur et donnant
en sortie un vecteur. Les matrices carrées ne peuvent donc pas représenter aussi les formes
bilinéaires qui elles prennent en entrée un vecteur et donnent en sortie une forme linéaire. Une
représentation des formes bilinéaires reste cependant possible sous la forme d’une matrice ligne
de matrices lignes. La relation (46) p. 101 s’écrit :

(lo ) (o 2)) () = (o0 o)t (o ) )

= ((911101 912u1) + (921U2 922U2))

2

= (gnul + go1u®  grout + g22u2)

Nous avons alors

2

(guul + gnu®  gpu' + 922U2) = (Ul UQ)

qui redonne bien le systeme :
uy = g u' + gor u?
Uy = grat' + gao u?
Dans un espace vectoriel de dimension trois, le tenseur métrique s’écrit :
((911 g12 913) (921 g22 923) (931 932 933))

Pour inverser G nous devons revenir a une matrice carrée. De plus, cette notation n’est pas
applicable a des tenseurs ayant plus de deux indices.



Formes bilinéaires 127

EXEMPLE 14.4.1. Soit {e1(2,0),ea(—1,3)} une base de ’espace vectoriel Ey. Le tenseur
métrique s’écrit :

g =e-e =4

g12 =€1-€ = —2

=g e=—2 = Gt -2 (-2 1)

g2 = €3 -ey =10

EXEMPLE 14.4.2. Dans l’espace de la physique classique non relativiste, placons nous
dans la base orthonormée (e, ey, e,). Le tenseur métrique s’écrit :

((ex~ex e, ey ex~ez) (ey-ex e, - e, ey-ez) (ez-ex e, e, ez-ez))

=((1 0o0) (010 (00 1))

EXEMPLE 14.4.3. Plagons-nous dans l'une des deux bases canoniques (eg,er,es), de
l’espace-temps de la relativité restreinte en deux dimensions d’espace :

eo(7,0,0)

e(0,1,0)

e2(0,0,1)
Le tenseur métrique s’écrit :

((e0~eo €y €e; eo'eg) (el-eo €€ 61'82) <82'60 €9 - € eg'eg))

=((-1 00) (0 1 0) (00 1))

EXEMPLE 14.4.4. Dans une base (e1,€3) de Es, on se donne le tenseur métrique suivant :

e g = 1)

Déterminons les composantes de son inverse [g¥] grice auz relations (51) p. 102 :

919"t + g12g** = 64 29t —3¢2' =1 gt =-1/7
g’ +ong” =0 |27 -3"=0 _ Jg"=-3/7
219" + gaag®' = &%, —3gM 4 g? =0 P = —3/7
g21912 +922g22 — 522 _3g12 +922 =1 g22 _ _2/7

_1/7

’ _3/7

o= |y
_3/7
/7

La matrice de matrice suggere d’introduire un nouveau produit matriciel, le produit de
Kronecker.






15

Produit de Kronecker

15.1 INTRODUCTION

Le produit de Kronecker de deux matrices de tailles arbitraires, carrées ou rectangulaires,
donne une matrice de sous-matrices. Le produit de Kronecker de deux matrices s’écrit :

A®B= aii a121®B

Q21 A22
. (IHB (llgB
a21B CLQQB
a bi1 bz i3 a bii bia bis
11 12
. ba1  baa  bos bai  baa  bos
a b1 bia b3 a b1 bia bis
21 22
I ba1  bay  bos bai Doy bog
a11b11  a11b12 aq10s3 a12011  a12b1a  ai9bis
. airbar  aitby  ainba a12ba1  a12ba  aizbes
a21011  as1bi2  asibis a22b11  axbia  agnbis
L a21b91  a21b99 21093 22091 @9bay  ag9ba3

Contrairement a la multiplication matricielle les matrices n’ont pas besoin d’étre compatibles.
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15.2 PROPRIETES

PROPRIETES 15.2.1. Propriétés du produit de Kronecker
(1) Associativité :
AR (BC)=(A®B)eC
(2) Distributivité a gauche par rapport a 'addition matricielle :

A®(B+C)=A@B+A®C

(8) Distributivité a droite par rapport a l'addition matricielle :
(B+C)@ A=BQA+C®A

(4) Multiplication par un scalaire :
k(A® B) = (kA) ® B=A® (kB)

(5) En général non commutativité :
AR B#B®A

15.3 EXEMPLES

EXEMPLE 15.3.1. Produit de Kronecker de deux matrices colonnes

a ) o b\ “\ b,
a2 b2 N bl
a2

Le résultat est une matrice colonne de matrices colonnes, c’est-a-dire une matrice ayant

deux éléments et non quatre.

EXEMPLE 15.3.2. Produit de Kronecker d’une matrice colonne par une matrice ligne
a a (br bo
® (b by) =
<a2> ( 1 2) (az §bl bzg)
a1b1 (llbg
a azby  asby
Le résultat est une matrice colonne de matrices lignes. La pré-multiplication matricielle
de ce résultat (et non le produit de Kronecker) par une forme linéaire & donne une forme
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linéaire,

(Ul UQ) (EZ;{: Z;Zi;) = Uy (albl Clle) + Ug (a2bl a252)

= (Ulalbl ulalbg) e (Uzazbl U2a2b2)
= (ulalbl + ugaoby uia by + Ug&gbg)

puis la post-multiplication matricielle par un vecteur v donne un scalaire :

1
v 1 1 2 2
<u1a1b1 + UQCLle u1a162 + u2a2b2) <U2> = ulalblv + UQCLleU + ulalbgv + UQCLQbQU

EXEMPLE 15.3.3. Produit de Kronecker d’une matrice ligne par une matrice colonne

e (i) = () = ()
~ () (o)

Le résultat est une matrice ligne de matrices colonnes. La post-multiplication matricielle
de ce résultat par un vecteur v donne un vecteur,

bl aq bgal Ul N bl aq 1 bgal 2
() () () = () )
. blalvl + bQCLl’U2
o b1a2U1 bQCLQ’U2

([ bagvt + bya;v?
— \bragv! + beasv?

puis la pré-multiplication par une forme linéaire i donne le méme scalaire qu’en 15.5.2 :

bia;v! + bya v?
1 2 1 2
U u) = urbija1v" + u1beai V7 + ugbiasv” + usbyasv
(1 2<b1a2v1—|—b2a2v2 10101 10201 201a2 20209

15.4 FORMES BILINEAIRES

Le produit de Kronecker d'une matrice ligne par une matrice ligne donne une matrice ligne
de matrices lignes :

(a1 @)@ (b bo) = lar (b1 bs) az(br bo)]

—[(aby @) (ab abe)]
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| (b bo)o (@ a)=[o(a @) b a)
~ (b bias) (2o baa)]
;é(al a2)®(bl b2)

On vérifie que c’est une forme bilinéaire. La multiplication matricielle par un premier vecteur
u donne une forme linéaire :

(arh arbs) (ashy @@ﬂ<§>:[@ﬁlaﬁguu+@wlaﬁguﬂ

(o )+ s )
= <a1b1u1 + ashiu®  arbout + a2b2u2)

La multiplication matricielle par un second vecteur v donne un scalaire :

1
v
(a1b1u1 + ashiu?  ajbout + a2b2u2) <v2> = arbyutv! + asbyuol + absutv? + asbyu’v?
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16.1 SIGNATURE D’UN ESPACE VECTORIEL PRE-EUCLIDIEN

Grace au théoreme 12.8.1 p. 106 de Gram-Schmidt plagons nous dans une base orthogonale
d’un espace vectoriel pré-euclidien. Dans cette base le tenseur métrique est diagonal et les
coefficients g;; sont des constantes. Le produit scalaire de deux vecteurs non nuls u et v s’écrit

1.1 2 2
U-v=g11uv + gouv:+- -+ gpu"v"

et la norme d’un vecteur non nul u a pour expression :
= four ()" + g2 (42)" 4+ g (07

DEFINITION 16.1.1. Signature d’un espace vectoriel pré-euclidien

On appelle signature d’un espace vectoriel ’ensemble des signes positifs et négatifs ap-
paraissant dans [’expression du produit scalaire de deux vecteurs ou de la norme d’un
vecteur, ot l'on a remplacé tous les g;; par leur valeur respective, positive ou négative. Le
nombre de signes + et de signes — est une caractéristique intrinséque de l’espace vectoriel,
indépendante de la base orthogonale considérée.

Si la signature ne comporte que des signes identiques, la forme quadratique est alors définie
et 1'espace vectoriel est euclidien. Si elle ne comporte que des signes positifs, elle est définie
positive. Tous les g;; sont positifs, le produit scalaire est euclidien et la norme d'un vecteur non
nul est strictement positive.

Si la signature comporte des signes différents, le produit scalaire n’est plus euclidien, la
norme s’appelle pseudo-norme (voir 11.6 p. 94) car elle ne satisfait pas a la condition de sépa-
ration. L’espace est pseudo-euclidien, son tenseur métrique est de la forme

Vi,j  gij = £0i

avec au moins un signe positif et un signe négatif.

EXEMPLE 16.1.1. Dans une base orthonormée de l’espace newtonien de la physique clas-
sique non relativiste, le produit scalaire s’écrit :

u-v=u! -+ u?v? + uwdv?
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C’est l’espace euclidien de dimension 3, de signature (+ + +).

EXEMPLE 16.1.2. A la surface d’un cylindre de rayon p, plagons nous dans la base na-
turelle (ey,e,) associée aux coordonnées cylindriques (¢, z) (voir la figure 7.3 p. 63). Le

tenseur métrique s’écrit
es €, ez e [p* 0
e,-e; e,-e,| |0 1

ot p est constant. C’est 'espace euclidien de dimension 2, de signature (++). Le tenseur
métrique est le méme que celui d’un plan car en déroulant un cylindre (ou un cone) on
obtient un plan.

EXEMPLE 16.1.3. Dans une base orthonormée de [’espace-temps de la relativité restreinte,
le quadri-produit scalaire s’écrit :
u-v=u’—ulv! —u?? — d?

C’est un espace pseudo-euclidien de dimension 4, de signature (+ — ——).

EXEMPLE 16.1.4. Cherchons la signature de l’espace plat dont la métrique s’écrit :

eds® =4 (dx1)2 +5 (dx2)2 —2 (dx3)2 + 2 (dx4)2 — 4dz?dx® — Adz?dx* — 10dx3da?

4— )\ 0 0 0

0 5—-2A 0 0

det[G — M| = 0 9 _9_\ _5
0 —2 -5 2=

5— A =) =7

—(4-N)| -2 -2-x -5

—7) ) 2—-A

5-X 2 0

——(4—-N| -2 24X -3+
—2 5 7-2X

=—(4=2)[(6-2) (29— X*) +8(5— )]
=—(4-2)(E-) (37X
—0
Les valeurs propres sont les suivantes :
A = +4, +5,+v37, —/37
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1l existe une transformation des coordonnées telle que dans le nouveau systeme la métrique
.
s’écrive :

eds® =4 (dx1)2 +5 (dx2)2 + /37 (dx3)2 — /37 (dx4)2
= (d:zl)z + (df2)2 + (da‘c3)2 - (da‘c4)2

Par conséquent la signature est (+ + +—).

Un espace vectoriel sur lequel est défini un produit scalaire est appelé espace vectoriel pré-
euclidien (définition 11.2.2 p. 90). Les espaces vectoriels pré-euclidiens sont plats, ce sont des
cas particuliers d’espaces riemanniens.

D’apres le théoreme de Gram-Schmidt, dans tout espace pré-euclidien on peut trouver une
base orthonormale ou pseudo-orthonormale globale (par exemple en relativité restreinte), ¢’est-
a-dire un tenseur métrique diagonal (base pseudo-orthonormale) dont les termes sont indé-
pendants des coordonnées (base globale). A cette base nous pouvons associer un systéme de
coordonnées rectangulaires global. En revanche, dans un espace courbe il n’existe pas de base
globale. Le tenseur métrique peut étre diagonal mais ses éléments dépendent des coordonnées,
il est local.

16.2 INEGALITE DE CAUCHY-SCHWARZ

THEOREME 16.2.1. Inégalité de Cauchy-Schwarz
Soient u et v deux vecteurs de E,, :

ju-v| < [[alfflv]]
DEMONSTRATION. VA € R, Yu,v € E,,, formons le carré de la norme du vecteur A\u @ v :
Audv)i=Audv) - (Audv)
=Au-(Audv)+v-(Audv)
=(Audv)-Au+Audv)- v
=Au-Au+v-Au+du-v+v-v
=\ +2u-vA+ V2
Or,
Au@v)? >0
WA +2u-vA+v:i>=0
Ce trinome de degré deux en A, ou A est ici la variable et non un parametre, est positif ou nul
si son discriminant (réduit) est négatif ou nul :

A <0
(u-v)2 —u’v? <0
(u-v)? < u*v?
[u- v < [lullflv]
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De plus, si u et v sont proportionnels :
dJINeER, Aucdv=0
Audv) =0
WA 4+2u-vAi+vi=0
A étant unique, A’ =0
ju-v| = [[ul[|v]
Réciproquement, si on a 1’égalité, alors :
ju-v| = flul[jv]
(u-v)? —u*v? =0
INeR, w2 +2u-vi+viavec A =0
INER, Audv)’=0
INER, AMudv=0

THEOREME 16.2.2. Inégalité triangulaire
Yu,veFE, :

[u@ vl < flufl+]v]
DEMONSTRATION. A partir de I'inégalité de Cauchy-Schwarz :
u- v < f[ulf[[v]]
u? +2lu- v+ v < u? + 2)ull|lv]| + v?
lue vi[* < (huf + [Iv])*
lu@ v < ul + v

16.3 ANGLE ENTRE DEUX VECTEURS

En partant de la définition géométrique du produit scalaire de deux vecteurs non nuls :

u-v = [Juff[[v]| cos(u, v)
(u,v) u-v
cos(u,v) =
’ [l

Dans un espace de métrique définie positive, a partir de I'inégalité de Cauchy-Schwarz :
ju-v| < fhuf]lv]

u- vl
1

N

[aflflv]
—1 < cos(u,v) <1
L’angle des deux vecteurs (u, v) existe, est unique et compris entre 0 et 7. Si les vecteurs sont
définis par leurs composantes contravariantes :
giju'v?

69
V GpguPuly/ G50V (69)

cos(u,v) =
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L’angle étant défini uniquement a partir de produits scalaires, il est invariant par changement
de coordonnées.

THEOREME 16.3.1. On considére la base naturelle d’un systéme de coordonnées quelconque.
Soit G le tenseur métrique local. Siu et v sont les vecteurs tangents a deux familles de courbes,
alors ces familles sont mutuellement orthogonales ssi

giju'v’ =0

DEFINITION 16.3.1. Vecteur normal a une surface
Un vecteur est normal a une surface en un point P de cette surface, s’il est orthogonal
au vecteur tangent de toute courbe appartenant da la surface et passant par ce point P.

Dans un systéme de coordonnées (z') d'un espace vectoriel euclidien, considérons 1'hyper-
surface de coordonnée x® = ¢**¢. Tout vecteur T tangent a cette surface a sa composante t*
nulle :

dx®
Cd\
=0

tCM

ou A est un parametre. Le vecteur N de composantes contravariantes

n' = gie
est normal a cette hyper-surface :

N.-T =g n't!
= gijg"t!
= ¢'%,;
—_

Nous en déduisons I'expression de I’angle § entre les normales aux surfaces 2 = ¢*¢ et 2% = ¢t
En appelant u (') et v (gjﬁ) les normales aux hyper-surfaces, la relation (69) p. 136 donne :

959" g%"
VIpaGPT 9T/ GrsgP g*°
g°?
/gozoz /gﬁﬁ

En conséquence en coordonnées orthogonales (curvilignes ou rectilignes), donc pour lesquelles
le cosinus de I'angle est nul, en tout point

Vi#j giy=0

cos(#) =

ou de fagon équivalente
Vi#j ¢7=0

Des exemples de coordonnées curvilignes orthogonales sont donnés en annexe 27.4 p. 375.
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Soit () un systéeme de coordonnées et z*(\) = X une ligne de coordonnée de parametre A,
les autres coordonnées étant nulles :

1=a, 4=\ _ _
Vi=1,...,n { : = Vi=1,...,n ' = A0,
1#a, x=0

Soit une autre ligne de coordonnées d’équation :

Vi=1,...,n 2/ =\
La relation (69) p. 136 donne 'angle ¢ entre ces deux lignes de coordonnées :
9ij M@\‘%

\/ g NGNS |/ Grs AOGAS

gaﬁ

vV gaoz\/ 9ss

En général il est différent de 'angle 6 trouvé précédemment.

cos(9) =

EXEMPLE 16.3.1. Soient u(1,0,—2,—1,0) et v(0,0,2,2,0) deux vecteurs de Es, alors :
w=124+02+ (=22 +(-1)*+0*=6
vi=0"+0"+224+2°+0°=38
u-v=1x04+0x0—-2%x2—-1x24+0x0=-6

EXEMPLE 16.3.2. En coordonnées polaires, cherchons la famille de courbes orthogonale
d la famille de courbes suivante :

0=p—c

ot ¢ est une constante. Nous pouvons la paramétrer sous la forme :
pt) =t
(t)y=t—c

Le champ de vecteurs tangents a cette famille de courbes,

w= ()= (%) = ()

est constant dans le systeme de coordonnées polaires. Nous cherchons la famille de courbes
de parameétre T, c’est-a-dire p(1) et 0(7), dont le champ de vecteurs tangents

-(2)- ()
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est tel que le nominateur de la relation (69) p. 136 soit nul :
gijuivj =0

0 0 0,0
GpptV” + gpeuv” + go,u v + gogu v’ = 0

v + p2v(’ =0
dp  ,db
°F B
dr Tp dr
On résoud I’équation différentielle a variables séparables :
d
&
p
pt=0+c
1
P=%9 + ¢

ot ¢ est une constante.

EXEMPLE 16.3.3. Soient deux courbes €1 et €5 sur une sphére de rayon a. Cherchons
la condition pour que ces courbes soient orthogonales. En coordonnées sphériques (r, 0, ¢)
(voir la figure 7.4 p. 64). Les équations des courbes sont les suivantes :

¢ - ¢o=f(0) et G op=yg(d)

Nous pouvons les paramétrer :

ci(t) 0=t et  G(r) 0=t
¢ = f(t) ¢ =g(7)

Les vecteurs tangents a ces courbes sont respectivement :
u=(0,1,df(0)) et v=(014dg(0))

D’aprés la relation (69) p. 136, ces courbes sont orthogonales au point d’intersection
(a, 8y, o) ssi le produit scalaire des vecteurs tangents est nul, g;;u‘v? = 0. En se servant
de la relation (16) p. 48 :

1 0 0 0
(01 dif (6)lo=g,) |0 @ 0 1 =0
0 0 (asin(9)0)2 d-g (0) lo=0,
a® + duf (0) |o=e, (asin(0)o)” drg (6) lo—s, =
dif (0) lo=0, 79(9)\0 60 = —sin~2 6y
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EXEMPLE 16.3.4. Soient en coordonnées cylindriques u (0,1,2b¢) et v (0, —2bg, p*) deuz
vecteurs, ou b est une constante. Montrons qu’ils sont orthogonauz :

o [1 0 O] 0
gi;u'v! = (O 1 2b¢) 0 p* 0| | —2b¢

0 0 1} p?

1
= (0 1 2bg) | —2b6p* | =0
2
p
u est le champ de vecteurs tangents a la courbe paramétrique de parameétre t
€ty : p=a, ¢=t, z=0bt

car en dérivant on retrouve u :
dp/dt = da/dt = 0, do/dt =dt/dt =1, dz/dt:d(th)/dt:th:%gb

D’aprés son équation paramétrique, € (t) est une hélice a pas variable sur le cylindre droit
de rayon a. De méme, la courbe £ (7) de paramétre T :

do dz >
: — — = =7 — —
Z(7) p=a, — bo, - =a

a pour champ de vecteurs tangents v. Cette courbe est orthogonale a la courbe €. La
courbe £ s’écrit aussi :

d¢

p=a, —==2bdr, z=a’T+¢

¢

Supposons qu'a T =0, z=0 :

p=a, Ing=—-2br+cy, 2z=a’r

p=a, ¢=Cexp (—2bz/a2)

Cette solution n’inclue pas toutes les courbes orthogonales a € car certaines n’ont pas
pour champ de vecteurs tangents v.

Lorsque la métrique de l'espace est indéfinie, I'angle entre deux vecteurs (u,v) non nuls
donnés en composantes contravariantes s’écrit :
u-v

0s(Y) = v

giju'v?

\/glgpqupuq \/52grsvrvs

Deux cas sont alors possibles :
(1) L’inégalité de Cauchy-Schwarz est valable :
[u-v| < ullfjv]]

u- vl

<1
IRV

—1 < cos(u,v) <1
L’angle des deux vecteurs (u, v) existe, est unique et compris entre 0 et 7.
(2) L’inégalité de Cauchy-Schwarz n’est pas valable :

[u- v > f[ulf[[v]
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Nous avons alors
cos(u,v) =k (|k| > 1)
Il existe une infinité de solutions pour I'angle, toutes complexes. Par convention on
choisit :
il (k+VE—1)  k>1
7T+iln(—k:+\/k2—1) k<1

avec les limites k — 17 et &k — —1—

(u,v) =






17

Espaces ponctuels

Au paragraphe 3.2 p. 16, a chaque vecteur nous avons associé un couple de points. Nous
revenons ici sur cette correspondance.

DEFINITION 17.0.1. Espace ponctuel pré-euclidien
On appelle espace ponctuel pré-euclidien, un espace ponctuel tel que [’espace vectoriel
associé soit un espace pré-euclidien.

DEFINITION 17.0.2. Espace ponctuel euclidien
On appelle espace ponctuel euclidien, un espace ponctuel tel que l’espace vectoriel associé
soit un espace euclidien.

17.1 REPERE ET COORDONNEES D’UN POINT

DEFINITION 17.1.1. Repére d’un espace ponctuel pré-euclidien
On appelle repére (O, e;) d'un espace ponctuel E,, l'ensemble d’un point O de &, appelé

origine du repére, et d’une base (e;) de l'espace vectoriel E,, associé a ['espace ponctuel
En.
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DEFINITION 17.1.2. Coordonnées d’un point

Dans un systeme de coordonnées rectilignes, les coordonnées d’un point M d’un espace
ponctuel £, sont les n composantes contravariantes v du vecteur u = OM dans le repére
normé (O, e;) de l’espace vectoriel associé E,.

Soient deux points M et N de coordonnées respectives u’ et v/, alors OM = u'e; et
ON = v'e;. En utilisant les deux premiers axiomes de la définition 3.2.1 p. 16 :

MN = MO+ ON
=ON -OM

= (vi — ul) e; (70)

(v" — u') sont les composantes contravariantes du vecteur M N dans la base (e;).

17.2 DISTANCE

DEFINITION 17.2.1. Distance euclidienne
La distance euclidienne M N entre deux points M et N d’un espace ponctuel euclidien &,
est la norme euclidienne du vecteur M IN de [’espace vectoriel euclidien normé associé a

& :
MN = [[MN]||

DEFINITION 17.2.2. Distance
La distance M N entre deux points M et N d’un espace ponctuel pré-euclidien £, est la
pseudo-norme du vecteur M IN de [’espace vectoriel pré-euclidien normé associé a & :

MN = [[MN]||

Dans le repére (0, e;), siles points M et N ont respectivement pour coordonnées 'y, et
x'y, d’aprés la définition 11.6.1 p. 94 de la norme d’un vecteur, et avec la relation (70)

p. 144 :
MN? = (xﬁw — xﬁv) e - (:cgv — xf\/[) €;

= 9ij (ﬁﬁv - ﬂw) (x‘}v B “"5\4) ()

Cette relation n’est valable que lorsque les g;; ne sont pas des fonctions des coordonnées,
c’est-a~dire dans un espace pré-euclidien (euclidien ou pseudo-euclidien).

Supposons N infiniment proche de M et désignons par (z° + dz’) les coordonnées de M. Si
I'on note ds la distance infinitésimale M N, la relation (71) devient la forme quadratique (voir
5.0.8 p. 44) de différentielles, appelée forme quadratique fondamentale

ds® = g;; da'dx’ (72)

ol les coefficients g;; sont fonction des coordonnées z lorsque la base varie localement. Dans
ce cas soit l'espace est pré-euclidien mais le systeme de coordonnées n’est pas rectiligne, soit
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I’espace riemannien n’est pas pré-euclidien. Lorsque &, est pré-euclidien, la méthode d’ortho-
normalisation de Gram-Schmidt p. 373 nous assure qu’il est toujours possible de trouver une
base orthonormale ou pseudo-orthonormale. Lorsque &, est euclidien, les termes diagonaux du
tenseur métrique valent 'unité et les termes non diagonaux sont nuls. Il ne reste que les termes
carrés dr'dz’?, i = j, les termes rectangles dx'dz?, i # j étant nuls :

ds? = (d:zcl)2 + (dx2)2 +ot (alx")2
= i dzidz
i=1
= 5Z]dl'ld{[']

La distance est alors positive, ou nulle si les points sont confondus. Cette expression généralise
a n dimensions le carré de la distance élémentaire de 'espace de la géométrie classique en
coordonnées rectangulaires (théoreme de Pythagore).

EXEMPLE 17.2.1. En coordonnées rectilignes obliques dans le plan :
1\2 1A 2 2 A 1 2\ 2
= g1 (A$ ) + g12Ar Az” + g AT Ax + goo (Ax )
2 2
= g1 (Al"l) + 2912 Az Az® + goo (AJSQ)
2 2
= (Axl) + 2 cos(a) Azt Ax? + (Aa:Q)

On retrouve la formule de Pythagore pour le triangle quelconque.

EXEMPLE 17.2.2. Coordonnées polaires (p, 0)
Le carré de la distance infinitésimale

ds* = dp* + r*db?

est de signature (++). Le terme gi1 (dx1)2 = dp? est la distance entre deuz points sur la
ligne de coordonnée x* = p, et goy (da?)* = r2d6? est la distance entre deuz points sur la
ligne de coordonnée x* = 0. Le terme croisé 2g,odx*dx?* n’apparait pas car les coordonnées
polaires sont orthogonales.

Nous pouvons donner une nouvelle définition du systeme de coordonnées rectangulaire :
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DEFINITION 17.2.3. Systéme de coordonnées rectangulaires A
Dans un R-espace vectoriel de dimension n, un systéme de coordonnées (x*) est rectangu-
laire (rectiligne et orthogonal) si la distance entre deuzx points arbitraires P (zh, ..., z'5)

et Q) (mb, e ,x%) est donnée par une généralisation du théoréeme de Pythagore,

PQ:\/(:L‘},—xb)2+---+(x$—x6)2

=4/ (51]AJIZAZE]

. i i
ou Ax' = 1p — 1.
En notation vectorielle :

i(P,Q) =|P-q|
- JP-Q (P-Q

Cherchons l'expression de la distance entre deux points lorsque 'on applique une trans-
formation linéaire u' = Au inversible (det A # 0). Posons A™' = B c’est-a-dire u = Bu'.
La transformation linéaire conserve les distances :

d(u,v') =d(u,v)
=Ju-v"@-v)
—/(Bw — Bv)" (Bw — Bv)
=B V) B —v)
—J(w-v)"BTB(w — v

On pose
T -1 -1
G=B"B=(A") Al =(A") A'=(44")
Les éléments de la matrice A étant des constantes, les éléments de G sont aussi des
constantes.

En permettant le calcul de la distance infinitésimale localement en chaque point et dans
toutes les directions, les g;; caractérisent completement la géométrie de I'espace considéré. Ils
définissent cette géométrie de maniere intrinseque sans qu’il soit nécessaire de considérer que
I’hypersurface est plongée dans un espace de dimension supérieure.

17.3 EXEMPLE DE LA RELATIVITE RESTREINTE

DEFINITION 17.3.1. Référentiel, cas non relativiste
Un référentiel est un systéme de coordonnées et une horloge.

Lorsque l'on parle de référentiel on parle du référentiel dans lequel se trouve 1’observateur,
pas de celui dans lequel se trouve le systeme observé. La définition non relativiste sous-entend
I’existence préalable d'un espace unique et d'un temps unique, identiques pour tous les obser-
vateurs. Un changement de référentiel n’est alors qu'un changement d’instruments de mesure
de cet espace et de ce temps.
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Les référentiels (les observateurs) se déplacent les uns par rapport aux autres d’'un mouve-
ment relatif dont il faut tenir compte pour la description du systeme étudié.

En physique non relativiste I'espace et le temps sont absolus, mais n’ayant pas les mémes
unités il n’y a pas a proprement parler d’espace-temps car on ne pourrait y définir une distance.
On note alors ’espace et le temps par le produit cartésien R? x R.

En physique relativiste, le temps et ’espace n’ont pas d’existence intrinseque, ils dépendent
du mouvement relatif entre 'observateur et le systeme observé. Il existe autant d’espaces et de
temps qu’il y a d’observateurs en mouvement relatif.

DEFINITION 17.3.2. Référentiel, cas relativiste
Un référentiel est un espace muni d’un systéme de coordonnées et un temps mesuré par
des horloges fixes dans cet espace.

Les référentiels ne se déplacent pas dans un espace ou dans un temps qui préexisteraient,
ils emportent avec eux leur propre espace et leur propre temps.

En relativité restreinte, ’espace et le temps sont liés par la constante ¢, homogene a une
vitesse (un espace divisé par un temps), appelée vitesse limite ou constante de structure de
I’espace-temps. En multipliant le temps par cette constante on obtient une coordonnée homo-
gene a une dimension d’espace. On mesure alors le temps en meétres (ou I'espace en secondes),
ce qui ne pose pas de probleme puisque l'on connait la valeur de la constante de passage c.
L’espace-temps devient de fait un espace métrique a quatre dimensions R*, et I’on cherche a y
définir une distance entre deux points (alors appelés évenements) qui soit invariante par chan-
gement de référentiel. A un changement de référentiel correspond un changement de temps et
d’espace, c’est-a-dire un changement de coordonnées, qui s’effectue par la transformation de
Lorentz-Poincaré.

Placons-nous dans le systéme de coordonnées rectangulaires, appelé systéme de coordonnées
galiléennes (t, x,y, 2), la coordonnée temporelle étant prise « perpendiculaire » aux coordonnées
spatiales. La distance de carré c¢?t? + 2% + y? + 22 n’a pas d’intérét car elle n’est pas invariante
par la transformation de Lorentz-Poincaré. En revanche ["intervalle d’espace-temps ou distance
d’univers, de carré

§2 = (A2 — 22—y — 22)

= oo t* + 11 2% + Moz Y + N33 27

est invariant par la transformation de spéciale de Lorentz (relation 29 p. 75), I'autre invariant
étant la constante de structure de I'espace-temps, c. Ces deux invariants relativistes remplacent
les invariants de la physique non relativiste, la distance entre deux points de l'espace et le
temps.

Pour « pseudo-normer » la base, c’est-a-dire pour avoir 799 = =1, il suffit d’effectuer le
changement de variable t = ct, ce qui revient a poser ¢ = 1. C’est ce que nous ferons, les unités
de temps et d’espace étant arbitraires, comme d’ailleurs toutes les unités de la physique. Le
systéme de coordonnées (ct, x,y, z) est appelé systeme de coordonnées galiléennes réduites (voir

(9) p. 24).
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En notant ¢ les composantes contravariantes d’un évenement et x, ses composantes cova-
riantes,

8% = N 2T

B

= x 2%
ol les indices grecs varient de 0 a 3. Le carré de l'intervalle entre deux évenements peut prendre
des valeurs positives, négatives ou nulle, selon la distance et le temps lumiere qui séparent ces
deux événements.

(1) Si l'on choisit la convention de signe suivante pour écrire l'intervalle

JRI: B R
le tenseur métrique s’écrit
1 0 0 0
0 =1 0 0
=10 0 -1 0
0 0 0 -1
ayant pour signature (+ — ——), de type hyperbolique normal, et pour déterminant :
n=-1

Dans un espace pseudo-euclidien, le déterminant peut étre négatif. Pour les compo-
santes contravariantes z®, on adopte habituellement la notation suivante (avec t = t,
c’est-a-dire ¢ = 1) :

20 =t ; =z ; xzzy ; 3=z
Le carré de l'intervalle s’écrit :

§2 = (2°)% — (21)? — (22)? — (z7)?
Pour les composantes covariantes, 3 = 7,4 %, n0ouS avons :
o=t ; T1=-—T ; Ta=-Y ; Tz=—Z%
(2) Si l'on choisit la convention de signe opposée pour écrire 'intervalle :
s* =t +a* +yt + 2

le tenseur métrique

100 0
o 100
s =10 0 1 0

0 001

a pour signature (— + ++), les composantes contravariantes s’écrivent de nouveau
=t ; =2 ; x2:y L o=z
et le carré de 'intervalle :
82 — —(IO)Q + (.Tl)2 + (1’2)2 + (1’3)2
Pour les composantes covariantes :

ro=—1 ; m1=x ;| T2=Y ; X3=2%
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(3) Le carré de I'intervalle élémentaire peut aussi s’écrire

17.4

s* = (it)® + 2° + y* + 2 ou  s* =1+ (ix)* + (iy)* + (iz)*

et le tenseur métrique devient :

1000
o100
lep =10 0 1 0

000 1

ou les indices grecs varient de 1 a 4. La métrique a une apparence euclidienne, de
signature (+ + ++). Les composantes covariantes et contravariantes sont confondues.
On adopte au choix une notation avec pour quatriéme coordonnée une coordonnée
temporelle imaginaire (la coordonnée est imaginaire, le temps reste réel) :
=z :czzy o=z ot =it
ou une notation avec des coordonnées spatiales imaginaires :
=iz :L’2:iy =iz at=t
Dans ces deux cas, le carré de l'intervalle s’écrit :
2 1)2 212 312 432
s = (2) 4+ (@7)" + (2°)" + (z7)

Le plan de coordonnées (z,it) ne doit pas étre confondu avec le plan complexe
(z,t). Dans le premier cas le carré de la pseudo-norme d’'un vecteur s’écrit x? — 2 et il
peut étre positif, négatif ou nul, alors que dans le second cas le carré de la norme d’un
vecteur s'écrit 2% 4 t2.

DERIVEE ET DIFFERENTIELLE D’UN VECTEUR ET D’UN POINT

DEFINITION 17.4.1. Vecteur fonction d’une variable

Soit E un espace vectoriel euclidien, et soit t une variable scalaire variant dans un inter-
valle (a,b). Si a chaque valeur de t nous faisons correspondre un vecteur u de E, nous
dirons que le vecteur u est une fonction de la variable t, et nous noterons ce vecteur
variable u(t).

DEFINITION 17.4.2. Vecteur tendant vers le vecteur nul
Soit E un espace vectoriel euclidien. Un vecteur variable u(t) de E tend vers le vecteur
nul, si le scalaire ||u(t)|| tend vers zéro quand t croit.

DEFINITION 17.4.3. Vecteur fonction continue d’une variable
Le vecteur u(t) est une fonction continue de la variable t, si, la variable t ayant re¢u un
accroissement At, le vecteur :

tend vers zéro quand At tend vers zéro.

Au = u(t + At) — u(t)
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DEFINITION 17.4.4. Vecteur dérivé d’un vecteur
S’il existe un vecteur u(t) tel que,
Au(t)
u<t) B At At—=0
nous dirons que 0(t) est le vecteur dérivé de u(t) pour la variable t. Nous noterons :
Au(t)
W) — 1
a() Ao At
_ du
ot

DEFINITION 17.4.5. Vecteur différentielle d’un vecteur
Nous appellerons différentielle du vecteur u(t), le vecteur :

du = udt

DEFINITION 17.4.6. Point fonction d’une variable

Soit £ un espace ponctuel euclidien, et soit t une variable scalaire variant dans un in-
tervalle (a,b). Si a chaque valeur de t nous faisons correspondre un point M de &, nous
dirons que M est une fonction de la variable t, et nous noterons cette fonction M(t).

Soit M (t) une fonction de la variable ¢, et soit O un point fixe arbitraire d’un espace ponctuel
euclidien £ : le vecteur OM est alors une fonction de ¢. Soit O" un autre point fixe arbitraire
de &, alors, OO’ étant constant :

OM (t) = 00’ + O'M (%)
dOM(t) dOO’ dO'M(1)

dat dt + dt
dOM(t)  dO’M(t)
at dt

Le vecteur dérivée du vecteur OM est donc indépendant du point fixe O choisi, d’ou les
notations suivantes :

NOTATION 14. Le vecteur dérivée par rapport au temps d’un point M fonction de la variable t
est noté :
dM

M _
dt
Le vecteur différentielle d’un point M fonction de la variable t (ou différentielle de M ) est noté :
dM = Mdt

EXEMPLE 17.4.1. Vecteurs de la base naturelle du systéme de coordonnées (")
Ils sont notés :

oM
- Ox

€;
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Gradient

18.1  DEFINITION

En un point donné d’un espace ponctuel £, soient (z) et (z*) deux systémes de coordon-
nées quelconques (rectiligne ou curviligne, orthogonal ou non). Soit une fonction scalaire des
coordonnées (une fonction qui prend en entrée des coordonnées et donne en sortie un scalaire).
En chaque point de 'espace, cette fonction associe un scalaire, par exemple la température en
chaque point d’un solide, et forme ainsi un champ de scalaires. On note cette fonction ¢(2%) ou
d(z") selon les coordonnées employées. En un point donné, la différentielle de ¢ est la méme

indépendamment de tout systéme de coordonnées :

dp(a") = dg(")

o0 . 09

ox” du' = ox' du
09 0x* | 4

Ozt Oz

dp  0¢ Ox’

or? Ozt Ox'

Les dérivées partielles de ¢ par rapport aux coordonnées se transforment comme les composantes
covariantes d’un vecteur, on les note avec un indice inférieur :

i ovd=2% 06 (73)

ox?

EXEMPLE 18.1.1. Soit (p,0) et (z,y) deux systémes de coordonnées au méme point.
do(p,0) = do(z,y)
0¢ dp . 0¢ 0¢
ap dp + 50 df = 5 dr + 3y dy
{x = xz(p, 0) {dxz@,@dp—k@ﬂd@
=
y=y(p,0) dy = 0,y dp + Dy db

06 4 00 4y 00 (0n 0n N 06 (0y Oy
8pd'0+86d9_8x <8pdp+86d9>+8y <apdp+89d9>
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00, _060r 060y 00 _ 000 060y
ap p_ﬁxﬁp s dy Op s N dp 0xdp Oyop
99 jp = 9007 4 | 000U 4 oY _ 6908 , 660y

00 oz 00 dy 00 00 — 9x 00 ' 9y 00

Une réécriture de la différentielle de ¢
dp = 0;¢ da’

sous forme d’un produit scalaire permet de faire apparaitre un vecteur « contravariant » (vecteur
exprimé en composantes contravariantes) suivant :

DEFINITION 18.1.1. On appelle gradient de phi, noté grad ¢, le vecteur tel que :
do = grad ¢ - dM

A chaque valeur prise par la fonction ¢ en chaque point de Uespace, I'opérateur différentiel
gradient associe le vecteur grad ¢. Il prend en entrée un champ de scalaires ¢ et donne en sortie
un champ de vecteurs grad ¢. Mettons en évidence la base naturelle du systeme de coordonnées

(") :

dp = grad ¢ - 88];{ dz’

O;pdx’ = grad ¢ - e;dz’

Dans la base naturelle du systéme de coordonnées (z'), le vecteur gradient de phi a pour
coordonnées covariantes 0;¢ telles que :

. A
Vi O0;¢ =grad¢-e;
Les coordonnées covariantes 0;¢ forment le covecteur

grad ¢ = (14, Oab, . .., 0n0)

ou le tilde indique que les coordonnées entre parentheses sont covariantes. Avec les relations
(48) p. 101 :

Vi 06 = g0
Les coordonnées contravariantes 9°¢ forment le vecteur

grad ¢ = (81¢>, %0, ..., (9"¢))

EXEMPLE 18.1.2. En coordonnées rectangulaires en deux dimensions, donc dans un es-
pace vectoriel pré-euclidien Es, ¢ = ¢(x,y), les coordonnées covariantes du vecteur gra-

dient phi sont les suivantes :
{8x¢ = grad ¢ "€y

0y¢ =grad ¢ - e,
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La base naturelle associée aux coordonnées rectangulaires étant orthonormée, les coordon-
nées contravariantes et covariantes du vecteur gradient sont confondues et l'on a :

grad ¢ = 0,¢0e, + 00 e,
e
= o0

Lorsque la base n’est pas orthonormée on définit les coordonnées contravariantes du vecteur
gradient en passant par le tenseur métrique.

EXEMPLE 18.1.3. Base oblique
Soit (x',2%) un systéme de coordonnées rectangulaire de base naturelle orthonormée

(e1,eq). Soit (:cll,le) un systeme de coordonnées rectilignes obliques. En s’aidant de
la figure 18.1 le changement de coordonnées est le suivant :

z!t = 2V + 2% cos(a)
2% = 2% sin(a)

L’angle o étant constant, la transformation est linéaire.

2/
z2 | ... Wl orosacnnmnancncsonsanasosons M
(67
e .
2 ey .
/
O e = ey ;Cl LCl

F1G. 18.1 — Base naturelle en coordonnées rectilignes obliques

Inversement :

’ /
b = 2! — 2% cos(a) 2t =2t —
2
op & = o 72
x

sin(a)

OM = z'e; + 2%e,
- (:cll + 2% cos(a)) e + 22 sin(a) e,
Cette relation donne les vecteurs de la base naturelle (ey/,ey) du systéme de coordonnées

rectiligne oblique (xll,x?) ;

_OM
ey = W _ ey =e;
oM ey = cos(a) ey + sin(«a) ey
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Ils sont de norme unité, ||ey|* = cos(a)? + sin(a)? = 1.
On a bien
OM = z'e; + z2ey

— (xll + 2% cos(a)) e; + 22 sin(a) <e2/ _S;O(S(;E)a) e1>

! !
=zt ey + z? €y

Selon la base, les coordonnées covariantes du vecteur gradient phi s’écrivent :
grad ¢ - e, = 0¢/0z' grad ¢ - ey = 8¢ /dx"
{grad ¢ - ey = 0¢/0x* {grad b - ey = 0p)0s”
Par exemple pour ¢ = z' = x¥ + 2% cos(a) :
grad¢g-e; =1 grad¢-ep =1
{gradgb ce3 =0 {gradgb - ey = cos(a)

Dans la base orthonormée (e, es) les composantes contravariantes et covariantes sont
confondues :

¢ ¢
grad ¢ = %el -+ @92
1

Dans la base primée (ey/,ey) :

grad ¢ = ey

EXEMPLE 18.1.4. Soit ¢ = ¢(p,0) une fonction scalaire en coordonnées polaires. Dans
la base naturelle polaire (e,,eg) les coordonnées covariantes du vecteur gradient phi

s’écrivent :
grad¢-e, = 0,¢
grad ¢ - ey = 0y
Dans la base naturelle polaire, les composantes covariantes forment le covecteur :
grad ¢ = (9,0, 99)
Avec les relations (48) p. 101 :
grad Cb = gpp8p¢ € + gpea€¢ep + gepap¢ €y + 900896560
Les coordonnées polaires étant orthogonales, les termes croisés sont nuls :
grad ¢ = g”0,pe, + g* 0 ey

Avec l'inverse du tenseur métrique en polaire (53) p. 102, nous trouvons les coordonnées
contravariantes du vecteur gradient phi :

1
grad ¢ = 0,0e, + ) Op € (74)

B (39%7 P2>
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EXEMPLE 18.1.5. Dans un espace vectoriel pré-euclidien, soit la courbe € (\) d’équations
paramétriques x° = z'(N\), et soit ¢(x') une fonction scalaire le long de €. Sa dérivée a
pour expression :

d¢ 99 da’
d\  Oxt d\
= azfﬁui
u' = dx'/d\ est un vecteur partout tangent a €. Il se transforme swivant les relations :
.ot
Vi dz' = —da’
1 dx o O
Vi dz"” B oz dat
"N T 0nf d)
.0t
Vi v =—u'
iU 7 &

u® est contravariant. 0;¢ est le gradient de la fonction ¢, il est covariant d’aprés (73)
p. 151. do/d) est donc invariant par changement de coordonnées :
do(z')  0¢ da’
d\  Oxt d\
B ox' 9¢ Ox' d
~Oxt 0xt' Ox? d\
0¢ da”
RGN
_ dg(a")
o d
En effet dp/d\ est le rapport de deux invariants. Le produit du covecteur 0;¢ par le vecteur
u' est appelé multiplication contractée.

EXEMPLE 18.1.6. Prenons un exemple en relativité restreinte. Dans cette branche de la
physique, ’espace-temps est un espace mathématique a quatre dimensions. Les vecteurs
ayant tous quatre coordonnées sont appelés quadrivecteurs. En prenant un temps réel, le
quadrivecteur vitesse d’une particule s’écrit :

Ut dt/dr
_|UF | |dx/dr
U= Uv| |dy/dr
U~? dz/dr

ou T est le temps propre de la particule, et ou les composantes sont contravariantes. Soit
o(t,x,y, z) une fonction scalaire, sa différentielle s’écrit :
_ 09 d¢ 99 o¢

dqb(t’x’y’z)_EdtJr%dija_yder&dz
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Fi1Gc. 18.2 — Champ de scalaires le long d’une ligne d’univers

Si lon prend un point sur la ligne d’univers de la particule (Fig. 18.2), les coordonnées
en entrée de ¢ sont toutes des fonctions du temps propre T, et ¢ qui est une fonction
explicite des coordonnées, est aussi une fonction implicite du temps propre :

Ao [t(r). 2(r),y(1).2(0)) _ 09t dpda Do dy 06 dz
dr ~ Otdr  Oxdr  Oydr  Ozdr
=0, U" + 0,0 U + 9,0 UY + 0,9 U*

On peut réécrire cette égalité sous forme matricielle :

Ut
do U«
—=(00 00 90 0.9) |,
UZ

Or, 0x0, 0,0 et 0,¢ étant des composantes covariantes, nous définissons le covecteur gra-
dient phi par :

dp = (09 0.0 9y 0-0)

Pour chaque événement (t,x,y, z) de la ligne d’univers de la particule, ¢(t,x,y, z) étant
un scalaire, il en va de méme de do/dr, si bien que la multiplication contractée du co-
vecteur gradient par le quadrivecteur vitesse donne un champ de scalaires. Le covecteur
gradient est donc une forme, une application qui a un vecteur fait correspondre un sca-
laire.

Contrairement au produit scalaire, la contraction ne fait pas intervenir le tenseur mé-
trique. En effet, l'un des deux membres est déja un covecteur.

EXEMPLE 18.1.7. D’apres l'exemple 17.3 p. 146, en prenant une métrique de signature
(+ — ——) et d’aprés les relations (43) p. 99, le covecteur quadrivitesse est donné par
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gz’juj =U -
1 0 0 07 /dt/dr dt/dr
0 -1 0 0] |de/dr| |—dx/dr
0 0 -1 0] |dy/dr| | —dy/dr
0 0 0 -—1] \dz/dr —dz/dr

La notation du terme de droite sous forme de matrice colonne semble indiquer que les
composantes sont contravariantes alors qu’elles sont covariantes. Seul le signe négatif
permet la distinction. On note le covecteur en ligne,

u = (dt/dr,—dx/dr, —dy/dr,—dz/dT)

ot les virgules entre les composantes indiquent qu’il ne s’agit pas d’un tableau mais d’un
ensemble ordonné de valeurs. On note aussi les composantes du covecteur explicitement
avec un indice en bas :

uy = dt/dr

us = —dzx/dr
uz = —dy/dr
uy = —dz/dr

D’apres les relations (48) p. 101, le vecteur adjoint (ou associé, ou réciproque) du covec-
teur gradient de ¢, c’est-a-dire le vecteur gradient de ¢, s’écrit g0, = & ¢. Or g¥ = g;;
d’apres Uexercice 61 p. 106 :

1 0 0 07 /0 By 8,0
0 -1 0 0]|as| [-d6.0 | -84
0 0 -1 0l/|ae| =[-8, = egradg=1 54
00 0 —1|\o.0 _o.4 —0,6

On voit que la notation n’est pas parfaite puisque l'indice de dérivation en bas semble
indiquer une covariance des composantes.

NOTATION 15. On peut trouver la notation suivante,
u' = (z y 2)

pour le covecteur adjoint au vecteur u. Or le covecteur n’est la transposée du vecteur que dans un espace
vectoriel euclidien car le tenseur métrique est alors la matrice identité. En effet, 'exemple 17.3 p. 146
montre que dans [’espace-temps pseudo-euclidien de la relativité restreinte un signe négatif apparait.

18.2 REPRESENTATION

Il s’agit de représenter (de symboliser) un covecteur gradient en un point donné de l’espace,
en ayant a l'esprit que le covecteur gradient est 1’archétype des covecteurs. Sa représentation
servira pour tous les covecteurs. On représente de petites tangentes aux courbes de niveau (non
représentées) localement autour du point (Fig. 18.3).
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T

Fic. 18.3 — Représentation d'un covecteur en un point

Plus les lignes paralléles sont rapprochées et plus la norme du covecteur est grande (plus le
gradient est fort). La contraction d’'un covecteur et d'un vecteur est le nombre de segments de
droite traversés par le vecteur en ce point, ici environ 3,4 (Fig. 18.4).

i

F1G. 18.4 — Contraction d’un covecteur et d’un vecteur

18.3 BASE RECIPROQUE DE LA BASE NATURELLE

Soit (z*) un systéme de coordonnées curvilignes d’un espace ponctuel euclidien &,, et soit
M un point de cet espace. Soit (e;) une base naturelle de ’espace vectoriel euclidien F,, associé
a &,. Montrons que la base formée par les vecteurs grad z’ est la base réciproque de la base

(e).

Prenons la définition 18.1.1 p. 152 du vecteur gradient :
grad ¢ - dM = d¢
Posons ¢ = !
dr' = grad z' - dM
= grad xt- (e1 dz' +eyda® +---+e, dx")

Par conséquent :

grad z' - e, =0 Vk=2,....n

De méme pour grad 22, ..., grad z". Par conséquent,

{grad e =1

Vi,j grad e = 5{

qui montre que ces bases sont réciproques. En général, les vecteurs de base de la base réciproque
de la base naturelle ne sont pas de norme unité, comme on peut le constater dans l’exemple
18.1.3 p. 153.

Montrons que les vecteurs de base de la base réciproque sont perpendiculaires aux hyper-
surfaces de coordonnées. Dans le systeme de coordonnées (z'), considérons 'hypersurface de
coordonnée z! = ¢, sur laquelle la différentielle de x! est nulle :

de' = grad z' - dM
=0
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grad 7! est donc perpendiculaire & dM, lui méme tangent en M a Ihypersurface 2! = ¢,
Par conséquent grad z!' est perpendiculaire en M a I'hypersurface x! = ¢

EXEMPLE 18.3.1. En coordonnées polaires

(1) En utilisant [’expression du gradient en coordonnées polaires (74) p. 15/ :

1
e” =grad p e’ =0Jppe, + ) Ippeq e’ =e,
{e" — grad 6 1 e =2
-8 e9:8p9ep+ﬁﬁgéeg p?

(2) En utilisant l’expression du gradien en coordonnées rectangulaires :

1 Y
p—
e” = grad p e’ = poe, + pyey MY A v A
e’ = grad ¢ e’ =0.e,+0,e, e Y e T
22ty ° p2yq2 Y
e’ = cos(f) e, +sin(f) e, e’ =e,
= 1 1 = e
e’ = ——sin(f) e, + —cos(f) e, e’ = —Z
p p p






19.1

Transformation de coordonnées

MATRICE JACOBIENNE ET JACOBIEN

Soit T' la transformation de I'ancien systéme de coordonnées (x?) vers le nouveau systéme
) ) S .
de coordonnées (:E] ), noté (z') — (xj ) :

T

Vi=1,...,n le:xj/(

x,x,...,:p")

1,2

(75)

Si cette transformation est bijective, c’est-a-dire si a tout vecteur de son domaine de définition

1 .2

. . ., ’
elle fait correspondre un unique vecteur de son ensemble d’arrivée, alors (:p N vl ,x”) est
aussi un systeme de coordonnées.
Les différentielles des nouvelles coordonnées en fonction des anciennes s’écrivent :

’ al'll afll
1 1 2
2/ 2/
da” = g‘;l d 1*222 da® +
;0™ ox"
dz" = a:;l dxt + % dr? 4 ...

T+

T+

ox™
or?

ox™

dz"™

dz"™

’

ox™

dn
ox™ v

_|_

DEFINITION 19.1.1. Matrice jacobienne d’une transformation
La matrice carrée n X n des dérivées partielles premieres des nouvelles

rapport aur anciennes,

ozt

5 9zl
[J] 2 g —|
ozt ‘

nn 9z

oxl

est appelée matrice jacobienne de la transformation T .

coordonnées par

dz!’
oxm

oz’
ox™

En notation indicielle ligne-colonne :

Vi da? = Jdst
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ou les Jj; sont les éléments de la matrice [J], le prime sur 'indice indiquant la nouvelle base.
En utilisant la convention de sommation sur les indices répétés en haut et en bas :

Lo
Vi da! = —dx’
J ox’
= J7 da
Lorsque I'on utilise la convention de sommation il n’y a plus de notation indicielle ligne-colonne
car I'indice sur lequel on somme est toujours l'indice de colonne. Il dépend du terme qui suit.

Sous forme matricielle cette derniere égalité s’écrit :

1 1/
dx'* %’;1 e gﬁm dx?
dz'™ 89:’;/ oo | \da”
ox ox”

En prenant le déterminant de chaque membre de 1’égalité :

dz'' ... da™ = det[J]da" ... dx"

[1 dz" = det[J] ]| d’
i=1

i=1

NOTATION 16. d) est le produit des différentielles des coordonnées, il se confond avec l'hypervo-
lume élémentaire de l’espace en coordonnées rectangulaires.

dSY = det[J]dQ (76)

NOTATION 17. dz't...dz'™ est aussi noté d"z.

DEFINITION 19.1.2. Jacobien d’une transformation
Le déterminant
dz’ dz’
ozt T Ban
JA| .
dz™ L. dz™
Ox! ox™
ox" 0z7" OV
= Eirqt. 1 Ce
T Oxl 022 ox"
i ozt 0z% 0z
oxt OxJ Ox!
est appelé jacobien de la transformation T
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DEFINITION 19.1.3. Transformation de coordonnées
Soit (z',22,...,2™) un systéme de coordonnées de l’espace ponctuel &,. L’ensemble des
n équations (75) p. 161 est une transformation de coordonnées ou un changement de

s, \ , / / !
coordonnées vers le nouveau systéme de coordonnées (ml R L ) de ’espace ponctuel
E,, seulement si le jacobien de la transformation est non nul :
J#0

En effet, T est bijective ssi son jacobien est non nul. Pour étre une transformation de
coordonnées, la transformation doit de plus étre de classe C?.

Le jacobien étant non nul, nous pouvons inverser la transformation

Tt Vi=1,...,n zt =t (xl/ 2. ,:E"I)
de matrice jacobienne :
or' . Ozl
axi Azl Axm’
[K] la—J] = : (77)
v oxz™ . Oz
ozl oz’
En notation indicielle :
o0z
Vi,j K. =—
J oxJ
A partir des relations (3) p. 8,
-/ k - k/
0’ 0 _ 5 o WO
oxk Ox' ox¥ Ot

qui s’écrit sous forme matricielle :
K] = [K][J] =1

ol I est la matrice identité. La matrice [K] est aussi notée [J]~'. La matrice jacobienne de la
transformation inverse est égale a 'inverse de la matrice jacobienne de la transformation.

Les matrices jacobiennes étant inverses I'une de 'autre, il s’en suit que les jacobiens sont
également inverses 1'un de 'autre :

K=1/J

Si la transformation a lieu entre repéres rectilignes alors les 2 oy £ sont tous constants et le jacobien
est constant. En reperes curvilignes le jacobien est fonction du point.

EXEMPLE 19.1.1. La matrice jacobienne de la transformation des coordonnées polaires
en rectangulaires (p,0) — (x,y) s’écrit :
Ox,y) o [0z Opx

( ,8) apy aOy

[ e

7] £

Elle a pour déterminant :
J = pcos®(0) + psin®()
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Cette transformation est bijective pour J # 0, donc pour p # 0, c’est-a-dire pour le plan
privé du point origine.

La matrice jacobienne de la transformation inverse, des coordonnées rectangulaires aux
coordonnées polaires (z,y) — (p,0), s’écrit :

A(87)A ax ay
K& e |5 )

F a? +y 2y (a2 +y2)_1/2]

2+ z(@+ )
COS sm
sin( Cos(@ ‘| (78>

Elle a pour déterminant :

7 cos?(f)  sin?(0)

EXEMPLE 19.1.2. Méme démonstration que ’exemple 12.5.1 p. 100 en passant en coor-
données rectangulaires.
o — cos(0) —psm 3/5
~ |sin(f)  pcos(6 4/5p

_ <3/5cos( )—4/5s1n ))
3/5sin(0) + 4/5 cos(0)
lul® = 6iyu? = (3/5 cos(6) — 4/5sin(6))* + (/ssin(6) + /5 cos(6))*
9 16

v lcos(@) —psin(@)] <—4/5>
sin(f) pcos(6) | \ 3/

_ <—4/5 cos(f) —3/5 sin(9)>
—4/5sin(6) + 3/5 cos(f)

V|| = 6,007 = (~4/5cos(8) — 3/5sin(0))” + (~4/5sin(8) + 3/5 cos())?
69
A

u-v = gjuv! = §uv’

= (% cos(#) — %sin(@)) (_?4 cos(f) — gsin(Q))
+ (% sin(6) + % COS(Q)) (_?4 sin(0) + % cos(@))
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EXEMPLE 19.1.3. Passer dans l’espace-temps de Poincaré-Minkowski revient a effectuer
la transformation suivante :

r =z
=y
=z
ot =it
Le jacobien de cette transformation a pour expression :
10 00
-pies
00 0 1

19.2 MATRICE CHANGEMENT DE BASE

Toute transformation de coordonnées induit un changement de base naturelle, donc une
transformation des vecteurs de base. Lors d’une transformation de coordonnées, les vecteurs de
base sont les seuls a se transformer, les autres vecteurs restent identiques a eux mémes lors de
la transformation.

EXEMPLE 19.2.1. Le vecteur vitesse v d’une particule ne dépend pas du systeme de co-
ordonnées dans lequel on [’exprime.

/
(S)) (SHY

e = ey

Fic. 19.1 — Changement de base

Dans le cas ou ce vecteur est unitaire vertical dirigé vers le haut, il ne doit pas étre
confondu avec le vecteur de base ey qui lui subira un vrai changement pour devenir ey .
Lors du changement de base les composantes du vecteur vitesse se transforment de ma-
niere a ce que le vecteur reste identique a lui-méme.
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DEFINITION 19.2.1. Matrice changement de base
Soient (e;) et (ej) deux bases d’un espace vectoriel E, ou par convention les indices de
la nouvelle base sont primées, telles que :

1 2

ey =Ay e+ A es+---+ Al e,
1 2

62/:A2/61+A2/62+"‘+Ag/en

en/:A}l/e1+Ai/e2+~--+Aﬁ/en

Nous appelons A la matrice changement de base (e;) — (e;)

AL oan
AL | :
AL A
[(e1)e,
A (62/ )ez
_(en’)ei

ot (eji)e, est le vecteur ej exprimé dans la base (e;). Nous avons
J i J

(S3 (S5}

=A| (79)

ot les €léments des vecteurs sont euxr-mémes des vecteurs. En utilisant la convention de
sommation sur les indices répétés en haut et en bas :

Vi ey =Ale (80)

REMARQUE 27. La matrice jacobienne et la matrice changement de base ne sont pas des tenseurs,
elles ne se transforment pas lors d’un changement de base. Leurs indices ne sont pas des indices de
variance, nous pouvons les placer en haut ou en bas pour utiliser la convention de sommation.

DEFINITION 19.2.2. Matrice de passage
On appelle matrice de passage la matrice :

P = {(ey)ei (€x)e; --- (en/)el}
ou (ej:)e; est le vecteur ej exprimé dans la base (e;). C’est la transposée de A :
Al LAY
PEAT = :
AV AY

La matrice de passage donne la transformation des coordonnées des vecteurs autres que les
vecteurs de bases, de la nouvelle base vers 'ancienne base. Par exemple pour le vecteur vitesse
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en deux dimensions :
v=v
Vlel + V2€2 = V1'e1/ + V2/62/
= v (ALe; + AZe,) +v¥(Ale, + Ale,)

= (vllA}/ + VQ/Al,) e + (Vl/AQ, + VQ'A;) e
vl - Al ALY (VY
vi] T \A43 A3 )\
vV
=t

Le changement de base inverse s’écrit :
1/ 2/ /
elzBl el/_'_Bl 82/—|—"'+B111 (S
1 2! n’
GQZBQ 81/+BQ 82/+---+BQ e,

! / !
e,=B'ey+Bley+---+B" ey

En notation matricielle,

e ey
= B :
e, e,
et en notation indicielle,
Vi e = Bflej/ (81)
Les matrices A et B sont inverses I'une de 'autre :
ey e ey
=A|:|=AB
ey e, €y
D’ou :
AB=1

Faisons la méme démonstration en notation indicielle. En changeant les indices muets,
Vi ey = Aé»,ei
Vi e, = sz /ek/
d’une part,
Vi ey = Aé»,ei
= A;, sz /ek/
= Bf/Aé»,ek,
et d’autre part :

. /
\V/j € = 5?; (ST
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Par conséquent :
~ K opi sk
Vk,j B AL =05 (82)

19.3 TRANSFORMATION DE LA BASE NATURELLE

En physique la transformation des vecteurs de base est due a un changement de coordonnées
ou a un déplacement de l'origine de la base dans un systeme de coordonnées curviligne. Nous
nous placerons toujours dans la base naturelle du systeme de coordonnées.

. oM
\V/j ej/ = w
oM ot
Ozt Ot
Vi e = W €; (83>

Cette relation n’est valable que pour un changement de base naturelle a base naturelle. Cette
relation et les relations (80) p. 166 donnent Iexpression des éléments de la matrice changement
de base entre deux bases naturelles :

i
Vi, j AZ O
(‘) J’
Ox? N ox? T ox™
el/ = — el _— e2 PN — e
oxY ozY oxl "
Ox? ox? ox™
€y = et e+ -+ e,
0x? 02 02
Ox? Ox? ox™
e, = 8 o e + — a 7 €9 4+ -+ —81*”/ €,
ozt oz"
(S3W Ol R Ozl (S5}
1 n
e, —gfn’ .. g;ﬁn/ e,

C’est la transposée de 'inverse de la matrice jacobienne (77) p. 163 :

(S €1
= K7
(S €,

Cette relation et la relation (79) p. 166 montrent que pour des bases naturelles les matrices A
et K sont transposées I'une de I'autre :

A=KT
Les transformations inverses s’écrivent :
) oM
Vi€ =
8M 83:]
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=l

ox’

\4) e, = % €,/ (84)
Les relations (81) p. 167 donnent l'expression des éléments de la matrice B en bases naturelles :
i’ 8.Tj /
Vi,j B} = ——
7/7 j 7 axl
Nous avons aussi
B=J"

EXEMPLE 19.3.1. Rotation d’une base
Soit (e1,es) une base orthonormée du plan. Une rotation d’angle a du systéme de coor-
données transforme cette base en une nouvelle base orthonormée du plan, (e, ey) :.

e
(SDY 2

(S

O (S31

F1a. 19.2 — Rotation d’une base

Déterminons la nouvelle base en fonction de l’ancienne :
€1
€9
e\ | cos(a) sin(a)| (e
ey ) |—sin(a) cos(a)| \es

= [A] (2)

On en déduit les coefficients A} = 0x'/0x7" :

Al, = cos(a) A3, = sin(a) Al = —sin(a) A3, = cos(a)

~

= cos(a) e; + sin(a) ey

<

= —sin(«) e; + cos(a) ey

Le determinant de [A] vaut ['unité :

cos(aw)  sin(a)
—sin(a) cos(a)

= cos’ a +sin*a = 1
Déterminons l'ancienne base en fonction de la nouvelle. On trouve directement :
e; = cos(a) ey — sin(a) ey
{e2 = sin(a) ey + cos(a) ey
On peut aussi multiplier par cosinus et sinus :
{cos(a) ey = cos’ ae; + cos(a)sin(a) e, ,
= ey = cos(a) e; —sin(a) ey

sin(a) ey = —sin® ae; + sin(a) cos(a) e,
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sin(a) e = sin(a) cos(a) e, + sin® ey _
= ey = sin(a) e; + cos(a) ey

cos(a) ey = cos(a)sin(a) e; + cos® a ey

ou calculer l'inverse de [A]. Puisque le déterminant vaut ['unité, l'inverse est égale d sa
transposée :

5| = [cos(oz) . sin(a)]

sin(a)  cos(a)

Le déterminant étant égal a un, on en déduit les coefficients Bf/ = 027’ JOx* :

Bl = cos(a) B? = —sin(a) BY =sin(a) B2 = cos(a)

19.4 CHANGEMENT DE REPERE

Soient (O, e;) et (O, e;) deux reperes de 'espace ponctuel. Les bases étant reliées par les
relations (83) et (84) p. 169, quelles sont les relations entre les coordonnées d'un point M
exprimées dans chacun de ces reperes?

Nous avons,

00’ = d'e, OM = 2'e;
. et .
0’0 =d ey O'M =2'e;

OM =00"+0'M
zie; = a'e; + 17 e
ot

ox’’

Mt ox’ ..
- ax]/ 1
A O
Vi x'=ao" +a’ x./

oxJ

‘ ,
=a'e; + a2’ €e;

Par symétrie :

!

oxd

Vi 2/ =ao +42 4
J or’

19.5 TRANSFORMATION DES COMPOSANTES D’UN VECTEUR

19.5.1 Transformation des composantes contravariantes

Les vecteurs ont une signification absolue indépendante de la base dans laquelle on les
exprime, mais les nombres (les composantes) qui les décrivent dépendent de la base utilisée :

" .
u’ € = u’ei
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A partir du changement de base naturelle (84) p. 169 :
o0z’

ujlev = ui —_— €,
J 8x’ J
Les composantes contravariantes se transforment par changement de base naturelle selon les
relations :

/

sl

. v 8$J :
Vi w = o u' (85)
Cette transformation est linéaire et homogene. Nous avons suivi la notation 2 p. 5 du prime
sur indice, bien qu’il ne s’agisse pas de l'indice 7' mais de la j¢ composante du vecteur dans
la base primée.

! ! !
v ot | ort ozt
=57 Wty u + u
ox ox ox™
!/ !/ !
oy O | 0x% or*
:81u +82u +-~-+8nu
T T T
!/ !/ /
W 0T n oz™ T oz"™
u" = U U U
ox! ox™ ox™
1/ 82:1/ 82:1/ 1
U ST - gem U
un’ 9z 5z’ u®
Ozl Tt 9z
1
U
=J :
un

En composantes contravariantes dans la base naturelle :

u' = Ju (86)

Par changement de base naturelle, les composantes contravariantes se transforment comme les
différentielles des coordonnées, par la matrice jacobienne J, et de fagon « contraire » (transposée
de la matrice inverse de A) aux vecteurs de base (79) p. 166. A partir du changement de base
naturelle (83) p. 168 :

‘ ,
u'e; = u’ e

' afL‘z
= G
0
Vi o u' = 5 u’ (87)
2
En notation matricielle, en composantes contravariantes :
u=Ku

REMARQUE 28. u’ n’est autre que u (exprimé dans la base primée). Le prime désigne ici le méme
objet. Par contre €, (noté e;) n'est pas e;. Le prime désigne ici deux objets différents.
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’

REMARQUE 29. Dans les expressions (83) p. 168 et (87) p. 171, respectivement gT””;ei et ch”]iuj ,
les matrices de dérivées partielles sont transposées l'une de l'autre. La sommation se faisant sur l’indice
répété, elle dépend du terme qui suit.

19.5.2 Transformation des composantes covariantes
A partir du changement de base naturelle (83) p. 168 :
Vi uy=O0OM -ej
ot

=0OM - —e¢;
8{,[7], 3
oz’
Par changement de base naturelle, les composantes covariantes se transforment selon :
_ or'
VJ Ujr = ﬁ U;
ox! N oz? R oz
Uy = — U+ == U+ -+ —u
ozV ozY ozt "
ox! oz? oz
Uy = U+ % U+ -+ Fu
YT 00 T 9 Ox? "
ox! Ox? ox™
= gt LT Gt M T g
ozt oz™
Uqr —axll e 8:):1' U1
1 n
Uy Qoo 0| \un
Uy
= A :
Up
En composantes covariantes :
u., = Aug, (88)

cov
Les composantes covariantes se transforment comme les vecteurs de base, relations (79) p. 166.
De méme :

J
:OM-aiej/

oxt
ox?’

’
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En notation matricielle, en composantes covariantes :

/
uCOU = Bucov

19.5.3 Exemples

EXEMPLE 19.5.1. Soient (e;,es) et (ey,ey) deux bases normées quelconques (Fig. 19.3).

@) € ul
Fi1G. 19.3 — Transformation des composantes contravariantes

Ecrivons Uexpression du vecteur OM en composantes contravariantes dans chaque base :
ulley e u2,92/ = ulel Bl u2e2
= ul (B%'elf Bl B%,egl) e u2 (B%’elf Bl Bglegl)
= (ulB%/ + uQB;) ey + (ule/ + ung/) ey
Par conséquent :
ut = Blllu1 + B;lu2

! / /
u? :Bfu1+322u2
’ i !
u\  [BY BY| (u! _ BT u'\ 7 ut
u? Bz; B2é u? ul 02
! /
ulel + u2e2 =yl ey + u? ey

= Y (A%,el v Af/eg) +u? (Aé,el AL Ag,eg)
= (ul/A%/ + u2/A1,) e+ (ullAz, + uzlAg,) e

De meéme :

par conséquent :
! !
ut = Ai/ul + Aé/u2

’ ’
u2 = A%/ul + A§/u2
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ut  [AL AL [uY
u?) T A3 AL | \u¥

EXEMPLE 19.5.2. Soit le vecteur OM = u'e; + u’e,, déterminons ses composantes
contravariantes dans la nouvelle base (ey,eqy) définie dans lexercice 19.3.1 p. 169 de
rotation d’une base. En utilisant les coefficients Oxi//ﬁxj déja calculés :

u' = BYu' + BYu? u' = cos(a) u' + sin(a) u?
2 2 N o 1 2
u” =Bju + Bju u” = —sin(a) u + cos(a) u
Nous pouvons aussi les déterminer en remplacant les vecteurs de [’ancienne base :
OM = u'e, + u’e,
= u' (cos(a) ey — sin(a) ey) + u? (sin(a) ey + cos(a) ey)
= (cos(a) u' + sin(a) u2) ey + (— sin(a) u' + cos(a) u2) ey

i !
= ! ey + u? €y

EXEMPLE 19.5.3. Dans le systéme de coordonnées (x', x?), soit u un champ de vecteurs

de composantes contravariantes (u1 =z u? = xl). Quelles sont ses composantes contra-
. / / z
variantes (u,u*) lors du changement de coordonnées :

2

/

o = ()
/

I2 = I1$2

(1) Méthode indicielle

! !
vy 0zt o oxt

U u + U
oxl 0x?
= 22212
= 222!
! !
y O0r¥ | N ox?
U U U
oxl 0x?

(2) Méthode matricielle
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’il

oxJ

ul’ 0 2z22%| (22
w2 ) T |22 2t |\t

det J # 0 implique x> # 0 donc z # 0.

@) - <(x2)22ﬁx(2x1)2>

Par exemple, siu est un vecteur de composantes contravariantes (1,1) :

() = (2

La définition 19.1.1 p. 161, J = {‘% ] , et la relation (86) p. 171, u' = Ju,
22

donnent :

EXEMPLE 19.5.4. Soient (e;,es) et (ey,ey) deur bases normées quelconques (Fig. 19.4).
En partant de ’expression des composantes covariantes :

{ulf =0OM - €/

Uy = OM - ()X

Fi1G. 19.4 — Transformation des composantes covariantes

uy = OM - (Alye, + A% ey) uy = AL OM -e; + A% OM - e,
{U/ll = Alll (251 + A21/ U9

{ul, = OM - (Al e + A% ey) _ {ul, =AY OM -e, + A%, OM - e,

U/Q/ = Alz/ ul + A22/ u2

Uy All/ A21/ (751 — A (751
Uor N Al2/ A22/ U9 o Us

De meéme :
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Dans une base non normée ou non orthogonale, les composantes covariantes et contrava-
riantes (selon comment on projette le vecteur sur la base) ne se transforment pas de la méme
maniere par changement de base.

EXEMPLE 19.5.5. Dans la base orthonormée (e,, ey, e.), on considére les deuzr vecteurs
u (ug, ug, u3) et v(vy, vy, v3) de E3. La base étant orthonormée les composantes contrava-
riantes et covariantes sont confondues. Effectuons le changement de base qui passe a la
nouvelle base {ey (1,1,1) ey (0,1,1),e3 (0,0,1)}, et déterminons les nouvelles compo-
santes de u et v.

Pour les composantes contravariantes :

/ / /
U1€; + Uoey + Uze, = ut ey + u? ey + u? (Y,
1 2 3
=u (e;+e,+e,)+u” (e,+e;)+u’e,

= ullem + (ull + u2/) e, + (ul/ + u? + u?’l) e,

Uy = Ull Ull = Uy
Uy = ut + u? = u? = Uy — U
U = ut + u? + u® u? = U — Usg
De méme pour v :
’Ul/ = U1
v = vy — vy
213/ — V3 — V2
Pour les composantes covariantes, en utilisant la définition 11.4.1 p. 92 :
Uy =u- ey uy = (ug, ug,uz) - (1,1, 1) Uy = Uy + Uz + U3
Uy =u-ey = uy = (ug,ug,uz) - (0,1,1) = Uy = U + U3
Uz = u- ey Uz = (ul, U9, U3) : (0, O, 1) Uz = U3

De méme pour v :
Uy = V1 + Vg + Vs

Vgr = Vg + V3

V3 — U3
Une seconde méthode consiste a passer des composantes contravariantes dans la nouvelle
base aux composantes covariantes en utilisant le tenseur métrique, relations (43) p. 99 :

1/ 2/ 3/ / / /
Uy = (u ey +u ey +u 63/) - ey Uy = ul ey ey + U2 ey - ey + U3 ey - ey

1 2! 3 1/ 2! 3/
Uy = (u e +u ey +u 63/) c€y = Uy = U €y €y +U” €y €y +U” €3 €y

iy 2/ 3/ _ 9! Py
Uz = (u ey +u ey +u e3,) - ey Uy = u ey - ey + u €y - €3/ + u €3 - ey
1/ 2/ 3/
Uy =u g1 +u” go1 +u° g3 Uy = U + Ug + us
1/ 2/ 3/ —
= Uy = U G2 T+ U Go2 +U g2 = Uy = Uz +Us

— o 2! 3 Uz = U
Uy = U g13 +u” goz + U gs3 B
Déterminons le produit scalaire de u et v. Dans la base d’origine :

UV = UjV; + UgV2 + UsV3




Transformation de coordonnées

177

Dans la nouvelle base :

’

u-v=uyv
= upv" + ugv® + ugv®

= (u1 + ug + u3) v1 + (ug + uz) (v2 — v1) + uz (V3 — v2)

= U1 + UV2 + U3V3

ou bien,

/

u-v=u Vjr
=S ullvl/ —+ uzlvgf + u3/v3/
= u' (v1 + vz + v3) + (U2 — u1) (v2 4 v3) + (uz — ua) v3
= U1V1 + U2Vy + U3vV3

et le produit scalaire est bien invariant.

EXEMPLE 19.5.6. Dans le systéme de coordonnées (z*,x?), soit u un champ de vecteurs
de composantes covariantes (u; = x2, Uy = xl). Quelles sont ses composantes covariantes

(uyr,ug) lors du changement de coordonnées :

" U x2)2
z? = z'a?
(1) Méthode indicielle
On pose € = £1.
_ ox! ox® —ex? o e ex? B z?
“1'_ax1/“1+axl/u2_m<e ! )+2\/F\/? T 2l

Val
(2) Méthode matricielle
(a) Premiére méthode

D’apres 88 p. 172, u!

cov

Oz’
systeme d’équations du changement de coordonnées :

22 =eVal

<uy>: () (\/x_) :<0>
Uor - 0 Ll/ 1

(b) Seconde méthode

’
x2

2z

=0

—1\T -1 A @ g
= (J) u, avec J7!' = {85’7 }22. On inverse le
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On inverse J donné dans 'exemple 19.5.8 p. 174 puis on prend la transposée.
Nous obtenons (J=)" en fonction de z* et z* :

—z! 1
ur\ _ ey 37| (T2) _ 0
(5% x% 0 X1 1

EXEMPLE 19.5.7. Au point de coordonnées polaires (3,30°), la base polaire a pour expres-

sion :
e, | cos30° sin30° | fe,\ [V32 12| (e,
e ) |—3sin30° 3cos30°| \e,/ |32 3V3/2| \e,

-\

O T

F1c. 19.5 — Base naturelle en coordonnées polaires (p, )

[ REMARQUE 30. On note que |le,| =1 et ||eg|| = 3. ]

EXEMPLE 19.5.8. Dans le systéme de coordonnées rectangulaires (x,vy), soit u un vecteur
de composantes contravariantes (u*,u¥). Quelles sont ses composantes contravariantes
(u”, ue) lors de la transformation en coordonnées polaires (p,0) ?

(1) En notation indicielle, les relations (85) p. 171 donnent :

ap ap )

p 2P e CFy y
W= + dy u? = u” cos(6) + u? sin(0)
L a0 vt 00 Y — —u” sin(0) 4+ u¥ cos(f)

Ox Ay p

(2) En notation matricielle, la relation (86) p. 171 donne :

u = Ju

() = [l )| () = (i o) )

p
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Siu(u* =1,u¥ = 1) alors au point de coordonnées polaires (3,30°) :

() = [ A1) ()= (B2

O x

Siu(z,y) est le vecteur position alors :

(up> _ ( pcos(f) cos(#) + psin(P) sin(6) ) _ <,0>
uf (—pcos(f)sin(f) + psin(f) cos(9)) /p 0

EXEMPLE 19.5.9. Dans le systéme de coordonnées rectangulaires (x,y), soit u un vecteur
de composantes covariantes (ux,uy). Quelles sont ses composantes covariantes (up,u@)
lors de la transformation en coordonnées polaires (p, ) :

{ﬂf (p,0) = pcos(0)

g y (p, 8) = psin(6)

p=0 e 0<0<2n
D’apreés (78) p. 164 :

sin(6) cos(6)

) sin(0
T lcos( ) sin( )]
p p
La relation (88) p. 172 donne :

u, = (J_I)Tu

u,\ | cos(d) sin(@) | (uz\ [ uzcos(f)+ u,sin(0)
ug)  |—psin(@) pcos(@)| \u,)  \—uypsin(@) + u,p cos(d)
Par exemple si u(u, = 1,u, = 1) alors au point de coordonnées polaires (3,30°) :

() =[5 5 () - (34a)

On vérifie que l'on a bien :

4, = u-e, = |ulllle, cos (w5,

V2+vV3  V3+1
)=VIx =

:3ﬂx¢§—1:—3+3\/§
2/2 2

ug = u- ey = [|uffleg]| cos (u; &)
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19.6 CAS DES BASES RECIPROQUES

19.6.1 Transformation des composantes contravariantes

Soient (e;) et (e;/) deux bases naturelles d'un espace vectoriel, associées a deux systemes de
coordonnées () et (27'). Chacune de ses bases a une base réciproque. Avec les relations (66)
p. 121 et (89) p. 172 :

Vi u' =y

i
%:;i W (90)

.

Les composantes contravariantes dans la base réciproque se transforment de fagon identique
aux composantes covariantes dans la base d’origine.

19.6.2 Transformation des composantes covariantes
Soient (e;) et (e;/) deux bases naturelles d'un espace vectoriel. Avec les relations (68) p. 122
et (87) p. 171 :
Vi w=u'
. 8.TZ -/

O w

>

g — U,/
- Y
7 ox

Les composantes covariantes dans la base réciproque se transforment de fagon identique aux
composantes contravariantes dans la base d’origine.

19.6.3 Transformation des vecteurs de base

Soient (€;) la base réciproque de la base (e;) et soit (€;/) la base réciproque de la base (ej).
Soit A la matrice changement de base de la base d’origine (e;) vers la nouvelle base (e;), et
soit A" la matrice changement de base de la nouvelle base (e;/) vers la base d’origine (e;). Avec
les relations (90) p. 180,

-/

u' ey = e

axi/ i

i
ox”
Vi €;r = Z % €;

J

Vi e e’ (91)
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En utilisant les relations (82) p. 168 :
or* ., 0z* o

k’ s = s - J
v oV © ozt OxJ ©
= 5fej
k
Vk eF = % e’ (92)

Les vecteurs de base de la base réciproque se transforment de fagon « contraire » (par la matrice
inverse de la transposée) aux vecteurs de base de la base d’origine, relations (80) p. 166.
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Algebre tensorielle

20.1 INTRODUCTION

Les lois de la géométrie et de la physique ont une existence intrinseque indépendante du
systeme de coordonnées dans lequel on les exprime. Il est donc naturel d’essayer de se débarasser
des systemes de coordonnées et de raisonner sur des objets géométriques ou physiques. On a
d’abord fait correspondre a ses objets des éléments simples euclidiens sur lesquels on a défini
des opérations dont on a étudié les propriétés. Ce procédé a conduit au Calcul vectoriel, puis
au Calcul tensoriel. Cependant, le choix d’un systeme de coordonnées est resté nécessaire, et
les vecteurs et tenseurs, bien qu’indépendants de tout systeme de coordonnées, sont donnés par
leurs coordonnées, sans que cela soit contradictoire. Plutot que de particulariser un systéme de
coordonnées en en choisissant un, on écrit les équations sous une forme valable dans n’importe
quel systeme de coordonnées.

Il existe en physique des quantités intrinseques qui, comme les vecteurs, existent en elles-
mémes indépendamment de la base dans laquelle on les exprime. Par exemple la matrice inertie
ou la matrice rotation d’un solide. Ces matrices carrées particulieres sont appelées des tenseurs.
Toute combinaison linéaire de deux tenseurs donne un tenseur, les tenseurs sont donc des
vecteurs d’apres la définition 3.1.2 p. 15. Les matrices de M,, ,(K) sont aussi des vecteurs et
M, »(K) est un K-espace vectoriel. En effet, toute combinaison linéaire de deux matrices de
M., »(K) donne une matrice de M,, ,(K). Elles sont de plus invariantes par changement de base
de M,, ,(K). Les tenseurs sont des matrices particulieres car ils sont invariants par changement
de base lié au changement de coordonnées de l'espace-temps physique. Un changement de
coordonnées de 'espace-temps induit un changement de base de I'espace vectoriel des forces,
des vitesses, des accélérations, des tenseurs en général, mais pas de celui des matrices. Les
tenseurs ont donc un sens physique que n’ont pas les matrices.

Un tenseur avec p indices contravariants est dit contravariant d’ordre p, avec ¢ indices
covariants il est dit covariant d’ordre ¢. S’il est les deux il est dit d’ordre p + ¢. L’ordre d’un
tenseur n’a donc rien a voir avec l'ordre d’une matrice qui est de combien varie ses indices.

Habituellement on appelle « vecteurs » uniquement les tenseurs d’ordre un alors que tous
les tenseurs sont des vecteurs, quel que soit leur ordre. En physique, nous utiliserons cet abus
de langage pour dire que les vecteurs appartiennent a une catégorie plus grande d’objets ma-
thématiques, les tenseurs. Les scalaires sont alors des tenseurs d’ordre zéro.

Les tenseurs d’ordre deux sont souvent représentés par des matrices carrées dont les éléments
sont leurs composantes. Nous avons vu que cette représentation n’est valable que dans les
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espaces pré-euclidiens, les composantes covariantes et contravariantes étant confondues. De
plus, pour les tenseur d’ordre trois la multiplication des matrices 3D n’est pas définie. Il faut
alors abandonner la représentation matricielle des tenseurs et n’utiliser que la représentation
indicielle.

Toutes les équations de la physique doivent étre invariantes de forme par changement de
coordonnées (donc par changement de base), elles sont dites covariantes. C’est le principe de
covariance des équations de la physique (cette covariance n’a pas de rapport avec la covariance
des composantes). Or, pour les vecteurs comme pour les tenseurs, les composantes de méme
variance se transforment de la méme facon. Toutes les équations de la physique doivent donc
étre écrites sous la forme d’une égalité entre tenseurs de méme ordre et de méme variance. Pour
assurer cette invariance des tenseurs, leurs composantes doivent se transformer d’une facon bien
précise que nous allons déterminer. Cette propriété d’invariance par changement de base est
fondamentale puisqu’elle peut servir de définition des tenseurs.

Dans un second temps, de méme que nous avons défini les vecteurs et les espaces vectoriels
uniquement a partir de leurs propriétés opératoires, nous définirons les tenseurs et les espaces
tensoriels uniquement a partir de leurs propriétés opératoires.

EXEMPLE 20.1.1. Une fagon simple de former un nouveau vecteur (dans le sens d’une
quantité indépendante de la base dans laquelle on ['exprime), consiste a multiplier les
composantes de deux vecteurs dans un ordre déterminé. Soient u (u', u?) et v (v, v?) deux
vecteurs de [’espace vectoriel Ey, le nouveau vecteur T a quatre composantes et appartient
a l’espace vectoriel Ey (les dimensions des espaces vectoriels de départ se multiplient) :

T = (ulvl, ulv?, w?ol, u2v2)

NOTATION 18. En notation indicielle, si u = u'e; et v = v'e; alors
Vi, i 9 =yl
ou lordre des indices i et j compte car en général utv? # u?v' donc tV # tit.
En utilisant cette notation :
T — <t11’t127t217t22)
T est un tenseur, appelé produit tensoriel de u et v, noté ®. On le défini comme suit :
uRXv= (ulel + u2e2) X (vlel + 12262)
= ule1 & vlel + ulel ® ’0282 + u2e2 ® vlel + u2e2 ® U2eg
= ulvle; ® e + ulv?e; @ es + uvley @ e + uvle; ® ey

= tllel ® e+ t12e1 X ey + t21e2 Qe + t22e2 X ey
=T
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Soient e = (1,0) et ex = (0, 1) les vecteurs de base d’une base orthonormée de Ey :

eg®e; =(1x1,1x0,0x1,0x0)

=(1,0,0,0)
eg®e;=(1x0,1x1,0x0,0x1)
=(0,1,0,0)
ea®e; =(0x1,0x0,1x1,1x0)
=(0,0,1,0)
e®e;=(0x0,0x1,1x0,1x1)

= (07 07 07 1)

En écriture matricielle nous retrouvons le produit de Kronecker du chapitre 15 :

Ul ’Ul
vov= ()< ()

. il i 11
u v? o £12
= ) ol = 2 = 421
u 02 ulv? 422
=T

Notez qu’ici T a deux composantes et non quatre.

20.2 COMPOSANTES DEUX FOIS CONTRAVARIANTES

Par changement de base naturelle, les composantes du tenseur T, produit tensoriel des
vecteurs u et v, se tranforment de la fagcon suivante :
Vi,j 79 =uivl
_ Ox y O ol
~ Oxk T oad
_ 02" 0x/ !
O Qi
_ 02" 027
Ohi® Gt

Les t9 sont les composantes deux fois contravariantes du tenseur T.

(93)

Le produit tensoriel des vecteurs des bases naturelles est défini de facon da assurer l'inva-
riance du vecteur T par changement de base naturelle grice auz relations (80) p. 166 :

VZ,] (el- X ej)/ =€y (9} ej/

B oxk Oxt
oxk Ox!
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T est alors indépendant de la base naturelle dans laquelle on [’exprime :

(uev) = (uiei ® vjej)/

_ 0x" 920, O™ 0!
- Ozk Oxl T Ozt Oxd

= tklek X e

(ex ® €r)

= ukek X vlel

=uv

EXEMPLE 20.2.1. On considere deuz vecteurs u = 4e; + 3eq et v = e; + ey de Es.
Déterminons les composantes contravariantes du produit tensoriel de u par v.

T=u®v
= (4e; + 3e;) ® (€1 + 5ey)
=4de;®e; +20e;®e;+3e3®e; +15e; ® ey
Nous avons :
th=4 =20 =3 ?*=15

En reprenant 'exercice 19.3.1 p. 169 de rotation d’une base, déterminons les composantes
contravariantes du produit tensoriel dans la nouvelle base naturelle. Par changement

de base naturelle, les composantes de T se tranforment selon (93) p. 185 avec Bg, =

oxl' Ozt :
BY = cos(a) B? = —sin(a) BY = sin(a) B? = cos(a)
Nous avons alors :
""" = BY'B{'t"" + BY'Byt"* + B} B{'t*' + B) B} t**
t'? = BI'B¥t" + Bl BYt** + BY BY*' + B) B2 t*
¥V = BY BI't" + B¥ By t'? + BZ B}t + BZ B; t**
t*% = By B{ t"! + B} B t"* + B} By t*' + B} By t*
Y'Y = 4 cos® o + 17 cos(a) sin(a) + 15sin’ o
Y% = 11 sin(a) cos(a) + 20 cos? a — 3sin® o
Y = 11 sin(a) cos(ar) — 20 sin® a + 3 cos? o

t¥? = 4sin® o — 23 sin(a) cos(a) + 15 cos®

20.3 PRODUIT TENSORIEL

Dans ce paragraphe nous formalisons ce que nous venons de voir en introduction.
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20.3.1 Produit tensoriel de deux vecteurs

Soient F, et F, deux espaces vectoriels de dimensions respectives n et p, et soit E,, x F},
un espace a ¢ = n X p dimensions. Yu € E,,Vv € F,, au couple de vecteurs (u,Vv) nous
faisons correspondre 1’élément noté u ® v de l'espace E,, X F),, la loi de composition ® ayant
les propriétés suivantes :

(1) V(u,ui,up) € E,, Y(v,v1,v2) € F), la loi ® est distributive a droite et a gauche par
rapport a I'addition vectorielle (notée +) :
u® (Vi + vy =u®vy+u ® vy
(W +w)@ V= Vv+u®v

(2) Soit o un scalaire. La loi ® est associative par rapport a la multiplication par un
scalaire :

a(u®v)=au®v

=uav

DEFINITION 20.3.1. Elément produit tensoriel de deux vecteurs
La loi de composition @ est appelée multiplication tensorielle. L’élément u ® v est appelé
produit tensoriel des vecteurs u et v ou produit dyadique.

DEFINITION 20.3.2. Espace produit cartésien

L’espace produit cartésien E, x F,, est I'ensemble des produits tensoriels de tous les vecteurs
des espaces vectoriels E, et F,. Ce n'est pas un espace vectoriel car une combinaison
linéaire de ses éléments ne donne pas nécessairement un élément de cet espace.

DEFINITION 20.3.3. Espace produit tensoriel
L’espace vectoriel G, = E,, @ F, est appelé produit tensoriel des espaces vectoriels E,, et
F,. C’est l’espace de toutes les combinaisons linéaires des éléments de I, x F,.

La loi de composition ® a également la propriété suivante :

(3) Soit (e;) une base de E, et soit (f,) une base de F,. Les np éléments,
€; X .fa

forment une base de G|,.

REMARQUE 31. L’espace E,, ® F, se distingue de l’espace G, en ce qu’il est muni de la loi @. Nous
dirons que G4 constitue le support de E, ® F,.
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20.3.2 Expression analytique du produit tensoriel

THEOREME 20.3.1. Les espaces E,,, F,, et E, @ F,, étant rapportés a des bases associées par
les relations e; ® f,, = €q, la seule loi de composition satisfaisant aux propriétés du paragraphe

20.3.1 p. 187 est celle qui auz vecteurs u = u'e; et v.=v*f, fait correspondre le vecteur u'v €,
de E, ® F,.

DEMONSTRATION. Soient (€;)i=1,. n, (fa)
tives de E,, F}, et de E,, ® F,,. Alors :

a=1,...,p et (€i0¢)i:1,...,n i a=1,...,p des bases respec-

Vu€ E, YW EF, u®v=uexvf,
Supposons n =2 et p=3:
u®v= (ulel + u2e2) ® (vlfl +vif, + v3f3)
En utilisant I'axiome (1) :
uRv=ue ®vlf1 +ule; ®v2f2 +ule; ®v3f3 + u’ey ®vlf1 + u’ey ®v2f2 + u’ey ®v3f3
En utilisant 'axiome (2) :
u®v=uve ® fi+ utvle; ® fot utvle; ® fa+ uvle, ® fi+ u?vle, ® fot u?vle, ® fs
En généralisant a n et p quelconques :
u®v=uv'e® f,

et avec 'axiome (3) :

UV =1uv"€q (95)

Les trois axiomes du paragraphe 20.3.1 p. 187 impliquent que les composantes du produit
tensoriel u ® v s’écrivent sous la forme uv® dans la base €;,.

L’expression analytique (95) de la loi de composition ®, implique-t-elle & son tour ces trois
axiomes ?
Pour retrouver 'axiome (1), posons vi + ve = vj :

u® (Vi +vy) =u®vs
= u'v§e; ® £,
=u' (v +v5)e; @ fo
= (u’vf‘ + u’vg‘) e, ® f,
= u'vie; ® f, +u'vie; @ f,
=u'e; @V f, +u'e; ® 3 f,
=u®vi+u® vy
Pour retrouver 'axiome (2) a partir de la relation (95) p. 188, posons w = au :
w v =uwv'e® I3

(o) @v=>" [(aui) v’e; ® fﬁ}

= (uivﬁei X fﬁ)
=auRV

La relation (95) p. 188 est elle compatible avec 'axiome (3) p. 1877
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Soit (e;) une base de E,, et soit (f,) une base de F),, le produit tensoriel (e;) ® (f,) forme
une base de E,, ® F,, par hypothese. Soit (e;) une autre base de E, et soit ( f B’) une autre
base de F,, le produit tensoriel (e;/) ® ( f 5/) est-t-il une base de E, ® F},?

Soient 027" /0x' et BY les matrices changement de base :

oz’
e =~ ey
Ya f,=DBf,

Les éléments T s’écrivent sous la forme :

i

Vi

T=u®v
= u've; ® f,
= tmei ® fa (96)
Effectuons le changement de base :
i 837‘7/ ’
T =1¢ 8;5 ej/®Ba fﬁ/

i 837‘7/ ’

=1 %Bg ej ® fa (97)

Les e;® f, formant une base par hypothese, d’apres la relation (96), si T = 0 alors Vi, Va, ' =
0. Cette implication restant vraie pour la relation (97), les éléments e ® f 5 sont linéairement

indépendants, et constituent donc une base de 'espace E,, ® F,. Nous dirons que (e;/) ® ( f 5,)

est la base associée aux bases (e;/) et ( f 5,). O

20.3.3 Eléments d’un espace produit tensoriel

Tous les éléments de 'espace £, ® F), sont-ils des produits tensoriels ?
Soit T un élément de l'espace E,, ® F), :

T =1"%;® f,
Peut-on toujours 1’écrire sous la forme :
T =u"v%¢;® f,
oll u = u'e; est un vecteur de E, et v = v®f, un vecteur de F,? Raisonnons par I'absurde et
supposons que, quel que soit t'*, 'on ait :
Vi,ao t'* =u'v®
Prenons le cas ou n = p = 2, alors :

T(tn, t12, t21, t22) — T(ulvl, UI’UQ, U2U1, U2’02>

soit,
ol = 2 =12 2t = 2 2 = 22

par conséquent :

ol 1t ) ol 2

- = e - =

02 412 02 422
soit :

tll t21

e
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ce qui a priori n’est pas toujours vrai, les composantes de 1’élément T étant quelconques. Nous
en concluons qu'il existe des éléments de I'espace F,, ® F}, qui ne sont pas des produits tensoriels
de deux vecteurs.

EXEMPLE 20.3.1. Le tenseur T suivant est-il le produit tensoriel de deux vecteurs ?

T =1le; ®e; +8e; ®ey + 20e; ®e; + 12e; R ey
S1'T est le produit tensoriel de deuz vecteurs alors il est de la forme

T = u'v’(e; ® e;)
et l'on a :
ulol =11, ulv? =8, u?vl =20, u?v? =12
En faisant les rapports des deux premicres expressions puis celui des deux dernieres :
vt 11 vt 20

v 8 v 12
Ces valeurs étant différentes, T n’est pas le produit tensoriel de deux vecteurs.

20.3.4 Produit tensoriel de deux espaces identiques

En pratique on a tres souvent a effectuer le produit tensoriel de vecteurs appartenant a des
espaces vectoriels identiques. Soient (e;) une base de F,, et soient u = u'e; et v = v'e; deux
vecteurs de cet espace. Le produit tensoriel des vecteurs u et v s’écrit :

T=u®v
=u'v’ (e; ® e;)
=t (e; ® ;)
Le produit tensoriel de F,, par lui-méme est noté E, ® E, ou encore E?). D’aprés axiome (3)
p. 187, les vecteurs €;; = e; ® e; constituent une base de Ey(f).

20.3.5 Non commutativité du produit tensoriel

Le produit tensoriel d'un espace vectoriel E, avec lui-méme, F, ® FE,, a pour vecteurs de
base les produits tensoriels e; @ e;. Par exemple, les vecteurs (e; @ e;) et (e; ® e1) sont chacun
des vecteurs de base, et ne peuvent donc pas étre confondus. Le produit tensoriel des vecteurs
e; et e; n’est donc pas commutatif. Il en va de méme pour tout produit tensoriel de vecteurs.

EXEMPLE 20.3.2. Soient u = u'e; et v = v'e; deuz vecteurs de l’espace vectoriel Ey :
u®v=uv (e ®e)

= u'v' (e; ® e1) + u'v? (€; ® er) + u®v! (€2 ® €1) + u*v? (e2 ® ey)

=T (u ot ule?, uo! u21)2)
et :
veu=1u(e; ®e)
= vl (e; ®ep) +v'u? (61 ® ey) + v*u! (ex ® €1) + v?u? (e ® ey)

=7 (u v UQU , U 12 u2v2)
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Par suite :
uURVvVVRu

20.3.6 Associativité du produit tensoriel

Soient u, v, w, trois vecteurs appartenant respectivement aux espaces vectoriels E,, F,, G,.
Nous pouvons multiplier tensoriellement 1’élément u ® v de E,, ® F, par le vecteur w de G,.
Nous obtenons alors 1'élément (u ® v) ® w de l'espace vectoriel H,,, = (E, ® F,) ® G,,.

Nous posons comme nouvel axiome que le produit tensoriel des espaces vectoriels est asso-
ciatif :

Hppg = (B, ®@ F,) @ G,
=F,®F,®dG,
Cela revient a poser I'associativité des vecteurs de base :
ei®f,)®gs=e® f, g4 (98)
Pour les éléments résultants, nous avons :
(UeV)ew=(ue;@v*f,) ® wﬁgﬁ
En utilisant le théoreme 20.3.1 p. 188
(uRVv)Rw = (uiv“eia) ® wﬂgﬁ
= v wP e, ® gs
= uv*w’ (e; ® f,) ® g,
et, en utilisant 'axiome (98) :
uev)ew=1u" O‘wﬁei(}@fa@gﬁ
=u'e; ® (vawﬁfa ® gﬁ)
=ule; ® (v“fa ® wﬁgﬂ)
=u®(vew)

(URV)AW=u®VRw

20.3.7 Produit tensoriel de plusieurs espaces

Etant donné un nombre fini r d’espaces vectoriels E,,, F,, Gy, ..., la définition par récurrence
du produit tensoriel de ces r espaces résulte du paragraphe précédent. D’apres le paragraphe
20.3.3 p. 189, tout élément de F,, ® F,, ® G, ®. .. n’étant pas nécessairement le produit tensoriel
de r vecteurs appartenant respectivement a I, F,, G, . . ., nous sommes conduit a la définition
suivante :
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DEFINITION 20.3.4. Tenseur
On appelle tenseur construit sur les espaces de base E,, F,, G, ..., tout élément de l’es-
pace vectoriel B, @ F, G, ® . ..

Soit T un tenseur « contravariant d’ordre p » et « covariant d’ordre ¢ », et soit U un tenseur
« contravariant d’ordre r » et « covariant d’ordre s ». Le produit tensoriel de ces deux tenseurs
donne un tenseur V « contravariant d’ordre p 4+ r » et « covariant d’ordre ¢ + s » :

ToU :tzll?zzﬁz (ei1 Re,® Qe Qe R?R @ ejq)
@yl ke ke 2 2 ® el @l ©e
Upgy 1, €k © €y e e e e
_ givdgeip ki ko .. ky J J J
_tjlj%;?qullll;__ls (ei1 Ve, R Qe,R¥e'Re?R Qe
® ey, ®ek2®---®ekr®ell®e12®---®e15)
=V
REMARQUE 32. Les tenseurs ont un ordre mais pas de variance. Parler d’un tenseur contra-

variant d’ordre p et covariant d’ordre q est un abus de langage pour parler d’un tenseur d’ordre
P+ q dont p composantes sont contravariantes et q sont covariantes.

20.4 PRODUIT SCALAIRE

20.4.1 Produit scalaire d’un produit tensoriel par un vecteur de base

DEFINITION 20.4.1. Produit scalaire d’un produit tensoriel par un vecteur de base
Soient u = u'e; et v = v'e; deux vecteurs d’un espace vectoriel euclidien E,. Le produit
scalaire du produit tensoriel u ® v par un vecteur de base (e; ® e;) de E? s’écrit :

\V/Z,] (u X V) 0 (ei X ej) é ’LLZ"U]‘

Par conséquent :

Vi, j ukvl(ek Qe (e;®e;) = ukvlgkiglj

Vi7j7 k:7l (ei & e]) ’ (ek X el) = Gik9ji (99)

EXEMPLE 20.4.1. Soit {€1(2,0,0),ex(1,3,0),e3(1,1,1)} une base de l’espace euclidien E;.
Déterminons les composantes du tenseur métrique de [’espace produit tensoriel E3 @ Es.
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Les vecteurs de base s’écrivent :

e e =
e ®ey =
e Reg =
e e =
€ R e =
(S)) () €3 =
e3Re =

e3 ey =

e; ey =

Leur produit scalaire donne 81 composantes dont voici les premiéres :

(4,0,0,0,0,0,0,0,0)
(2,6,0,0,0,0,0,0,0)
(2,2,2,0,0,0,0,0,0)
(2,0,0,6,0,0,0,0,0)
(1,3,0,3,9,0,0,0,0)
(1,1,1,3,3,3,0,0,0)
(2,0,0,2,0,0,2,0,0)
(1,3,0,1,3,0,1,3,0)
(1,1,1,1,1,1,1,1,1)

(e1®e1) - (e ®e1):16 (e1®€2)'(€1®e1):
(e1®er)- (e1Q@ey) = (e1®es) - (
(91®91)'(1®e3):8 (e1®es) - (
(e1®er) (e2®eq) =8 (e1 ®eq) - (
(e1®e1) (e2®ep) =4 (e1®e) - (
(e1®er) (e2®e3) =4 (e1 ®e) - (
(e1®ep) - (e3®e) =8 (e1 ®eq) - (
(e1®er) (e3®ey) =4 (e1 ®e2) - (
(e1®e1) - (e3®@es) =4 (e1®e2) - (

On retrouve le résultat précédent en utilisant la relation (99) p. 192. Le tenseur métrique

de E3 a pour composantes :

20.4.2 Composantes deux fois covariantes d’un tenseur d’ordre deux

NOTATION 19. Siu; =u-e;, v;=v-

4 2 2
Gl|2 10 4
2 4 3
(er®er)-(er®er) = gugn = 16 (e1®ey)-(e1®e;
(e1®er) - (e1®ey) = g11g12 =8 (e1®ey) - (
(er®er)-(e1®e3) =g11g13 =8 (e1®ey) - (
(e1®er) - (e2®e1) = giagi1 = 8 (e1®ey) - (
(er®er) - (ex®ey) = giagrz = 4 (e1®ey) - (e2® ey
(e1®er) - (e2®e3) = giag13 = 4 (e1®ez) - (
(e1®er) - (e3®er) = gizgn =8 (1 ®ey) - (
(e1®er) - (es®ey) = gi3g12 = 4 (e1®ey) - (e3® ey
(e1®er)  (e3®es) = gizgiz =4 (e1®ez) - (e3® es

ej, et T=u®v alors

\V/i,j tij == uivj
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Pour tout tenseur T = u®v d'un espace vectoriel euclidien £, avec la relation (99) p. 192
et la défintion 20.4.1 p. 192, le produit scalaire de ce tenseur par un vecteur de base s’écrit :
Vi,j (u®@v)-(e;®e;) = (ue,@v'e) - (e ®e))
Vi,j uw; = ufl(e @ep) - (e; @ e)
Vi, j oty =t grigy

Les t;; sont les composantes deux fois covariantes du tenseur d’ordre deux T.

20.4.3 Produit scalaire de deux tenseurs contravariants d’ordre deux
Soient U et V deux tenseurs deux fois contravariants de I'espace vectoriel euclidien E? :
U-V= [uij (e; ® ej)] . [vkl(ek ® el)]
= uvM (e; @ €;) - (er ® )
= uvM(e; - e)(e; - €)
= uijvklgikgjl

= uy¥ (%7

20.5 BASE

20.5.1 Base duale d’un espace produit tensoriel

Soit (el,e?,...,e") la base duale de la base (ey, es,...,e,) de 'espace vectoriel E,. D’apres
le paragraphe 20.3.4 p. 190 les vecteurs €;; = e; ® e; constituent une base de E® . Dapres le
paragraphe 13.6 p. 117, les vecteurs e’ forment une base de E,. Par conséquent, les vecteurs
€’ =e; ® e, les vecteurs € ;= €' ® e;, et les vecteurs €7 = €' ® €/, sont trois bases de Er(f).

REMARQUE 33. L’écriture € avec les indices l'un sous l'autre ne permet pas de distinguer e; ® €’ de
e’ ®@e;. Or d’apres le paragraphe 20.3.5 p. 190 le produit tensoriel n’est pas commutatif, e; @€’ # & ®e;,
autrement dit € # €.

20.5.2 Composantes mixtes
Soit (') la base duale de la base (e;). La décomposition du tenseur T sur la base mixte
e; ® e’ gécrit :
T = tijei ® e
Les tij sont les composantes mixtes du tenseur T, une fois contravariante et une fois covariante.
T = tijei ® e’
t*e; ® ey = tijgjkei ® ey

Vi k % =tg"
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NOTATION 20. D’aprés la notation 18 p. 184, lordre des indices compte. Par conséquent, en
indices miztes il faut garder cet ordre en décalant les indices : t'; # t;'. Cependant, si le tenseur est

symétrique les composantes tij et tji sont égales, on les note alors simplement t;

EXEMPLE 20.5.1. D’aprés (51) p. 102 :
Vi,j gt =g"gk
= !
Les composantes miztes g]i~ sont donc identiques dans tous les systemes de coordonnées.
Quel que soit le tenseur A :

Algl = A7
g} est un opérateur de substitution dindice. Les trois ensembles de composantes gj-, 9", gr;
forment un groupe. Ils définissent le tenseur fondamental d’ordre deuzx G.

20.5.3 Changement de base

Soient (e;) et (e, ) deux bases d'un espace vectoriel E,,. Prenons le cas d'un espace tensoriel
E3) dont la base associée a (e;) est (e; ® e, @ e;), et celle associée a (e,) est (e, @ e, @ ey).
D’apres (94) p. 185 :

ox? dx" Oz
Oxd Ok @<
ox? Oz Oz

vjukul ej®ek®el = eq’®er/®es/)

‘v’q,r, S ey erRey = e, Ve, ® el)

Soient (€7) la base duale de (e;), et soit (e?) la base duale de (e,). Le changement de base
duale est donné par les relations (91) et (92) p. 180 :

oxd

;o 0r?
q q J
Dt e et Vg el = 5 e

Vi e =
Soient (e/ ® e, ® ;) et (eq/ Qe es/) deux bases de E®). Nous avons les relations suivantes :

oxd Oxk Ox!
ox? 9z O

dxi da’ Da¥

Vi k| € ®e@e = (J®w®%0

VQ7 r,s eq/ Kes ey = (ej X er® el)
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20.6 TRANSFORMATION DES COMPOSANTES D’UN TENSEUR

20.6.1 Transformation des composantes contravariantes

Soit T un tenseur de I'espace tensoriel E(2) :

tilj/ (ei/ X ej/) = tpq (ep (29 eq)

oz Oz’
— ppqg 27 , .,
=1 OxP Oz (ev @ ej)
_ 0z" 0a7
- OzP Ox4
_ oz’ - oz’
OxP  Ox4

T = JTJ"

Prq

(100)

(101)

5l V4 . .
Les t*7 sont appelées composantes contravariantes du tenseur T. Les tenseurs deux fois contra-

variants généralisent a 'ordre deux les vecteurs ordinaires (contravariants).

Généralisons a un produit tensoriel d’espace supérieur a deux. Soit T un tenseur de ’espace

tensoriel £, ® B, ® E, ® ... tel que

i ey Rey @ep ®...) =t (e, D e, @€, ®...)
_0x" 927" oM
Db Ox1 Oar
~ 0z" 927" 9a¥
" 9P 04 Oxm

— tPq-

Vi, gk, ... (" . gpar-

Inversement,

P (e, ® ) = 17 (ey @ €;1)
ozt Oz’

v tpq . aSL’p 83:(1 i'j
p7q — 8xi/ ax]/

&'Ep i’ §' afL‘q

(ep ® )

)

oz Oz’
T—Jsr ()
On trouve cette relation directement a partir de (101) p 196 :
JOT =JTJ"
-1 -1
JT(J7) =T ()
=T
En généralisant :

B oxP 0x? Ox"

U
oz? 0z Oz

Vp,q,r,... P

...(ei/®ej/®ek/®...)
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EXEMPLE 20.6.1. Dans le systéme de coordonnées (x', %), soit T un tenseur de compo-
santes contravariantes (t'' = 1,112 = 1,t*! = —1,1** = 2). Quelles sont ses composantes
contravariantes t'7' lors du changement de coordonnées :

o = (o)’
1% = zla?
(1) Méthode indicielle
v _ Oz' Oz, Oz 8z , Oz BzV , | Oz Oz 4

oot oozt T oz ont! T on? o2
— 222 x 942 ><t22:8(x)2

vy _ ox' 0x? 11+8x " 02? 12+8a: Ox¥ 21+8x1/ or¥ ,,
~ Oz! 9zt ozl 2 o2 Ozt 0x? Ox?
2
=22% x 2% x ' + 2% x z' ><t22:—2<x2) + 4z 2

2T _ ox* oz |, | 9 ox? oz" |, | 9 ox? 0x' L 92 ox? oz" ,,
Ozl Ozl oxrl 02 0x2 Or' ox? 02
=22 x 222 x t'2 + 2! x 222 ><t22:2(x) + 4xta?

22 _ or? or% |, L 9 ox* 0x% |, | 9z ox? 027 ,, L 9% ox? 027 ,,
dr! Pz o' Ox? dx2 Ozt o2 Ox®
202 x tM 4 2t x 12 4 e x 2 it x 122 = <x2)2+2(x1)2
(2) Méthode matricielle
La relation (101) p. 196, T' = JTJT, donne :

' 2 To o 222][1 1[0 a?
2V 2% 7 2?2t | -1 2] (227 2!
[ —22? 4z? 0 2x?
- _5172 —271 £172_‘_2171 1

i
8(z?%)? —2(2%)? + 4x'2?
2(a2)? + 42l (22)? + 2zl

Par exemple au point de coordonnées (x' = 1,2% = —2), le tenseur a pour composantes :

, [32 —16
=[5
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20.6.2 Transformation des composantes covariantes

Soit T un tenseur de I'espace tensoriel E?) tel que

=t (102)

T, = (7)) Tend ™ (103)

Les t;/;» sont appelées composantes covariantes du tenseur T. Les tenseurs deux fois covariants
(les tenseurs d’ordre deux exprimés en composantes deux fois covariantes, voir la remarque
26 p. 107) généralisent a l'ordre deux les vecteurs de type gradient (qui sont exprimés en
composantes covariantes).

On généralise a un produit tensoriel d’espace supérieur a deux. Soit T un tenseur de ’espace
tensoriel £, ® £, ® E, ® ... tel que,

\V/'l.,j,k’,... ti’j’k’... =T. (ei’ ®ej’®ek"® )
ox? 0x? Oz"
=T- ﬁﬁw...(ep@)eq@er@...)
_ OaP Ox? Ox”
9zt Oxd’ OxF
_ OaP Ox? Ox”

Ozt Oxd’ Q¥ TP

TT..T (e, Re,®€,®...)

Inversement :

Vp,q tyy, =T (e, ®e,)
oz’ Oz’

| Ozp %(

_ Ox" 92

" 9P Oxd
ox' ox7'

= 9ap Oxt T
oz oz’

= Oz T e

Too = JIT. J

cov

ey ® ej)

T (er ®ej)

On trouve cette relation directement a partir de (103) p. 198 :

T, = (1) Tl 7

cov

JT T,CO’U

J=J" (1) Ten
- Tcov
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En généralisant :
ox" 07" Oz

= — —— —— .ty
qr... axl’ &xq 8l‘7" i3k

~

Vp,q,r, ...

Pour le tenseur métrique :
G=J'GJ

En particulier si le nouveau systéme de coordonnées (primé) est rectangulaire alors G’ = [ et
dans 'ancien systéme de coordonnées le tenseur métrique s’écrit :

G=J'J (104)

20.6.3 Transformation des composantes mixtes
Soit T un tenseur de I'espace tensoriel E(?) tel que,
t) (ei/ ® ej,) =t,7 (e’ ®e,)

-/
q o0xP 07

=t ox? Ox4 (e ©e )
i’ oxP aZL‘jl
. . J _ q
Vi,j t,) = 927 Bt t, (105)
Oz 0x7
or’ P Oxd
T
T =(J") TJ (106)
Les ti,j " sont appelées composantes mixtes du tenseur T. On généralise a un produit tensoriel
d’espace supérieur a deux. Soit T un tenseur de l'espace tensoriel £, ® F, ® E, ® ... tel que,
ti,li,?njlb“' (ei/l ®e?® - ® ey ®ej Q.. ) =l (e ®e” Ree. . .ey @eg, ... )
axpl 837172 837']1 ax‘]é / -/
o q1q2... ? 2 e . .y
= T o e (ehwe® ey ®e; ... )
‘o Gigh... _ OxPt OxP? 6:}031 6:}075 1 ga...
W T Og oxh 0gm gm P

Les indices i’ et j' étant muets
-/ -/ ! -/
tzlj (e’ ®ej/) = tj% (ej ®e,~/)
.y ./ , i’ i’ . 7
En revanche, ¢, (ei/ ® e’ ) est la transposée de t,’ (eZ ® ej/) (la notion de transposée n’a pas
de sens pour les tenseurs d’ordre supérieur a deux) :

ti/j, (ei/ ® ej/) =t (e, ®€)

=P Ere (ei/ ® ej/)
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On obtient directement le résultat en prenant la transposé de la relation (106) p. 199 :

7 = [() ]
= (T") I
= JTTJ !

Inversement,

t,’ (ef®e,) = ti,j/ (ei/ ® ej/)
. j/ 8xil 8:6‘1
Y 9xp QI

-/
&r’ &xq %

J

(e’ ®ey)

q _
vp7q tp - axp ale i/

-/
820’ 3! 8l‘q
Oz Y O

T=J'T (7))

La transposée s’écrit,

tr, (e, ®el) = ti/j, (ei/ ® ej')

s O0xP Ozt ‘

=1 907 D (e, ®e€?)
oxP Ox7
Vp,q 1 =20 CT 4
Prd Ty oz Oze 7

OxP , Ox!

T 9 fan
T =41 J

/

En généralisant :

., Y
3 ) a1 q2 .
\V/pl P2,...,41,q2, ... t aaz-- — 0z O 83: ax R Iide--
) ) ) ) ) pP1P2..- a[[’pl 8$’p2 31’31 8.T]é 170y

20.6.4 Exemples

EXEMPLE 20.6.2. A partir du changement de coordonnées sphériques en rectangulaires,
cherchons l’expression du tenseur métrique euclidien en coordonnées sphériques.

x = rsin(f) cos(¢)
y=rsin(f)sin(¢) >0, 0<f<m, 0<¢<2rm
z = rcos(f)
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D’aprés la relation (104) p. 199,

G=J"J
[ sin 6 cos ¢ sin # sin ¢ cos sinfcos¢p rcosfcos¢ —rsinfsing
= | rcosfcos¢p rcosfsing —rsinf| [sinfsing 7rcosfsing 7rsinfcoso
|—rsinfsing rsinfcoso 0 cos —rsinf 0
1 0 0
=10 r? 0
0 0 r?sin®(0)

EXEMPLE 20.6.3. Soit le systéme de coordonnées (x', 2%), défini a partir des coordonnées
rectangulaires (z', 2% :

/
gl = !
/ /
22 = exp <x2 —xl)

Cherchons [’expression du tenseur métrique euclidien dans ce systéme de coordonnées.

Nous devons inverser le systeme d’équations pour avoir la matrice jacobienne de la trans-
1

formation z¥ = z¥ (', 2?) :

(107)

D’aprés la relation (104) p. 199,
G=J"J

Calculons la longueur de la courbe :
! =3\
¢\ { 5 0<A<K2)
Le carré de la dérivée de la distance élémentaire s’écrit :
ds\” dz® dx?
(a) = 950N dn
drt\? ~1 dx' dz? 2 (da?\?
) (ﬂ r2(at) I () (ﬂ
=2 %X 9+ 2 x 3¢t + e PP
=25

2 s 2 2
/04 <ﬁ> d>\—5/0 d\
I

=10
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Nous pouvons effectuer le méme calcul en coordonnées rectangulaires. En nous servant

du changement de variable (107), I’équation de la courbe devient en coordonnées rectan-
. / ’

gulaires (z', %),

' _ 3\
IOV x/ 0<A<L2)
¥ =3\+ =4\

C’est ’équation de la droite

2/ 1

€T =

— GOl

x
qui passe au point (0,0) en A = 0, et au point (6,8) en A = 2. La distance entre ces points

vaut /62 + 82 = 10.

20.7 DEFINITION D’UN TENSEUR

Au paragraphe 20.5.3 p. 195, nous avons vu comment se transforment les composantes d'un
tenseur lors d'un changement de base.

Réciproquement, donnons nous n® quantités que nous rattachons a une base e; ® €; @ ey.
Si, lors d’un changement de base, vers une nouvelle base e, ® e, @ e, les n® quantités se
transforment selon les formules (100), alors on peut faire correspondre un tenseur a ces n?
quantités, dont elles constituent les composantes contravariantes. De méme, si les n® quantités
se transforment selon les formules (102) ou (105) alors elles constituent respectivement les
composantes covariantes ou mixtes d’un tenseur. Ce résultat se généralise a n? quantités. Nous
pouvons énoncer le théoreme suivant :

THEOREME 20.7.1. Pour que nP quantités rapportées a une base d’un espace vectoriel EP)
soient les composantes d’un tenseur, il faut et il suffit que ces quantités se transforment par
changement de base selon les formules du paragraphe 20.5.3 p. 195.

EXEMPLE 20.7.1. Soit E un invariant par changement de base.

E'=F
OE" OF
Vi —— =
ox’ ox’
_OF o’
- 029 Oz
Les invariants sont des tenseur.
EXEMPLE 20.7.2. Soit f(x', 2% ..., 2") une fonction dérivable par rapport aux n coor-

données x*. Montrons que les dérivées partielles de f sont les composantes d’un tenseur
d’ordre un.
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. . , -/ . . ’ ’ ’
Soit la transformation de coordonnées x* (x', x? ... 2") et soit z'(z¥, 2%, ... 2™) la trans-

formation inverse. La dérivation partielle de f s’écrit :

oz’
Vi Oyf =—-—20,
D’aprés les relations (83) p. 168, les dérivées partielles se transforment comme les vec-
teurs de la base naturelle. Ce sont donc les composantes covariantes d’un tenseur d’ordre

un, justifiant la notation O;f et f,; avec l'indice en bas.

EXEMPLE 20.7.3. Soit u un vecteur de composantes covariantes u;. Montrons que les
dérivées partielles Oju; des composantes covariantes ne sont pas les composantes d’un
tenseur. Les composantes covariantes d’un vecteur se transforment selon les relations
(89) p. 172,
oz
ox?
La dérivation partielle de cette expression nous donne :
2,k K
VZ,j 8jui = 671‘ U + ai 8juk/
0xI0x’ ox’
ot vl oz ozt
= awow ¢ T awae W
i

Vi U; = U

Le premier terme est nul si les coordonnées x* sont des fonctions affines des coordon-
nées 17, c’est-a-dire si 27 et ¥ sont des coordonnées rectilignes. Pour autant, pour étre
un tenseur la loi de transformation des composantes doit étre valable quel que soit le
changement de coordonnées.

EXEMPLE 20.7.4. Montrons que les différentielles des composantes covariantes du; ne
sont pas les composantes d’un tenseur :

k/
Vi wu; = % U
oz oz

. . , ! .
Le premier terme est nul si les coordonnées x* sont des fonctions affines des coordon-

7 y \ . . ; ! , 7. A
nées x’, c’est-a-dire si 7 et x* sont des coordonnées rectilignes. Pour autant, pour étre
un tenseur la loi de transformation des composantes doit étre valable quel que soit le
changement de coordonnées.
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EXEMPLE 20.7.5. Déterminons les formules de transformation du rotationnel d’un vec-
teur lors d’un changement de coordonnées curvilignes.

VZ,] I'Otij u = Gjui — @uj
%z oxF ozt %z ox* ozt
= L+ al’ Uk | — - - U + al’uk’

ijaxi o0xt oI axl&vﬂ o0z ozt

ot les indices k et | sont muets. Or

2,k 2 k'
Vi g,k aijgxi B aiz‘ng
donc :
Vi,j rot;u= a;;gjjl Opug — % Oy Unpy?
=20 e = L0
Ol — Chng = % (Opug — Opruy)

C’est la formule de transformation des composantes deux fois covariantes d’un tenseur
d’ordre deuz.

Ezxaminons l'autre possibilité pour [’expression du rotationnel. Supposons u de compo-
santes contravariantes u'. Dans la base naturelle :
; 8$Z ’
. i k
Vi u =5 7 U
02z , Ox /
k k
u® 4+ —= dju
Oxi Oz oz* 7
: ’
o*xt . Or'ox

~ o ' T obow
0 = Ox ozt ozl 020"
9210z * " 9% ows Tl e
Ce ne sont pas les composantes miztes d’un tenseur d’ordre deux car
ozt 01/ 02z 0?a’
Vi # j . . = Vi # j . .
i oxd " Oxt 7 0xI dxk' 7 Gl

Vi,j Oju' =

Vi, j @-ui — o’ = (

20.8 LE TENSEUR METRIQUE

A partir de la définition du tenseur métrique 12.1.1 p. 97 :
V’l,j gij = € €5

oz Oz
=B o
8:5’“' 8:61/
- ey
Ot (’390]
8:5’“’ oz

= o 95 T (108)
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Les g;; sont les composantes deux fois covariantes d'un tenseur d’ordre deux. Cette condition
est nécessaire et suffisante pour que la forme quadratique associée a la matrice GG soit invariante

par changement de coordonnées. En effet :

Vi i B oxP 0x?
]  Giry = Gpq ﬁ w
et 'on a :
gy oxP 9x? Ozt oz’
it d!L‘Z d!L‘j = m m ZL‘T de‘S
9ij Ira ox? oz Oxr oxs
= (py 00 dx"dx®
= Gpq dzPdz?
De méme,

Vi,j ¢7=¢€"-¢€
ozt ., Ot
~ 007 ok
oxt or' .
= 77 &Ml
oz dx
ozt ox' .y
~ 0z 92V
Les ¢g¥ sont les composantes d'un tenseur deux fois contravariant. Formons le déterminant des
matrices figurant de part et d’autre de cette égalité :

1: J2i
g g
g =J% (109)

EXEMPLE 20.8.1. Soit le changement de base d’un espace vectoriel Ey défini par :
ey = 3e; + e;
{62/ = —e; + 2ey
Déterminons les nouvelles composantes du tenseur métrique gy en fonction des an-
ciennes g;;.
(1) En partant de la définition du tenseur métrique :

iy = €gr - €y
g = (3e1 + €2) - (3e1 + ey) grr = 9911 + 6912 + g22
g = (3e1 +eg) - (—e; + 2ey) gra = —3g11 + 5912 + 2922
g1 = (—e1 +2e3) - (3e; + e3) - g1 = —3g11 + 9912 + 2922
gy = (—e1 +2ey) - (—e; + 2e5) g2 = gi1 — 4g12 + 4922
(2) En utilisant la formule de changement de base d’un tenseur d’ordre deux :
o' Oz

Vk [ gk = W O k' Gij

Pour déterminer les 0x'/0z* on utilise les relations (80) p. 166 :
ox'

Vk € — W €;
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ell = Al /e]_ + A2 /62 ,
{ ' y = AL =3; 4% =1; AL, =-1; A% =2

€y = A12,e1 + A2/2€2
o Al Al A2 Al Al A2 A2 A2
g1y = 1 1/911 + 1/ 1/921 —+ 1 1/912 + 1/ 1/922
groy = A11/A12/911 + A21/A12/921 + A11/A2'2g12 + A21/A2/2922
g2/1/ = Alz/All/gll + A2,2A11/921 + Alz/A21/g12 + A2,2A21/g22
Garor = Alg/Algfgll + A2,2A12/921 + A12’A2,2912 + AQ;A2,2922
g1 = 9911 + 6912 + g22
g = —3g11 + 5912 + 2g22
921 = —3g11 + 5912 + 2g22
g2y = gi1 — 4912 + 4922

20.9 OPERATIONS SUR LES TENSEURS

20.9.1 Addition de deux tenseurs

Pour étre additionnés, les tenseurs doivent étre du méme ordre et étre rapportés a une
méme base (leurs composantes ont alors méme variance). Dans un espace vectoriel E(?); soient
U =1ue, ®e; et V= 1vYe; ® e; deux tenseurs d’ordre deux. L’addition tensorielle leur fait

correspondre le tenseur de méme ordre T de E(?), tel que :
T=U+V
te; @ e; = ue; ® ej +ve; @ €;
= (uij + vij) e; ® e,
Vi,j 9 =u" o
L’addition des tenseurs a les propriétés suivantes :
a) Commutativité : Vi,j u” + 0% = 0% + ¥
b) Associativité : Vi,j u¥ + (v +w") = (u¥ + oY) + w¥ = uY 4 0¥ + w¥
c) Il existe un tenseur nul N tel que Vi,j n% =0, et tel que VT, T+ N =T
)

d) Quel que soit U un tenseur, il existe un tenseur V, appelé opposé de U, tel que :
Vi,j u 4 0¥ =0 cest-a-dire Vi,j 0¥ = —u¥. V est noté —U.

20.9.2 Multiplication d’un tenseur par un scalaire

Dans un espace vectoriel E(?), soient A et p deux scalaires, et soit U = u¥e; ® e; un tenseur
d’ordre deux. La multiplication du tenseur U par le scalaire A fait correspondre le tenseur de
méme ordre V de E?), tel que :

V=\U
ve; ®e; = Aue; ® e;
Vi, v = Au¥

La multiplicaton par un scalaire a les propriétés suivantes :
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a) Associativité : Vi,j A (nu) = (A p) u

)

b) Distributivité par rapport a I'addition des scalaires : Vi,j (A + p)u? = Au® + pu

c¢) Distributivité par rapport a I'addition tensorielle : Vi,7 X (u¥ 4+ v¥) = Au¥ + A o¥
)

d) 1l existe un élément neutre : Vi,j 1 x u¥ = u¥

20.9.3 Combinaison linéaire de tenseurs

Soient u¥ et v¥ les composantes deux fois contravariantes de deux tenseurs. Soit ¥ leur
combinaison linéaire :

Vi, j t9 =¥ 4+ ¥

Par changement de base :

Vi, j di (8:10" ox! k’l/> o < oxt 0x? k’l/>

oz ot " % aat "
axi 837‘7 [ k'
= <—8xk/ 83:”) (u + v )
_ ax’ 837‘7 k'l
ox¥ oz

D’apres le théoréme 20.7.1 p. 202, les quantités ¥ constituent les composantes deux fois contra-
variantes d’un tenseur. La combinaison linéaire de deux tenseurs du méme ordre donne un
tenseur du méme ordre.

EXEMPLE 20.9.1. Soit t¥ un tenseur, montrer que t¥ —t7% est également un tenseur. Com-
mengons par montrer que si t est un tenseur deux fois contravariant alors sa transposée
t7" est aussi un tenseur deux fois contravariant :
Vi,j t'9 = i %tkl = Vi,j t = 6 G5
Ol Ot St Gt
Par conséquent t/* est un tenseur deux fois covariant, ainsi que t9 — t* d’apreés le para-
graphe 20.9.1 p. 206.

EXEMPLE 20.9.2. Soit T un tenseur mizte, montrons que sa transposée est un tenseur.
Les composantes mixtes de T se transforment par changement de base selon :
; - 0z" Ox? . - Ot Oz
N Y Y
Vi,j =1 Eroir = Vi3 t,=t, 7 D

Par conséquent TT est un tenseur.
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20.9.4 Classification des tenseurs

L’addition tensorielle et la multiplication par un scalaire sont des lois de composition de
E®? dans E®. Les tenseurs suivent donc la définition 3.1.2 p. 15 d'un espace vectoriel, et
sont par conséquent des vecteurs d’un espace vectoriel H,, , , = muni d'une structure de produit
tensoriel. Les espaces produits tensoriels deviennent pré-euclidiens lorsqu’on les munit d’un
produit scalaire.

Afin d’unifier la classification, les espaces élémentaires £ non munis d’une structure de
produit tensoriel ont pour éléments des tenseurs d’ordre un, que 'on appellera vecteurs. Comme
vu précédemment, les tenseurs d’ordre zéro sont appelés des scalaires.

20.9.5 Multiplication tensorielle

Les produits tensoriels d’espaces vectoriels sont des espaces vectoriels. Ils peuvent a leur
tour former de nouveaux espaces vectoriels par multiplication tensorielle.

Soit U = u'e; ® e; un tenseur de E, et soit V = v*e; @ e; ® e; un tenseur de EY). La

multiplication tensorielle leur fait correspondre le tenseur T d’ordre cing, de 'espace E®) =
E® @ E® tel que :

T=U®V
tkime. @ e;RVe, Ve Re, = (ue; ® e;)® (V"Me, @ e ® en)
=y M (e; @ e;Ve, Ve Rey,)
Vi, 3, k,l,m R = g iy kim
NOTATION 21. Le produit tensoriel est aussi noté :
T = [UV]

20.9.6 Contraction des indices

La contraction des indices d'un tenseur consiste a égaler I'un de ses indices contravariants
avec 'un de ses indices covariants. A partir d'un tenseur mixte d’ordre ¢, elle permet d’obtenir
de nouveaux tenseurs d’ordre ¢ — 2, le tenseur initial étant amputé d’une covariance et d’une
contravariance.

EXEMPLE 20.9.3. Soient u et v deuz vecteurs de F,, de composantes contravariantes u’
et vy, et soit T leur produit tensoriel :

T=u®v
ti(e; @ e) = u'e; ® v;€’
Vi, j t; = uivj
En posant © = j nous additionnons les composantes et formons le produit scalaire des
vecteurs u et v :
Vi t=u'y
=t +t++...

L’opération de contraction des indices fait passer un tenseur mixte d’ordre deux a un
scalaire ou tenseur d’ordre zéro. Par contraction répétée des indices d’un tenseur d’ordre
pair on déduit donc un invariant.
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EXEMPLE 20.9.4. Soit U un tenseur d’ordre trois de composantes miztes u”,. La contrac-
tion des indices j et k donne les quantités suivantes :
Vi u? =0’
Par ezemple v' = u'} + u'3 + u'%. Montrons qu’elles constituent les composantes d’un
vecteur. Par changement de base :
Vi uZ] _ 8xl 833‘] 8:17", uk/m/
I 0xk Qx™ Ol "
o axl el Pl
= axk/ m U n

axl k'm/
T ¢ m
8xl k
o *
Les v' se transforment comme les composantes contravariantes d’un tenseur. L’ opéra-
tion de contraction des indices fait passer un tenseur mixte d’ordre trois a un vecteur ou

/

Vi o' =

tenseur d’ordre un.

20.9.7 Multiplication contractée

DEFINITION 20.9.1. Multiplication contractée
La multiplication tensorielle suivie de la contraction des indices s’appelle la multiplication

contractée ou multiplication mixte.

En particulier, appliquée a deux tenseurs du premier ordre de variances différentes, elle
donne un invariant u;v" appelé produit intérieur de U par V, analogue du produit scalaire du

calcul vectoriel. (voir 'exemple 18.1.5 p. 155).

NOTATION 22. La multiplication contractée de U par V est notée :
T=UV

Elle donne un critére de tensorialité.

(1) Si

wv' = F

est un invariant pour tout vecteur de composantes contravariantes v¢, alors les u; sont
les composantes covariantes d'un vecteur (tenseur d’ordre un). En effet, £ étant un

invariant,
E=F
4 ,
wv" = ujv’
-/
0
= ujv" ——
7T Oxk
-/
; 07
=
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relation vraie quelles que soient les v?, donc :

-/

ox?
Vi ow=uy —
1 u U] agjl
(2) Siles
\V/j t”ul = ’Uj

sont les composantes covariantes d’un vecteur pour tout vecteur de composantes contra-
variantes u’, alors les ¢;; sont les composantes deux fois covariantes d'un tenseur d’ordre
deux. En effet,

, Ox*
Vi vy =g 97
7 axk
. rood l
, Oxt Ok
=tpu" — —
lk‘ axm/ ale
- ox! Ox*
T Ba? O’
oxt Oz*
Sy, or OJr7
\V/Z,] tz] =ik or? Oz’
Les composantes covariantes t;j sont notées ;.
(3) Si
tijuivj =F

est un invariant pour tous vecteurs contravariants u’ et v?, alors les ti; sont les compo-
santes deux fois covariantes d’un tenseur d’ordre deux. En effet, d’apres (1), les ¢;;u’
sont les composantes covariantes d'un vecteur, et par conséquent d’apres (2) les t;;
sont les composantes deux fois covariantes d'un tenseur d’ordre deux.

(4) Si les t;; sont symétriques et si
.
tij’U v =F
est un invariant pour tout vecteur de composantes contravariantes v¢, alors les t;; sont
les composantes deux fois covariantes d’un tenseur d’ordre deux. En effet, soit u' les

composantes contravariantes d’un autre vecteur, alors w* = u'+ 0" est aussi un vecteur
contravariant. Alors,

tijwiwj = t;j (ul + vi) (uj + vj)
= tijuiuj + tijviuj + tijuivj + tijvivj
= tijuiuj + tij'Ui'Uj + Ztiju"vj
ou le terme de gauche et les deux premiers termes de droite sont des invariants par

hypothése. Par conséquent t;;u’v? doit aussi étre un invariant, et d’aprés (3), les ¢
sont les composantes deux fois covariantes d'un tenseur d’ordre deux.

La généralisation des exemples (1), (2) et (3) permet d’énoncer le théoréme suivant :
THEOREME 20.9.1. Critére général de tensorialité

Si le produit contracté d’une suite de quantités avec un tenseur donne un tenseur alors cette
suite de quantités constitue les composantes d’un tenseur.
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EXEMPLE 20.9.5. Reprenons lexzemple 20.7.2 p. 202. Soit f (v, v?, ... ,v") une fonction
dérivable par rapport auzx n variables vi. Montrons que les dérivées partielles de f sont
les composantes d’un tenseur d’ordre un.

La différentielle de f s’écrit :
C’est le produit contracté du vecteur gradient de f avec le vecteur différentiel dM dont

les composantes sont contravariantes d’aprés (10) p. 29. Or df est un scalaire donc les
dérivées partielles sont les composantes covariantes d’un tenseur d’ordre un.

EXEMPLE 20.9.6. Montrons que les n* quantités g;; sont les composantes covariantes d’un
tenseur. Le produit tensoriel des g;; avec les composantes contravariantes d’un vecteur
quelconque v donne gijvk. La contraction sur les indices j et k donne les composantes
covariantes du vecteur v :

VZ gijvj = V;

Selon le critére général de tensorialité, les n® quantités g;; sont donc les composantes
deux fois covariantes d’un tenseur d’ordre deux.

20.9.8 Produit compléetement contracté

oit une suite de n® quantités u", attachées a une base e; ® e; ® e* :
Soit te de n? tit . @ e
11 1 11 2 11 12 1
uerReRe +u e Qe e+ 4+u e e +uegRe®e + ...

Ces quantités sont-elles les composantes d’un tenseur ?

Soient x = z'e;, y = y’e;, et z = 2Pe, trois vecteurs. Si la suite des n® quantités u”,
constitue les composantes d'un tenseur alors le produit completement contracté,

u? ;2 = a

donne un scalaire (quantité invariante par changement de base).

Réciproquement, si le produit contracté u”,z;y;2* est un scalaire, alors il est invariant

’

Ty Yy 2" = u”ka:iyjzk
!/ /
i Ozt 9x™ Oa* o
=Uu - - Ty Ym' =2
R ot Oxd Oz
est une relation vraie quels que soient les vecteurs X, y, z donc,

! !
17 ;s 837l 8$m axk
U'm 5]
Vim,n u™, =u’, — A -
oxt Oxd Oxm

et les n® quantités u", sont les composantes mixtes d’un tenseur d’ordre trois.

U'm/
n/

u

THEOREME 20.9.2. Critére de tensorialité

Pour qu’un ensemble de nP*9 quantités ayant p indices supérieurs et q indices inférieurs
soit un tenseur, il faut et il suffit que leur produit complétement contracté par les composantes
contravariantes de p vecteurs quelconques et par les composantes covariantes de q vecteurs
quelconques donne un scalaire.
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EXEMPLE 20.9.7. Démontrons que le produit contracté des tenseurs U et 'V est invariant
par changement de base :

, L
) S, 0x) ox
A uj:al.ul ; Vi vyzka
z z
Le produit des composantes donne :
-/
Vil u oxd OxF ;
.]7 (4 Ul, - 61‘2 axl/ U Uk‘
Contractons des indices 7 et :
-/
j/ 8[[“7 (9:Ek 5
Wy = — —u'v
J ort oz’ "
= 0Fuiuy
k
= U Vg

uFvy, est invariant par changement de base. C’est le produit scalaire des vecteurs U et V.

20.10 EQUATIONS TENSORIELLES

20.10.1 Changement de systeme de coordonnées

Une équation tensorielle vraie dans un systeme de coordonnées est vraie dans tout systeme
de coordonnées.

EXEMPLE 20.10.1. Soit T un tenseur deuz fois covariant, nul dans un systéeme de coor-
donnée :

V’i, VJ, tij =0
Alors, par changement de coordonnée :
oxF ox"
Vi, Ity = — —— 1,5
i ozt Oxi v
=0

et le tenseur T est nul dans tout systeme de coordonnées.

EXEMPLE 20.10.2. Soit I’équation suivante,
Vi,j  rgest = 3tfusu + wi
qui peut toujours s’écrire :
rijrs® — 3t — wi; =0
Si 'on peut montrer que les

k kl
Zij = Tiij - 3ti ujkvl - wz‘j
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sont les composantes (covariantes) d’un tenseur d’ordre deux, alors d’aprés l'exemple
précédent cette équation tensorielle est vraie dans tout systéme de coordonnées.

20.10.2 Regles sur les indices

(1) Indice muet

Dans tout monome tensoriel, on peut inverser les positions haut et bas de tout
indice muet :

A" B; = g™ Apjga B’
= g% gu A B’
= 0 Ay; B!
= Ay, B’
= A;; B’
(2) Indice libre

Si dans tous les termes d'une équation tensorielle figure un méme indice libre, on
a une équation équivalente en élevant ou en abaissant partout cet indice :

VA Sy = XQxn
Vv, gV S = 9 X
Vv, p 8% = xQ%,
A U
\V/>\, /JL S n XQ w
Si nous appliquons cette régle une seconde fois :
EQA _ pE A
VA E g5, =g xQ7,
VAL S =xQ¥
VA M= xQM
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Espace euclidien en coordonnées curvilignes

21.1 ELEMENT LINEAIRE DE L’ESPACE EUCLIDIEN

DEFINITION 21.1.1. Elément linéaire d’espace

Soit £, un espace ponctuel euclidien rapporté a un systéme de coordonnées curvilignes
(2%). Le carré de la distance entre deur points infiniment voisins, noté ds*, est égal au
carré de la norme euclidienne du vecteur infinitésimal dM . En utilisant la relation (72)
p. 144, nous avons :

ds* & dM - dM
ds? = o7 dz'dax’

ds est appelé élément linéaire d’espace, ou distance élémentaire ou encore métrique de
[’espace.

ds = |[dM|| est aussi l'abscisse curviligne du point M exprimée dans la base infiniment
proche. D’apres le théoreme d’orthonormalisation de Gram-Schmidt 12.8.1 p. 106, dans tout
espace euclidien il existe un systéme de coordonnées rectangulaires dans lequel le tenseur mé-
trique est égal a la matrice unité. Réciproquement, s’il existe un systeme de coordonnées rectan-
gulaires alors I’espace est euclidien, et dans ce systéme le tenseur métrique est égal a la matrice
unité. C’est le seul cas ou tenseur métrique et systeme de coordonnées sont liés. Dans les autres
cas d’espaces non-euclidiens, le tenseur métrique et le systeme de coordonnées curvilignes utilisé
pour le décrire sont compléetement indépendants.

[’élément linéaire le long d’une courbe paramétrée de parametre A, est une fonction de ce
parametre : ds = ds(\). Il est souvent avantageux de faire apparaitre explicitement le parametre

A dans sa définition :
ds\> dzt dx?
(dA) ~ N (10)

ExXEMPLE 21.1.1. Déterminons [’expression du carré de [’élément linéaire d’espace en
coordonnées sphériques de trois facons différentes.
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(1) Cherchons l’expression de dM en coordonnées sphériques, dans la base rectan-
gulaires. Le vecteur position s’écrit :

OM = ze, + ye, + ze,
= rsin(f) cos(¢) e, + rsin(f) sin(¢) e, + 7 cos() e,

Or,
dM = M, dr + M gdf + M ,do
avec :
M , = sin(f) cos(¢) e, + sin(f) sin(¢) e, + cos(d) e,
M o = rcos() cos(¢) e, + rcos(f) sin(¢) e, — rsin(d) e,
M 4, = —rsin(6) sin(¢) e, + rsin(f) cos(¢) e,
Soit :

dM = (sin(0) cos(¢) e, + sin(0) sin(¢p) e, + cos(f) e, ) dr
+ (r cos(f) cos(¢) e, + r cos(#) sin(¢) e, — rsin(h) e,) df
+ (—rsin(0) sin(¢) e, + rsin(f) cos(¢) e,) de
= (sin(0) cos(¢) dr + r cos(8) cos(¢) df — rsin(f) sin(¢) do)e,
+ (sin(#) sin(¢@) dr + r cos(f) sin(¢) df + rsin(f) cos(¢) do)e,
+ (cos(#) dr — rsin(6) df)e,
dont le produit scalaire avec lui-méme donne [’expression cherchée :
dM - dM = (sin2(9) cos? ¢ + sin?(#) sin? ¢ + cos2(9)) dr?
+ 72 (COSQ(G) cos® ¢ + cos?() sin® ¢ + sin2(6)) dg?
= (sin2(9) sin? ¢ + sin?(#) cos® qb) dep?
ds* = dr* + r?df* + r* sin®(0)d¢?
(2) Cherchons l’expression de dM en coordonnées sphériques, dans la base naturelle.
Le vecteur position s’écrit :

OM = re,
Sa différentielle vaut :
dM = dre, + rde,
Or d’apres les relations (7) p. 23 :
e, = sin(f) cos(¢) e, + sin(f) sin(¢) e, + cos(f) e,
de, = e, pd0 + e, 4d¢
= (cos(f) cos(¢) e, + cos(f) sin(¢) e, — sin(f) e, )dd
+ (—sin(#) sin(¢) e, + sin(f) cos(¢) e, )d¢
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Les vecteurs e, et de, étant perpendiculaires, et le vecteur e, étant de norme
unité :
dM - dM = dr?||e,||* + r?%||de, |
= dr? + r*[(cos?(0) cos® ¢ + cos*(0) sin® ¢ + sin?(6))db?
+ (sin®(0) sin® ¢ + sin®(0) cos® ¢)dp?]
= dr? + r*df® + r*sin®(0)d¢*
(8) En utilisant le tenseur métrique en coordonnées sphériques :
ds? = o du'du?
= gy dutdut + g1o dutdu® + g13 dutdu®
+ go1 duldu' + goo duPdu® + gos dudu®
+ ga1 duldu + ggo dudu® + gas dudu®
= g11 (du')? + 2915 du'du® + 2g13 du'du® + goo (du®)? + 293 dudu® + gss (du®)?
Pour un systéme de coordonnées orthogonales le tenseur métrique est diagonal :
ds* = g1 (du)? + gog (du?)? + gss (du®)?
En coordonnées sphériques :
ds® = g, dr® + ggo d9* + 9o do?
=e,-e.dr’ +ey-eydd® +ey-eydd’
— Jles|2dr® + lleg|[2d6 + lleg||?

Le paragraphe 8 p. 23 donne les normes des vecteurs de la base naturelle en
coordonnées sphériques,

ler|| =1
leqll = r
leg|l = rsin(0)

et l'on a :
ds® = dr? + r*d6* + r* sin®(0)d¢?

21.2 EQUATION D’UNE DROITE

Il existe plusieurs définitions équivalentes d’une droite. Par exemple, c¢’est le chemin le plus
court entre deux points (segment de droite), donc tel que la variation premiere de la longueur de
ce chemin soit nulle. Dans un espace ponctuel rapporté a un systeme de coordonnées curviligne
(2%), une courbe z' = z'()\) est une droite ssi :



218 Espace euclidien en coordonnées curvilignes

Si l'intégrale d’une fonction est extrémale il en va de méme de l'intégrale du carré de cette
fonction :
b o
dz* dx’
4] i ————d\ =0
/a TGN dx

Prenons pour parametre le temps pour utiliser la notation de Newton du point pour la dérivation
temporelle :

b
En posant le lagrangien

L= Gij 't

5/bL(fci)dt:0

D’apres le principe de Hamilton cette relation donne le systéeme des n équations d’Euler-

nous avons

Lagrange :
d (0L oL
 — | —=— =0
(T (a:w) O
d L 0 ik
a1 (205 %) = 55 (g d’d") =0
d L .

EXEMPLE 21.2.1. Cherchons le systéeme d’équations paramétriques pour une droite en
coordonnées polaires. Le lagrangien a pour expression :

L(,O, 0) = Ypp p2 + 29p6 /00 + Goo 0°

Y
Les équations d’FEuler-Lagrange s écrivent :
d (ol G .
a\op ) p—py==0
= d .
(oL _orL g (70) =0
a\ag) a6~ di

Ce sont respectivement les termes d’accélération en e, et eg. Nous verrons p. 260 qu’une
droite peut aussi étre définie comme la trajectoire d’un point ayant une accélération nulle.

Montrons que ce systéme d’équations différentielles donne bien une droite. En coordonnées
rectangulaires, [’équation d’une droite y = ax + b peut aussi s’écrire :

ar +by =c
En passant en coordonnées polaires :
ap cos(0) + bpsin(f) = ¢
p (acos(f) + bsin(f)) = ¢
En dérivant par rapport au temps :

p (acos(f) + bsin(f)) + ph(—asin(h) + beos()) =0
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En dérivant a nouwveau :
p (acos(8) 4 bsin()) + ph(—asin(h) + beos(8)) + pf(—asin() + beos(h))
+ pB(—asin(0) + bcos( )) + pb? (—acos(h) — bsin(h)) = 0
(ﬁ — péz) (acos(f) + bsin(0)) <2p9 + ,09) —asin(d) —bcos(d)) =0

(ﬁ — péz) (acos(#) + bsin(d)) ( ) —asin(f) —bcos(#)) =0

{ﬁp920
d
dt( 26)_0

On retrouve bien

21.3 VOLUME ELEMENTAIRE DE L’ESPACE EUCLIDIEN

Pour construire un volume élémentaire, nous prenons une variation
OM = M ;dx"

le long de chaque coordonnée ¢ pour former un parallélépipede. Soit E3 un espace vectoriel
euclidien, construisons d’abord une surface élémentaire orientée d.A :

dA = M dx* x M 3dz®
= eydr? x egda®
= ey X e3dr’das®
ou l'opérateur x est le produit vectoriel. Construisons un élément de volume :

dV = ejdx' - (ey x ez dr’dar?®)

dV = e, - ey X egdrtdz’da®

EXEMPLE 21.3.1. En coordonnées sphériques, avec les relations du paragraphe 8 p. 23 :
dV =e, - ey X e, drdfdeo

sin(f) cos(¢) r cos(6) cos(o) —rsin(f) sin(¢)

(
= (sin(@) sin(gb)) - | rcos(6) sin(¢)) X (rsin(& cos(¢) ) drdfd¢
cos(0) —rsin(0)

sin(#) cos(®) r?sin?(0) cos(¢)
sin(#) sin(¢) r?sin?(0) sin(¢) | drdfde
cos(f) r? cos(#) sin()

= {7’2 sin® 0 cos® ¢ + r? sin® 0 sin? ¢ + 12 cos?(0) sin(&)} drdfde
= {7’2 sin® § + r? cos?(0) sin(@)} drdfde
= r?sin() drdfde

)
0
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On peut exprimer le volume élémentaire grice au tenseur métrique. En coordonnées sphé-
riques, le tenseur métrique a pour composantes

1 0 0
G0 r? 0
0 0 7r?sin?(0)
Son déterminant vaut :
g = r*sin?(0)
Vg = r?sin(6)
Si bien que :
dV = \/gdrdfde

THEOREME 21.3.1. Soit &, un espace ponctuel pré-euclidien rapporté d un systéme de
coordonnées curvilignes (u'). Le volume élémentaire de ’espace est le volume du parallé-
lépipede construit sur les vecteurs e; du' :

dV = /gl du' du?. .. du" (111)

On déduit par intégration la mesure d’un volume fini de l’espace :

V_/\/@i:ﬁldui

DEMONSTRATION. Dans un espace ponctuel euclidien & :
[STRRN <D ><e3:81M~82M>< 83M
o\ 0o O3

= [0w | || x|y
(912 (922 832

o\ OoyO3z — Opz03Yy
= 813/ . (922(93]3 — 8213832
(912 82x83y — 82y83x

= 3193(829532 - 52233?/)
+ 81y(82283x — 8213832)
+ 012(0ax05y — Doyds)

O1x Owx Osx
=det |01y Oy O3y
012 Ohz Oz
Le déterminant de toute matrice est égal au déterminant de sa transposée :
oix Oy Oz O1x Ohx Osx

(e1-ey x e3)> =det |Ohwr Doy Opz| x det [O1y Doy Osy
83x agy 832 812 822 (932
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Quelles que soient [A] et [B] deux matrices, det[A] x det[B] = det([A][B]) :
(61 €9 X 83>2 =
(1?4 (y1)? + (21)? @122+ yiys+2122 TiZTz+Yiys+ 2123
det | zom1 + Yoy + 2221 (22)° + (Y2)® + (22)° Zow3+Yays+ 2223
T3T1+Ysys+ 2321 Talo+ysys+zsze (3) 4 (Ys)+ (23)?
€ -e; e;-ey e;-e3
=det [ex-e; ey-ey e5-e3
€3-e; e3-ey e€e3-e3
=g
d’ou :

e -e Xe3=,/g

21.4 LES SYMBOLES DE CHRISTOFFEL

Nous avons vu au chapitre 19 p. 161 que lorsque le systéeme de coordonnées est curviligne,
qu’il soit orthogonal ou non, nous ne pouvons plus lui associer de base globale. Nous avons alors
définit une base locale, la base naturelle, dont les vecteurs de base sont fonction des coordonnées
du point ot I'on se trouve. Nous avons effectuer des changements de base en restant au méme
point, par changement de coordonnées.

Nous nous intéressons maintenant au changement de base lorsque 1’'on passe d’un point a
un autre infiniment proche, en restant dans le méme systéeme de coordonnées. Les vecteurs de
la nouvelle base naturelle locale tournent et changent de norme en passant d'un point a un
autre. Ils sont bien entendu exprimés dans ’ancienne base naturelle locale, seule base connue
a priori. Pour rester dans ’ancienne base naturelle locale, nous utiliserons le calcul différentiel
au voisinage de l'origine de cette ancienne base.

21.4.1 Le probléeme fondamental de 1’analyse tensorielle

Supposons qu’en tout point M d’un espace ponctuel euclidien &,, nous attachions un ten-
seur défini par ses composantes relatives au repere naturel en M du systeme de coordonnées
curvilignes (z*). Nous dirons que nous nous sommes donné un champ de tenseur dans le systéme
(u'). Le tenseur métrique g;; (:Uk) fournit un tel exemple de champ de tenseurs. Pour pouvoir
comparer ces tenseurs, il convient d’étudier comment le repére naturel varie quand on passe
d’un point M a un point infiniment voisin.

PROBLEME. L’espace ponctuel euclidien &, étant rapporté a un systéeme de coordonnées
curvilignes (z7), pour lequel I’élément linéaire de [’espace est

ds? = gijdxidxj

déterminer, par rapport au repére naturel (M,e;), le repére naturel infiniment voisin (M +
dM, €; + de]').
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Autrement dit, cherchons I'expression des vecteurs infinitésimaux dM et de;. Le premier
est donné par la relation (10) p. 29 :

dM = da’e;
Pour le second, appelons w’ les composantes contravariantes (cherchées) du vecteur de; :
Vi de; = w'e; (112)

Tout vecteur de; est fonction du vecteur déplacement dM. Les wij sont donc des infiniment
petits du méme ordre que les d27, et ils doivent s’annuler en méme temps qu’eux. Par conséquent

ils sont une combinaison linéaires des différentielles dz* (ceci devient évident avec 1'exemple
21.4.1 p. 223)

Vi,j w'=T" dz" (113)
ou les Fi]-k désignent n3 (chacun des trois indices i, j, k varie de 1 a n) fonctions des coor-

données (xk) du point M. Notre probléme se trouve ainsi ramené a la détermination des n?

fonctions I' ;. a partir des n(n + 1)/2 fonctions g;;. Avec les deux relations précédentes :

Vi de; =T, di"e; (114)

DEFINITION 21.4.1. Symboles de Christoffel de deuxiéme espéce
Les n3 quantités Fijk (:13’“) sont appelées symboles de Christoffel de deuzriéeme espéce.

Nous avons, Vj :
i k
dej = 1", da"e;
ki k
Orejdx” =T1";; dr"e;
~ _ i
\V/j, k 8kej =T ik €; (115)
) étant teur, il s’écrit binaison linéaire d t de b . TP est ]
e; étant un vecteur, il s’écrit comme combinaison linéaire des vecteurs de base e;. I';, est la
1 °™¢ composante de ce vecteur.
Appelons w;; les composantes covariantes du vecteur de; :

V’l,j Wiy = dej - €

REMARQUE 34. Les w;; ne sont pas symétriques :
wij # Wji
par exemple wio = des - €1 et woy = dey - ea. Par conséquent

i i
w'; # w;

Les w;; sont aussi des combinaisons linéaires des différentielles dx -
.o k
V’l,j wl-j = Fijk dx
NOTATION 23. La notation des indices de gamma dans l'ordre ijk est arbitraire mais un choiz

est nécessaire. Nous avons choisi d’écrire en premier l’indice de la composante, en deuxiéme l’indice
du vecteur et en dernier lindice de la différentielle.
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DEFINITION 21.4.2. Symboles de Christoffel de premiére espéce
Les n® quantités Ty, (:L“k) sont appelées symboles de Christoffel de premiére espéce.

EXEMPLE 21.4.1. Symboles de Christoffel en coordonnées polaires
Etudions le probléme de la variation du repére naturel en coordonnées polaires. En déri-
vant les relations (5) p. 22 :

€p =0 e,, =0
e,0 = —sin(f) e, + cos(0) e, e, = ep/p
- =
ey, = —sin(f) e, + cos() e, ey, = €y/p
egp = —pcos(f) e, — psin(h) e, €9 =—pe,
Les différentielles des vecteurs de la base naturelle polaire s’écrivent :
de,=e,,dp+e,pdf de, = egdf/p 116
deg = eg,,dp + € df deg = egdp/p — pe, df )

En identifiant avec
de, =T",,dpe, + T’ ,dfe, +T°, dpey+ T, db e
deg =17y, dpe, + Ty, db e, + F%p dpeg+T%,d0e,
les symboles de Christoffel de deuxieme espéce s’écrivent :
_ 0 0
e, =0 I¥y=0 ,=0 I¥p=1/p
Fp@p =0 [Py =—p FGGp =1/p Faee =0

21.4.2 Relations entre symboles de Christoffel de premiére et seconde espéece
Les composantes covariantes w;; et contravariantes wij du vecteur de; sont liées par la
relation, Vi, j :
Wij = gz‘hwhj
L dz* = gihrhjk da*
Vi, j, ko Dy = gihrhjk (117)

Le tenseur métrique abaisse I'indice haut, celui de la composante, qui passe de contravariante
a covariante. C’est pourquoi dans la notation 23 p. 222 choisie, nous laissons une espace entre
gamma est le premier indice. De méme, nous écrirons :

Vi, g, k Fijk = ¢"Thji (118)

La connaissance des n® fonctions I'?., est donc équivalente & celle des n3 fonctions I .
Jk J
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21.4.3 Symétrie des symboles de Christoffel par rapport aux indices

Ecrivons les conditions d’intégrabilité de 1’équation (10) p. 29. Pour que dM soit intégrable,
autrement dit pour que dM soit une différentielle totale exacte, les dérivées secondes de M
doivent étre symétriques par rapport a leurs indices de dérivation (condition de Schwarz). En
utilisant la définition 3.2.8 p. 21 puis les relations (115) p. 222. V5, k :

P M 0 <8M )

Orkdxi — Oxk \ Oxd
O M = Ope;
M, =T'ye (119)
Inversons l'ordre de dérivation. Vj, k :
M ;= M i
I =T e (120)
Vi, g,k T, =T, (121)

Les symboles de Christoffel de deuxieme espece sont symétriques par rapport a leurs indices
inférieurs. De méme Vh, j, k :
h h
e = 1%
ghirijk = ghirikj
Dans la notation 23 p. 222 choisie, les symboles de Christoffel de premiere espece sont symé-
triques par rapport a leurs derniers indices. Ce dernier systéme est équivalent au systeme (121).

Pour chacune des n valeurs de I'indice de gauche i de Tijk, Iindice j varie de 1 a n, ainsi
que l'indice k. Parmi les n? équations fournies par les indices j et k, on compte n égalités du
type Fijj = Fijj qui ne servent a rien. Parmi les n? — n égalités restantes, se trouve ’égalité
I, = I'y, et plus loin, T, = I'},. Les indices j et k founissent par conséquent (n? —n)/2
égalités distinctes. Au total, le systéme (121) permet d’établir le nombre suivant d’équations :

10,2 1,2
nx z(n"—n)=sn°(n—1)
NOTATION 24. Les symboles de Christoffel sont aussi notés comme suit :

e = {]k} = {jk,i} et Dy = [k,

21.4.4 Symboles de Christoffel en fonction du tenseur métrique
A partir de la définition 12.1.1 p. 97 du tenseur métrique, Vi, g
9ij = €i - €
dgij =€, - dej + €; - dei
=e;- wkjek +e€;- wkl-ek
Orgij da” = gaw®; + gjpw"; (122)
o gihrhjk d.rk + gjhrh,ik. d.rk
Vi, 3,k gijk = Uigk + jir (123)
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D’apres la relation (35) p. 82, les g;; étant au nombre de n(n+1)/2, le systeme (123) comprend
n?(n+1)/2 équations. Avec les équations de symétries des symboles de Christoffel, nous avons :

n(n+1)+ in’(n—1)=n?
équations, pour les n? inconnues I';. Ce systéme sera soluble si les conditions d’intégrabilité
des vecteurs e; sont satisfaites. Pour trouver les conditions d’intégrabilité des équations (10)
p. 29, nous avons implicitement supposé que les équations (112) p. 222 I’étaient, puisque nous
les avons utilisées pour écrire les relations (120) p. 224. L’intégrabilité des équations (112) est
donc nécessaire a celle des équations (10). Pour que de; soit intégrable, les dérivées secondes de

e; doivent étre symétriques par rapport a leurs indices de dérivation. Avec les relations (115)
p. 222, nous avons, Vi, k, [ :

Oy (Orei) = Ok (Ore;)
0, (Fjl-k ej) = O (Fjil ej)
or, e; + I Oe; = AR e; + I Oke,;
O e+ 17, T e = T e, + T, T e
O e+ T 17, e; = 0T e + T, T, e,
(A7 — OT7y) + (T T,y = T, T2, ) = 0
En remplacant les symboles de Christoffel par leurs expressions en fonction du tenseur métrique,

(voir plus loin les relations (127) p. 225), on obtient les conditions nécessaires auxquelles doivent
satisfaire les fonctions g;; pour résoudre notre probleme.

En appliquant deux fois la permutation circulaire des indices ¢ — j, 7 — k, k — 7 aux
relations (123) p. 224, nous obtenons deux autres ensembles de relations, Vi, j, k :

Lijk + Ljik = Gijn
Djki + Trji = gjni (124)
Drij + Ling = Grij (125)

En additionnant les relations (123) et (125), et en soustrayant (124), nous obtenons les symboles
de Christoffel de premiere espece, Vi, j, k :

2k = Gije + Grig — Gjksi
Lijk = 2 (gijk + Grij — ki) (126)
Avec les relations (118) p. 223, les symboles de deuxiéme espece ont pour expression, Vi, j, k :

Fijk = %gih (Gnj ke + Grhj — Gjkn) (127)

21.4.5 Symboles de Christoffel de deuxiéme espéce contractés
Dans le cas particulier ou k =i :
Fiij = %gih (Gnji + Ging — Gjin)
Or,
9" gnji = 9" gnji
= gihgij,h

_ ik
=9 Yjih
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Il reste
I = L g%gn, (128)
Avec la relation (58) p. 104 :
; 0,
vk 1, =2
29

1
— O/ 129
T 9l (129)

=0 In ‘9|

EXEMPLE 21.4.2. Symboles de Christoffel de deuzieme espéce contractés, pour la métrique
de Schwarzschild
D’aprés (56) p. 103 son déterminant s’écrit :

g = —e"rsin?(0)
Notons par un point la dérivation par rapport a ct et par un prime celle par rapport a r :
9 :
I, = 2Lg . — (0 + A)erTrtsin? 6 1 _
89 0 —2ev+Ard gin? 1% = Q(V + )
I, = 2%5 I - = [4r3 + (V' + N)r*] e* T sin? 0 . 2 1,,
P = & —2ertArdsin? § = Iy = r + 5(’/ + )
I, = %gg ri _ —2e¥ % sin 0 cos 6 I, = cotd
P 2 —2e¥tArdsin? § . —0
I = =9 Fiz‘3 =0 N
29

21.4.6 Symboles de Christoffel en coordonnées rectilignes

En coordonnées rectilignes les symboles de Christoffel sont tous nuls car les vecteurs de base
ne tournent pas :

Vi, j ste o i gk S AL
Z ij — C 1,7, ij,k — .. ;
) i J Jisk Vi, j, k Fljk =0

Les coordonnées rectilignes ne sont possibles que dans les espaces plats, pré-euclidiens. Par
conséquent dans les espaces plats les symboles de Christoffel sont nuls.

REMARQUE 35. Si les symboles de Christoffel étaient des tenseurs ils auraient méme valeur dans
tous les systémes de coordonnées. Or ils sont nuls dans les systemes de coordonnées rectilignes et non
nuls dans les systémes de coordonnées curvilignes. Par conséquent, ce ne sont pas des tenseurs. Pour les
meémes raisons les wij ne sont pas les composantes d’un tenseur.
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21.4.7 Symboles de Christoffel en coordonnées orthogonales
(1) Symboles de premiére espece

En coordonnées orthogonales le tenseur métrique est diagonal, les relations (59)

p. 105, Vi # j gi; = 0 permettent de simplifier les symboles de Christoffel de premiere
espece (126) p. 225 :

Vi=j=k Tuy= % ( iiyi + Giii — gzzz) i = %gnz

Vi=j#k Tu= % (Giik + Grisi — Giki) Lyj = %gii,j

Vi#j=k, Tij=595i+ i — 95) = Lijj = =3 9jia

Vi=k#j, D= % (Giji + Giij — Gjii) Liji = %gii,j

i, 7,k #, Lijk=0 Lijk=0

Avec la symétrie des symboles :

Diii = %gnz
Fiij = Fiji = %gii,j (130)
Lijj = =3 9y

(2) Symboles de deuxieéme espece

A partir des relations (118) p. 223 et de nouveau avec Vi # j g;; = 0 :

Iy = gijrjii [, =g¢"Ty sans sommer sur i
Fiij = gikrkij Fiij = giil’m sans sommer sur i
Fijj = gikrlm‘ = Tijj = g”l—‘ijj sans sommer sur i
szl- = gikaji Fijl- = giiFiji sans sommer sur i
[ = 9" Ty [ =0

Avec les relations (60) p. 105, Vi ¢ = (g;;)~!, et avec les relations (130) :

Iy = Tii/ g I = giii/ (294)
T = Tiij/ g I = g,/ (294)
= Fijj = Fijj/gu = Pijj = —gm‘/(?gu)
Fiji = Lyji/ 9 Piji = Gii i/ (29:i)
szk =0 Fljk =0
Avec la symétrie des symboles :

Fiii = Giii/ (29ii) Fiii = % 0; In gy

Fiij = gii,j/@gii) = Fiij = %@‘ In g;; (131)

T = —0ija/ (29:) I = —g55i/(29:)

EXEMPLE 21.4.3. Symboles de Christoffel en coordonnées cylindriques (p, ¢, z) dans un
espace euclidien, on a le tenseur métrique (38) p. 97, g,p = 1, gpp = p*, 9. = 1. Les
dérivées partielles des g;; sont nulles sauf gs¢,, = 2p.
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(1) Pour les symboles de premiére espéce nous utilisons les relations (130) p. 227 :
Losp = Tops = 5 9s6.0 N {F¢¢p = Lo =p
Tpoo = =3 Govp Loss = =p
(2) Pour les symboles de deuziéme espéce nous utilisons les relations (131) p. 227 :
{F¢¢p =T =Tou/966 _ {F%p =T =1/p
quﬁqﬁ = Tps0/ 9o Fp¢¢ =P
Avec les relations (114) p. 222 :
de; =T e;dz' +T% esda' + T2 e3dr’
+ Ty e da® + T2, e dz® + 17, e3 da?
+ T e da® + T2 5 epda® + 175 e3da®
de, =1"  e,dp+ F¢pp esdp+17°, e.dp
+I7,,e,dp+T° ,e5dg+ 17, e, do
+Fppzepdz+F¢pze¢dz+f‘zpzezdz
=p legdod
De méme,
dey =T, e da' + T2, ey da' + T2, e da’
+ T, e da? + T2, ey da® 4 T2, e3 da?
+ Ty e do® + T2y, ep da® + T3, €3 da®
de, = Fp¢p e,dp + F¢¢p esdp+17,,e.dp
+T%,, e,dz + F¢¢z esdz+17, e, dz
= p~leydp — pe, d¢
et :
des =Ty ey da' + T2, egda’ + T2, esda’
+ T, e d2? + Ty, e da? + T35, e3 do?
+ T e da® + T2, ep da® + T, €3 da®
de, =17, ,e,dp+ F¢Zp esdp+17,,e.dp
+T7,e,ddp+ 17, e5ddp+17, e, dd
+T7,,e,dz+T%, esdz +T7% e, dz

EXEMPLE 21.4.4. Symboles de Christoffel en coordonnées sphériques (r,0,¢) dans un
espace euclidien, en posantr =z, 0 = z* et ¢ = x°, on a le tenseur métrique (39) p. 97,
g1 = 1, goo = (2)%, gs3 = (¢1)?sin2 2. Les dérivées partielles des gi; sont nulles sauf

. 2 o
Goo1 = 2z, g3z1 = 2zt sin® a? et gaz0 = 2 (x')” sin 2% cos 22
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(1) Les relations (130) p. 227 donnent les symboles de premiére espéce :

1
_ _ 1 Iogy =Top =1
[yo1 = T'g12 = 59221 . ) o
_ _ 1 I's31 =I's;3 = " sin“z
331 = I'313 = 5 933,1 33 313 )
1\ gy 02 2
T3y = ['303 = 5933,2 D330 =303 = (;E ) sin z° cos x
Tig9 = —1 R P
122 = T35 0221 122 = —%
_ 1 12,2
I35 = —3 9331 I'y33 = —a sin”x
—_1 2 .
Dogs = —5 9332 Tosg = — (xl) sin 2 cos 2

(2) Les relations (131) p. 227 donnent les symboles de deuxiéme espéce :

%, =T%, =Too1 /g2 2, =r’, =1/
[Py =T = Ta31/9s3 I3, =T%;=1/z"
[P35 = Ty = T332/ 033 I3, = I, = cot2®
I, = Tias/ T, — gt

22 — L122/911 99 = —X
Ty = Tiss/gn I',; = —z'sin®2?
g5 = Tas3/ 922 I'2,; = —sin z? cos z

EXEMPLE 21.4.5. Symboles de Christoffel da la surface d’une sphére
En coordonnées sphériques (r,0,¢), da la surface d’une sphére de rayon r, en se servant
de l’exemple précédent :

(1) Les relations (130) p. 227 donnent les symboles de premiére espéce :

2
1 _ (1) 2 2
{F332 =T33 = L g3a2 [330 = 303 = (x ) sin z” cos ©

_ 1 2
Poss = —5 9332 I'y33 = — (xl) sin 2% cos 2

(2) Les relations (131) p. 227 donnent les symboles de deuxiéme espéce :
{F332 =T = Da50/gs3 {F 3.5 = I3 = cot 2°

2 2 9 2
[“45 = o33/ g2 ['“;; = —sina”cosx

EXEMPLE 21.4.6. Symboles de Christoffel de deuxieme espéce, pour la métrique de
Schwarzschild

Les symboles de Christoffel ayant trois indices, dans un espace de dimension quatre ils
ont 43 = 64 composantes. Leur symétrie par rapport d deux indices réduit le nombre de
composantes indépendantes a 4 x (8 +2) =40 (la moitié de la matrice 4 x 4 des indices
symétriques, plus la moitié de ses éléments diagonauz, le tout fois 4).
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Les relations (131) p. 227 en coordonnées rectangulaires nous donnent :

FOoo = 900,0/(2900)
% = g0,/ (2900)
F002 = 900,2/(2900)

)

F003 = g00,3/ (2900

% = —g11,0/(2900)
0, = —g220/(2900)
F033 = —g33,0/ (2900)

oo €l g11 ne sont fonction que des coordonnées x° et x', goo 1
)

Fln = 911,1/(2911)
Iy = g11.0/(2911)
1—‘112 = 911,2/(2911)

1—‘113 = g11,3/(2911)

I = —goo,1/(2911)
11122 = —g22.1/(2911)
11133 = —gs3,1/(2911)

g33 n'est fonction que de x' et x*. Donc

F222 = g22.2/(2922)
250 = g22.0/(222)
2y = 9221/ (2922)
F223 = 9223/ (2922)
%00 = —900.2/(2922)
F211 = —g11,2/(2922)
1ﬂ:aa = —g33.2/(2922)

)

5
5
[
%,

3
1—‘00

3 _
I111_

3
F22

= g33.3/(2933)
= g33.0/(2933)
= g33,1/(2933)

= g33,3/(2933)

—9o0,3/(2933)
—g11,3/(2933)
—G22,3/(2933)

est fonction que de x*, et

G00,2 = G00,3 = 911,2 = 911,3 = §22,0 = g22,2 = g22.3 = g330 = g333 = 0

1jooo = 900,0/(2900)
Fo(n = 900,1/(2900)
Foll = —911,0/(2900)

Fln = g11,1/(2911)
Iy = g0/ (2911)
oo = —g001/ (2911
Iy = —g22.1/ (2011
[y = —g331/(2011)

F233 = —933,2/(2922)

) {F221 = g22,1/(2922)
)

|

%5, = 9331/ (2933)
F332 = 933,2/(2933)

Notons par un point la dérivation par rapport a ct et par un prime celle par rapport a r.
Avec le tenseur métrique de Schwarzschild (55) p. 103 :

0 1 -
Foo—ia
0 _ 1 7
FOl_Ea
0 _ 145 B—«
[%); = 5 Be

Flll = %B,

F110 = %5

Iy =1de*” {
F122 = —re#

I, = —rsin?()e™”

21.4.8 Formules de Christoffel

2
I‘33

= —sin(f) cos(d)

|

I, =1/r

(132)

Démontrons les formules de Christoffel en partant du changement de base suivant, Vi :

o

ox? ) €
ox?
57 ) ©

o0’
ey + d (@)

ok
—e
oxi ¢

/
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On simplifie et on réarrange les termes :

) ord oz . 9V oxd
. kK J
ik Wt = 027 0t T o d(aﬂ’)

¥, da™ = a?j aikll“l» dx" + %k/ ﬂ ™
vm ox? Ozt " oxi Oz™ Ox¥
_ O oz , ox" Qe a9 1
ox? Ozt " O™ oxI Ox™ Oxv
vikm T, 2020 Oty 0n" O
T e 9zt 9t O™ T I Oad O™ Ozt

Les symboles de Christoffel ne sont pas des tenseurs a cause de la présence du second terme du
membre de droite. De méme, en inversant le role des variables, Vi, k, m :
-/ / -/
[k ox?" oxk oz _, N oxk 92t
; - N 17 /o ! N 7 ~ o
Mo gt 9t gxm o ™M Qxd’ Qx™moxt
Le second terme du membre de droite étant symétrique par rapport aux indices ¢ et m nous
pouvons le supprimer pour former le tenseur
ko pk k
-/ !
ox?" 9% oz
= - — .
oxt ozl Jgm I

(133)

U

appelé tenseur de torsion de I'espace.

21.5 DERIVEE ORDINAIRE LE LONG D’UNE COURBE

Dans un espace ponctuel &, rapporté au systéme de coordonnées (z'), soit une courbe
%()\) d’équations paramétriques z' = x()\). Une variation infinitésimale d\ du parametre fait
passer d'un point de la courbe a un autre point de la courbe infiniment proche. Soit un champ
de vecteurs u[u’(27(\))] défini le long de €. Dérivons par rapport au parametre A la loi de
transformation par changement de base naturelle des composantes contravariantes de ce champ
de vecteurs le long de la courbe €'(\) :

!

- . 8.TZ
S
Vi wu U B
du?’  dul Oz - d [0z
. _ au i @ k
N Ty o T [axa‘ (@ )]
du? Oz 922" dak

- J -

Ty 0w " ockaw N
La dérivée de u le long de la courbe n’est pas un tenseur a cause de la présence du second
membre. Si les 27 sont des fonctions affines des z7 alors 8,3]»:6"/ = 0, mais pour étre un tenseur
la relation de transformation doit étre valable quel que soit le changement de coordonnées.

Soit t(s) = dx/ds le champ de vecteurs tangents le long de la courbe €(s) de parametre
I'abscisse curviligne s. La courbure de €'(s) est le taux de variation du vecteur tangent en
fonction de la distance :
dt
ds

-



232 Espace euclidien en coordonnées curvilignes

dt/ds n’étant pas un tenseur, la courbure ne sera pas invariante si ’on passe en coordonnées
curvilignes. Or la courbure est une notion intrinseque, indépendante du systeme de coordonnées.
Il faut donc redéfinir la dérivation des vecteurs, donc des tenseurs.

21.6 DERIVEE PARTIELLE ORDINAIRE

Dans un espace ponctuel &, rapporté a un systéme de coordonnées (z*), soit un vecteur
u (u'). La dérivation partielle ordinaire par rapport aux coordonnées de la loi de transformation
des composantes contravariantes de ce vecteur s’écrit :

Vi ul = uF gﬁk
oo’ o ( ,0x"
Vi J oxd Oxd’ (u 83:’“)
s 0 [ 0"\ o
Oy = Ozl <u &L’k) ox7'
our ox ox . 0%’ o

u

Oxt dxk Oxd’ 0x!oxk Oz’
i/ \ /7
Oyu’ n’est pas un tenseur a cause de la présence du second membre.

De méme pour les composantes covariantes d’'un vecteur u (u;) :

, ok
Vi uy = uy E]
Vi j 8u?/ _ a <WC 8xk>
O O Ox?
Gos = 2 (u 3_xk> oat
T 00t \ R 92t ) o’
_ OQuy, 0z* Ox! 9%xk o7

= ” — + U ” ”
ozt Ox¥ OxJ F oxloxt Oxi

Oyuy n'est pas un tenseur a cause de la présence du second membre.

21.7 DIFFERENTIELLE ABSOLUE D’UN VECTEUR

21.7.1 Vecteur en composantes contravariantes

Dans un espace ponctuel &, rapporté a un systéme de coordonnées (x?), soit un champ de
vecteurs u(u'). Lorsque 'on passe d’un point & un point infiniment proche, les composantes
contravariantes u' du vecteur u changent, ainsi que le repere naturel (e;). Avec les relations
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(112) p. 222, et (113) p. 222 :
u=u'e;
= (e (o)
du = du'e; + u'de;
= du'e; + u'w’ e,
= (dui + ujwij> e;
= (8juidxj + T dxj> e;
= (8jui + ukl“ikj> dz’e; (134)

= Du’ei

DEFINITION 21.7.1. du est le vecteur différentielle absolue du vecteur u.

DEFINITION 21.7.2. Les Du' sont les composantes contravariantes du vecteur différentielle
absolue du, appelées différenticlles absolues des composantes contravariantes u'.

REMARQUE 36. Les du’ ne sont pas les composantes contravariantes d’un vecteur.

REMARQUE 37. Les Bjui ne sont pas les composantes miztes d’un tenseur d’ordre deuw.

REMARQUE 38. Nous avons deuz facons d’écrire le vecteur final u + du :
u+ du=u'e; + du'e; + u'de;
= u' (e; + de;) + du'e;
et,
u+du= (ui + dui) e; + u'de;
= (ui +du’ + ujwij) e;

21.7.2 Vecteur en composantes covariantes

Dans un espace ponctuel &,, soit v(v') un champ de vecteurs uniforme et arbitraire. Avec
les relations (112) p. 222 :

v = cote
d (viei) =0
dv’e; +v'de; = 0
(dvj + viwji) e =0
J

Vi dv' = —viw,

1
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Soit u un champ de vecteurs de composantes covariantes wu;. Avec les relations (113) p. 222,
leur produit scalaire donne :

u-v =y
du-v)=d (ulvl)
du-v+u-dv=vdu +udv’
du-v = v'du; + u;dv’
du - e;vt = (dui — ujwjl-) V'
Vi du-e; =du; — ujwjl-
= (@-ui — ukaij) da’
= Du;

DEFINITION 21.7.3. Les Du; sont les composantes covariantes du vecteur différentielle
absolue du, appelées différentielles absolues des composantes covariantes u;.

REMARQUE 39. Les du; ne sont pas les composantes covariantes d’un vecteur.

REMARQUE 40. Les dju; ne sont pas les composantes covariantes d’un tenseur d’ordre deut.

21.8 DERIVEE COVARIANTE D’UN VECTEUR

21.8.1 Vecteur en composantes contravariantes

La dérivée d'un vecteur est la dérivée de ses composantes et des vecteurs de base. Avec les
relations (115) p. 222,

VJ 8ju = 8j (ulel>
= eiajui + ukajek
— (@-ui + ukFikj) e;

i
= Vju'e;

DEFINITION 21.8.1. Les V;u' sont les composantes miztes du vecteur dérivée O;u, appelées

dérivées covariantes des composantes contravariantes du vecteur u ou dérivée covariante
du vecteur u.
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NOTATION 25. Nous emploierons également les notations suivantes :
Vi,j ol 20t +utT,
Vi,j Dju’ £ 9ju’ + ukfijk
Avec les relations (134) p. 233 :
Vi Du' = Vu'dz’ (135)

D’aprés la définition 21.7.2 p. 233 des Du’, les V;u’ da? sont les composantes contravariantes
du vecteur différentielle absolue du. D’apres la relation (10) p. 29, les da? sont les composantes
contravariantes d’un vecteur. Par conséquent les V;u’ sont les composantes mixtes d’un tenseur
d’ordre deux.

21.8.2 Vecteur en composantes covariantes

Dans un espace ponctuel &,, soit v un champ de vecteurs uniforme et arbitraire, de com-
posantes contravariantes v* :

v = Cste
VJ 8]‘ (viei) =0
i eiﬁjvi + vkajek =0
Vi (9" + 0" y) e =0
Vi,j O = =o',
Soit u un champ de vecteurs de composantes covariantes u;. Leur produit scalaire donne :
u-v=u
Vi 0j(u-v)=0; (ulv’)
Vi dju-v4+u-0;v= viajui + uzﬁjvi
Vi dju-v= viajui — uikaikj
\V/Z,j ajll e, = @ui — ukfkij
= Vjui

DEFINITION 21.8.2. Les V;u; sont les composantes covariantes du vecteur dérivée O;u,
appelées dérivées covariantes des composantes covariantes du vecteur u, ou dérivée cova-
riante du covecteur .

NOTATION 26. Nous emploierons également la notation suivante :
Vi, Ui £ Oju; — ukfkij
Avec la définition 21.7.3 p. 234 :
Vi Du; = Vju, da’
D’apreés la définition 21.7.3 p. 234 des Du;, les V,u; dx? sont les composantes covariantes du
vecteur différentielle absolue du. D’apres la relation (10) p. 29, les da’ sont les composantes

contravariantes d'un vecteur. Par conséquent, les quantités Vju; sont les composantes deux fois
covariantes d’un tenseur d’ordre deux.
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Résumé du passage des coordonnées rectilignes aux coordonnées curvilignes :
du = 0;u’ da’e; — du = V;u'dx’e;

du = 0ju; dx’e’ — du = V u; dx’e!

21.9 DERIVEE ABSOLUE LE LONG D’UNE COURBE

Dans un espace ponctuel &, rapporté a un systéme de coordonnées (z%), soit € (\) une
courbe d’équation paramétrique z = z%()\). Soit un champ de vecteurs ufu’(z7(\))] défini le
long de €'(\). A partir des relations (134) p. 233, on définit la dérivée absolue par rapport au
parametre A du champ de vecteurs u le long de la courbe €()\), par :

Du , du da?
Ut p 00 g AT

Iy TR gy (136)

Vi

Il s’agit en fait de la multiplication contractée du tenseur V;u’ avec le vecteur da? /d) tangent

a €(\). En effet :
- dad ou’ , J
iV d _ ( u ukf"kj> dx

D \ow 3\
du' . da?
— ri &
an TRy

21.9.1 Vecteur accélération d’un point mobile
Dans 'espace ponctuel &,, considérons un point mobile M dont les coordonnées curvilignes
P p p g
(x%) sont fonction du temps, M (z'(t)). Le vecteur position est particulier, il s’écrit

OM (t) = 7'(t)e;

ou e; n’est jamais fonction du temps. Il relie I'origine de ’ancien repére a 1’origine du nouveau
repere, et n’est exprimé que dans I’ancienne base. Par conséquent, dans la base naturelle locale
(e;), sa différentielle est donnée par la relation (10) p. 29

dM = dz'e;
et non par la définition 21.7.2 p. 233. Le vecteur vitesse a alors pour expression :
vA dM
dt
; dz'e;
ve =
dt

Vi ot =3 (137)
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NOTATION 27. Le point est l'opérateur de dérivation totale par rapport au temps.
Le vecteur accélération a pour expression :

A .
Y=V

Dv?
dt
., Dv
V’l Y= W

i

Ve = €;

Avec la définition 21.7.3 p. 234 :
Vi o =0+ T 000" (138)

e N

REMARQUE 41. Le vecteur dérivée absolue d’un vecteur le long d’une courbe est unique. En effet,
supposons qu’il y en ait deuzx, alors en coordonnées rectilignes ou les symboles de Christoffel sont nuls,

nous aurions :

Du  du ; ou _du i Du ou
dx dx O x ax PRRE TN T oA
Or d’apres le paragraphe 20.10 p. 212, une équation tensorielle valable dans un systéme de coordonnées

est valable dans tout systéme de coordonnées.

EXEMPLE 21.9.1. Une particule se déplace d’un mouvement circulaire uniforme ayant
pour équations en coordonnées polaires p = c*¢, 6 = wt. Cherchons ['expression de son
accélération. En se servant des symboles de Christoffel calculés dans l'exemple 21.4.3
p. 227 :

7 = p+TPge00 V= —pf? = —pu?
0 g = ,
v =0+1%,0p =0
D’apres la définition 11.6.1 p. 94 de la norme d’un vecteur :
Y=y
=7'e; - ’Yjej
T =9y
= /gpp'yﬂfyﬂ

= pw2

21.10 GEODESIQUES DE L'ESPACE EUCLIDIEN

L’accélération du point M est nulle ssi sa trajectoire est une géodésique de &,,. La trajec-
toire a accélération nulle est invariante par changement de coordonnées. Les géodésiques sont
donc indépendantes du choix du systeme de coordonnées, dans les espaces euclidiens et non-
euclidiens. D’apres (137) et (138) p. 236, les coordonnées z'(t) d'une géodésique de &, sont
solutions du systeme d’équations différentielles :

Vi=1,...,n & +I";4 =0 (139)
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Une géodésique est completement déterminée par un point et sa tangente en ce point. Soit u
le vecteur unitaire tangent a la trajectoire du point M et s I’abscisse curviligne. On le définit
a partir du vecteur vitesse,

dM

dt

_dM ds

T ds dt

= uv

VvV =

ou l'on a posé :
A dM

Rl (140)

v ds

Le vecteur u est unitaire puisque
u=v/v
Il a pour composantes :
dx’
T ds
Adoptons comme parameétre indépendant a la place du temps, I'abscisse curviligne s du point

M le long de la géodésique de &, comptée a partir d'une origine fixe. Le systeme d’équations
différentielles (139) devient

Vi o'

du’
ds

ou u est le vecteur unitaire tangent porté par la géodésique.

Vi=1,...,n

+ T v =0 (141)

21.10.1 Exemples

EXEMPLE 21.10.1. En coordonnées rectilignes, donc dans un espace euclidien ou pseudo-
euclidien, les g;; étant constants les symboles de Christoffel sont nuls. Le systéeme d’équa-
tions différentielles (139) s’écrit :

_ d?xt
Vi ds? =0

Vi zt=a;s+b;
Dans lespace ponctuel euclidien & (le plan) rattaché au systeme de coordonnées recti-
lignes (z,y) :

T =a15+ b s=(z—b)/a )
= a a = =ar+
{y:a28+b2 y:_2x+b2__261 Yy
aq aq

EXEMPLE 21.10.2. La droite verticale d’équation x = a dans un systéeme rectangulaire a
pour équation polaire p = a/ cos(f). Montrons que cette équation vérifie ’équation (141).
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Paramétrons l’équation de la droite :

p = a/ cos(\)
0=\

ds _ [ drtdz
ax V99N an

= \/p2 + p207
Le long de la droite :

1l sin? \ N 1
— 1% Cost cos?(\)

Avec la relation (110) p. 215 :

= Jal/ cos’(Y)
% = cos?(A\)/|a
Ainsi, pour toute fonction x(\) le long de la droite :
dr(N)  dw d)
“ds  d\ds
_cos?(N) da
ol dx
?z(N)  d [cos®(N) dx\ dA
ds? _5< |a| ﬁ)%
[ —2cos(N)sin(A) dz cos?(X) d?z\ cos®(N)
N ( al dx " al K) al
_cos'(N) d®x 2sin(A) cos’(A) dx
T @2 AN a? d\

L’équation de droite pour p(\) s’écrit :

d*p LT dodd  cos'(\) d’p  2sin())cos’(A) dp (=p) cos*(N) (do 2
ds? ' % dsds  a?  d())? a2 P e \ax
cos*(\) / , ) )
= Tz() (,0 — 2p" tan(\) — pf 2)
_cos*(A) (acos’(A) + 2asin®(A) cos(N)  2asin()) an(\) — a
T a? cos*(\) cos?(A) cos(\)

=0
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De méme, l’équation de droite pour () s’écrit :

d*0 o dpdf cos'(\) d*0  2sin())cos’(\) df N 2cos'(N) dp df

d? T M dsds @ dOV? @ A p @ dhdx

4 /0!

_ 2()\) (0” — 20" tan(\) + 200 )
a p

cos?(\) 2a sin(\) cos(\)

- —2
a? < tan(A) + a cos?(\)

=0

21.11 DIFFERENTIELLE ABSOLUE D’UN TENSEUR

Les considérations du paragraphe 21.7 p. 232 sur la différentielle absolue d'un vecteur
s’étendent a un champ de tenseur. Soit &£, un espace ponctuel euclidien rapporté a un sys-
teme de coordonnées curvilignes (x%). Soit un champ de tenseurs T d’ordre trois, deux fois
covariant et une fois contravariant, de composantes tij’l‘C :

T:tij"“ei®ej®elrC

Lorsque I'on passe d’un point a un point infiniment proche, les composantes tl-jk du tenseur T
changent, ainsi que le repére naturel ' ® e/ @ ey, :

dT =d (tijk e ® ek)
— dtijk (ei ®e ® ek) + tijkd (ei ®e ® e’“)

DEFINITION 21.11.1. Différentielle absolue d’un tenseur
dT est le tenseur différentielle absolue du tenseur T.

DEFINITION 21.11.2. Différentielles absolues des composantes d’un tenseur
Les Dtijk sont les composantes du tenseur différentielle absolue dT.

dT £ Dtijk e'®e ® ey

Pour trouver ’expression des Dtijk nous utilisons la commutativité de la contraction et de
la différentiation.

(1) La multiplication tensorielle de T avec trois champs de vecteurs uniformes donne :
Toueveow=tuvv"w,e e e, @e e, ®e"

ou le champ de vecteur w est exprimé en composantes covariantes. La contraction
complete de ce produit tensoriel (i = [, j = m, k = n) donne le scalaire

ki
iy vl wg
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Différentions ce scalaire pour un déplacement infiniment petit :
d(tijkuivjwk) = dtijkuivjwk + tijkduivjwk + tijkuialvjw/rC + tijkuivjdwk

Les champs de vecteurs étant uniformes, leurs différentielles absolues sont nulles et les
définitions 21.7.2 p. 233 et 21.7.3 p. 234 donnent

Vi du' = —u'W, ; Vi dv' = -l ; Yk dw, = ww',

koG N oy ki g ko lod ik ki g, 1
d(t,“u' v wg) = dt;“u' v wy — M uw v wy, — v W, + et v ww’y

S TR N IR T SO S S A B Ly, j k
= dt;; uvwy, — ) u'w v oy — ) u v whwg + 6 utv wpw”

= (dtij’l‘c —t, ) — W + tl-jlwkl) u'vlwy,
(2) Les champs de vecteurs étant uniformes, différentions le produit tensoriel :
dATRuevew)=d (tijkulvmwn e€Ree, e e, ® e”)
_ (Dtijkulvmwn + t,* Dulv™w, + t;"u! Dv™w,, + tijkulvawn) €ReRe,Re e, Re"
= Dtijkulvmwn €ReRe,Re e, Re"
Si nous contractons complétement ce produit tensoriel nous avons :

k i g k k1 k1 Lok, i j

21.12 DERIVEE COVARIANTE D’UN TENSEUR

A partir des relations (142) :
Vi, j,k Dt =0t da™ — 4, T da™ —t,F T da™ 4+, T8, da™
_ k k1l k1l Lk m
= (Omty" =t T, = 6T, 4 1, T,,) do
= thijk dx™

DEFINITION 21.12.1. Dérivée covariante d’un tenseur
Les composantes du tenseur dérivée covariante du tenseur T s’écrivent

k_ k ki ki Ik
Vit = Omty; — U Uy — 67 T + 657 T,

21.13 THEOREME DE RIcCcCI

THEOREME 21.13.1. Théoréme de Ricci
La différentielle absolue du tenseur fondamental est nulle :
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DEMONSTRATION. Appliquons les relations (142) p. 241 a un tenseur deux fois covariant,

et utilisons (122) p. 224 :
Vi,j Dgij = dgi; — w*;gir — "9

k k k k
= W9k t Wik — W Gik — Wik
=0

Par conséquent la dérivée covariante du tenseur métrique est nulle :
Vi,j Dgi; =0

(143)

Le tenseur métrique se comporte comme une constante vis a vis de la dérivation covariante.

La dérivation covariante des symboles de Kronecker est nulle. En effet :

Vi 16 =t

Vi k Viptie! + t°V6) = Vit

Vilt! + V6! = Vit!
Vi, jk Vidl =0

Nous avons alors :
vy, 1 gligij = 51j
Vi kL Vigig? + 9uVig? = Vo]

Vi, j k Vig? =

Vi,j7 Dg” =0

Par conséquent la dérivée covariante et la montée-descente des indices commutent :

Viojk Viti = Vi (g't;)
= ¢Vt

21.13.1 Identités de Ricci
A partir des relations (122) p. 224 :
Vi, i dgi; = w* g + w"igjn
OnGij dah = ijh girda" +T%, gjkd:ch
Vhyi,j  Ongij = Gix ijh + g T

Ces relations constituent les identités de Ricei.

(144)

(145)
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21.14 OPERATEURS DIFFERENTIELS

21.14.1 Gradient d’un champ de scalaires
Le gradient est défini au paragraphe 18 p. 151 :

Vi 00 L grad¢ - e;

21.14.2 Divergence d’'un champ de vecteurs

Soit un champ de vecteurs u de composantes contravariantes u’. Par contraction du tenseur
dérivée covariante V,;u’ on obtient le scalaire

divu £ Vu' (146)

appelé divergence du champ de vecteurs u. En se servant de la définition 21.8.1 p. 234 de la
dérivée covariante puis des symboles de Christoffel contractés, relation (129) p. 226 :

A -
divu = giu’ +u’ I,

= o’ u_j@,
qu\/E j\/m

1 :
divu = — 8, <u |g|> (147)
V19l
Dans un systeme de coordonnées rectilignes les symboles de Christoffel sont nuls :
divu = 9;u’ (148)

21.14.3 Divergence d’un champ de tenseurs

(1) Dans le cas d’'un champ de tenseur 2 fois contravariant, d’apres la définition de la
dérivée covariante 21.12.1 p. 241 d’un tenseur :

Vit = Opt? + 9 T, + 41T,
Vit = 0 + 49 T, 11T,

Si le tenseur est antisymétrique ¢ = —t, alors le dernier terme est nul car :
¢ Fjil = ¢" Fjli
— il Fjil
=0
Il reste :

Vit = ot + 917,

. 1
= 0it" + —= 01/ |9

Vgl
-

9]
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(2) Dans le cas d'un champ de tenseur mixte d’ordre deux :
Vit'; = Opt’; + ', T, — t, T,
Vit', = o', + 11, T — T

j
l i Tl
m&l(tj |g‘)—t F]
1 l )
ﬁ %) <t] 9] > — 599" (Ghig + Gjni — Gisn)
g
1 l ih
ﬁ o) tj t (Ghij + Gini — Yijn)
\/ 19

Si le tenseur est symétrique t* = ¢i* alors :

ih hi
" gini =" gjin

ih
=1t"gjin

Vitj = — al (tj ‘g|) — %thghm
V191

21.14.4 Rotationnel d’un champ de vecteurs

Soit un champ de vecteurs u de composantes covariantes u;. D’apres la définition 21.8.2
p. 235, le tenseur dérivée covariante Vju; s’écrit :

VZ,j Vjul- = @»ui — Uk Fikj

En échangeant les indices j et ¢, et en utilisant la symétrie des symboles de Christoffel par
rapport a leurs indices inférieurs :

\V/Z,] Vilbj = @uj — Uk Pikj
si bien que :
V’l,j Vjui - Viuj = @»ui — 82"&]'

D’apres le paragraphe 20.9.1 p. 206, la soustraction de deux tenseurs est un tenseur, par consé-
quent les quantités,

V’l,j rotiju = 8jui — 8Z-uj
sont les composantes covariantes d’un tenseur d’ordre deux
rotu = (O;u; — dju;) € ® €;
antisymétrique
I"Otijll = —I'Otjill

appelé rotationnel du vecteur u.
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Espace de dimension 3

Un tenseur antisymétrique d’ordre n posséde n? composantes, dont n(n — 1)/2 sont diffé-
rentes. Dans le cas d'un espace a trois dimensions, et seulement dans ce cas, 3(3—1)/2 =3, le
nombres de composantes « strictes » du tenseur est égal a la dimension de 1’espace :

0 Uy — U21 Uy,3 — U3,1
rotu = _(ULQ — U271) 0 U3 — U32
—(u1,3 —ugy) —(ug3 —usp) 0

A tout tenseur antisymétrique on peut adjoindre un vecteur ayant pour composantes les com-
posantes strictes du tenseur.

Ug2 — U2,3
rotu= | u;3—us;
U1 — U2

est appelé vecteur rotationnel.

EXEMPLE 21.14.1. Dans le systéme de coordonnées rectangulaires (z,y,z) de l'espace
euclidien E5 :
O, = Oy
rotu= | d,u, — O, u,
Oty — Oyy

21.14.5 Laplacien d’un champ de scalaires

Soit ¢ une fonction scalaire des coordonnées curvilignes. On appelle laplacien de ¢ le sca-
laire :

A¢ = divgrad ¢

La divergence étant définie avec les composantes contravariantes du vecteur, nous avons :
Ao =V, (g70,)
= ¢"V; (9.5)
Avec la définition 21.8.2 p. 235 :
A = g7 (8¢ — T'y; b1)
Avec la relation (147) p. 243 nous avons aussi :

Dy =V, (gij¢,j)

1 y
26 =——=0: (isle", )
V19l
Pour un systéme de coordonnées rectangulaire, g = 1 et g% = §¥ :

Do =Y O
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21.15 DERIVEE COVARIANTE SECONDE D’UN VECTEUR

21.15.1 Vecteur en composantes contravariantes

Soit v un vecteur de composantes contravariantes v?, d’aprés la définition 21.8.1 p. 234 sa
dérivée covariante est un tenseur mixte de composantes :

Vi,j Vo' 2o 40" T
La définition 21.12.1 p. 241 de la dérivation covariante d’un tenseur mixte,
Vi, kI Viti = opti — ¢, T, T,
nous donne :
Vi (Viv') = Vi’ = Vo' T, 4 Vi T,
=0, (vi’k + vjl"ijk) - (8th' + vjl"ijh) '+ (8kvh + vjfhjk) |

(149)

21.15.2 Vecteur en composantes covariantes

Soit vecteur v de composantes covariantes v;, d’apres la définition 21.8.2 p. 235, sa dérivée
covariante est un tenseur deux fois covariant de composantes :

Vi, k Vv £ 0 — vjl“ijk
La définition 21.12.1 p. 241 de la dérivation covariante d’un tenseur deux fois covariant,
Vi k,m  Vta = Ontie — te T, — ta TV
nous donne :
Vi (Vis) = 0 Viv; — Vi T — Vi TV,
= O (8kvi - ij"jk) — (&vi — ijjil) | (8kvl — vjl“jlk) r.

_ i i l J l l 17 l
= mkvi—vjamfjk—ijﬁmvj—kaﬁlvi—i—vjl“ilem—Fimﬁkvl—i—vJFlkI’im

21.16 REGLES DE DERIVATION DES TENSEURS

21.16.1 Dérivée covariante
Dérivée covariante,
de la somme : Vi (T+8S)=V,T+V,S
de la multiplication tensorielle : Vi [TS] = [V TS| + [TV,S]
de la multiplication tensorielle contractée : Vi (TS) = VTS + TV,S
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21.16.2 Différentielle absolue

Différentielle absolue,

de la somme : D(T+8S)=DT+ DS
de la multiplication tensorielle : D[TS] = [DTS| + [T DS]
de la multiplication contractée : D(TS)= DTS+ TDS

EXEMPLE 21.16.1. Dérivée covariante de la somme de deux tenseurs :
Vi, k thi + Vksi = 8kti + thijk + akSi + stijk
=0, (1 +5) + (¢ +57) T
= Vi (ti + Si)

EXEMPLE 21.16.2. Dérivée covariante de la multiplication tensorielle de deux tenseurs.
Soient t; et s; les composantes de deux tenseurs miztes d’ordre deur, de produit tensoriel
Pg — 4Pgd -
ub? = {Is? .
g _ ,pa p ., tq a ,pt t ,pq t . pq
Vk7p7 q,7,8 urs;k - urs,k + T tkUrs +T thUrs — r rkUts — r skUrt
— (4P a4 4 4P p ., tq qa ,pt _ Tt P4 _ Tt ,pq
- (tnk:‘ss + trss,k) + r thkUrs + r thUprs — r rkUts — r skUrt
_ p vy t t D q P q q t t q
- (tr,k +T tktr - T rktt) Ss + tr (Ss,k + T thSs — r skst)

Y q Y]
- tr;kss +tr85;k

EXEMPLE 21.16.3. La contraction des indices et la dérivée covariante commutent :
> 8 ij sk _ (.47 i tj J .t t ij\ sk
Vi, g, 1 i 00 = (Tk,l + Dy + 1y — Doy )5j
_ 4 i .t g .t t i
_ i o .ti
=1+ Tr;
i
AL
Nous en déduisons la loi de dérivation covariante de la multiplication contractée, la
contraction étant effectuée a la fin.

EXEMPLE 21.16.4. Dérivée absolue de la multiplication tensorielle. Soit une courbe
d’équation paramétrique x = x(X), et soient T [x(\)] et S[x(N)] deux tenseurs définis
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sur cette courbe :

D dxk
=T -~
dx"
= {[ViTS] + [TV,S] N
dx* dx*
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22.1 FORCE, CHAMP, POTENTIEL

Dans la théorie newtonienne de la gravitation, le modele de Hooke de force de gravitation
en inverse du carré de la distance s’exercant entre deux corps de masse M et m s’écrit :

GMm
[7m — 7ar]?
GMm

g eT‘
T2

From = (’l"m - ’rM)

ou r est la distance entre les deux masses, re, est le rayon vecteur de M vers m, et ou la
constante de proportionnalité G est appelée constante d’attraction gravitationnelle. Le signe
négatif indique que la force de gravitation est attractive.

()—= ()
FM~>m

Fia. 22.1 — Signe de la force de gravitation

A partir de la force exercée en un point de I'espace (de masse m), on définit un champ de
force exercé dans tout 'espace (donc indépendant de m).

DEFINITION 22.1.1. Modéle de champ de force
Le modele du champ de gravitation créé par la masse M a une distance quelconque r a
POUT exXPTression :

GM
g = a2 e (150)

ot le rayon vecteur re, a pour origine M, et le signe négatif indique que le champ est
dirigé vers M.
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D’otu la relation entre force gravitationnelle et champ de force gravitationnel :

Fam =mgy (151)

DEFINITION 22.1.2. Potentiel scalaire d’un champ vectoriel
La fonction scalaire f est dite potentielle du champ vectoriel A ssi :

A% —gradf

Réciproqguement, nous dirons que le champ vectoriel A dérive du champ de scalaires f.

EXEMPLE 22.1.1. En coordonnées rectangulaires, cylindriques et sphériques, le gradient
du vecteur A s’écrit respectivement :

e (00, 00 01
xAZ+yA]+ZAk——<8 +8y3+azk>
0 10 0
pae, + 0se9 + zp€, = — <8£ e, +— GJHC + af ez>
0 10 1 0
TA8T+9A86+¢AB¢:_<8_£ ety GJQC +7’Sln()8i; )

En partant de la définition précédente :

DEFINITION 22.1.3. Potentiel du champ gravitationnel
¢ est le modele de potentiel scalaire du champ gravitationnel g ssi

g £ —grad¢

Réciproquement, nous dirons que le champ g dérive du potentiel de champ ¢.

Un champ est conservatif s’il dérive d’un potentiel. Le champ de gravitation est conserva-
tif, il dérive du potentiel de champ ¢ appelé potentiel newtonien. En coordonnées sphériques
(r,0,0) :
d¢
or <
09
or

/ABgdl":—(GbB—GbA)

La définition 22.1.1 p. 249 donne 'expression du modele du champ gravitationnel créé par une
masse M, on en déduit le modele de potentiel du champ gravitationnel :

—(¢B—¢A)=—/ G—Md'f’

g€ = —

A r?
B
ba— b5 = [G—M]
rola
o= A (152)
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DEFINITION 22.1.4. Potentiel de la force gravitationnelle
E, est le modéle de potentiel scalaire de la force gravitationnelle F ssi

F 2 —grad E,

Réciproquement, la force de gravitation F dérive du potentiel de force E,, appelé énergie
potentielle de gravitation.

En partant de la définition précédente, en coordonnées sphériques (r, 6, ¢) :

F = —gradE,
E
Fer:—%er
r
1))
F=—-—"2"
or
Ep:—/Fdr
M
:_/_G mo
r2
GMm
E,=— .

Le potentiel de force et le potentiel de champ sont liés par la méme relation ((151) p. 250) qui
lie force et champ :

E, =mo

22.2  CHAMP DE GRAVITATION DU A UNE SPHERE HOMOGENE

Soit une masse uniformément répartie sur la surface d’une sphere creuse de rayon a. Cal-
culons l'intensité du champ de gravitation en un point P extérieur a la sphere. Découpons la
sphere en bandes circulaires de rayon asin(f) et de largeur adf ou 6 est la latitude.

Fic. 22.2 — Champ de gravitation en P
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L’aire infinitésimale d’une bande vaut
ds = 2masin(0) x adf
= 2ma® sin(6)df
Soit m la masse de la sphere et p sa densité. La masse infinitésimale d'une bande vaut

dm = pds

— 2
= T ¥ 2ma” sin(0)d6
= Lmsin(0)dd

2
Soit R la distance du point P a la bande, le champ de gravitation infinitésimal produit par
cette bande en un point P s’écrit :
Gmsin(0)do
SRR T
Plutét que d’effectuer la difficile intégration du champ vectoriel de gravitation, nous allons

intégrer le champ scalaire du potentiel grace a la relation (152) p. 250, puis nous reviendrons
au champ de gravitation :

dg,, =

Gdm
R
Gmsin(0)d6
2R
Soit r la distance du point P au centre de la sphere. Différentions la loi des cosinus :
R? = a® +r* — 2ar cos(0)
2RdR = 2arsin(0)do

dv =

d
Rdlt = sin(0)d0
ar
si bien que
JV — — GmdR
2ar

Intégrons sur la surface totale de la sphere. Quand P est en dehors de la sphére r > a, R varie
der4+aar—a:

Gm a—r
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Pour le champ de gravitation a I'extérieur de la sphere nous obtenons :
g = — e,, r>a
r

Le champ de gravitation en un point extérieur a la sphere est identique au champ de gravitation
que 'on aurait si la masse de la sphere était toute entiere au centre de la sphere. A 'intérieur
de la sphere :

g =0, r<a

En tout point intérieur a une sphere le champ de gravitation est nul.

22.3 CHAMP DE GRAVITATION DU A UNE BOULE HOMOGENE

On suppose que la boule est un ensemble de spheres concentriques homogenes. On applique
le résultat précédent pour chaque sphere. Le champ de gravitation en un point extérieur a la
boule est identique au champ de gravitation que l'on aurait si la masse de la boule était toute
entiere au centre de la boule.

En un point P intérieur a la boule, toutes les sphéres de rayon supérieur a r ne contribuent
pas au champ en P. Soit M la masse de la boule de rayon r, le champ de gravitation s’écrit :

GM
g=— e
rz "
La masse M a pour expression :
m 4
M= 1— x omr’
§7ra 3
mr3
a3
si bien que :
Gmr
g=— €r
a3

Au centre d’une boule le champ de gravitation est nul (par symétrie sphérique), puis il augmente
linéairement jusqu’a la surface de la boule, puis décroit en fonction du carré de la distance au
centre de la boule.

22.4 EQUATIONS DE POISSON ET DE LAPLACE

Si dans un volume donné un champ de vecteurs (scalaires, vecteurs ou tenseurs) est de
divergence nulle, ce qui signifie qu’il ne diverge pas, ni ne converge, autrement dit il n’y a ni
source ni puit dans ce volume, alors ce champ de vecteurs est a flux conservatif a travers la
surface fermée de ce volume. Tout ce qui entre par la surface en ressort, et tout ce qui sort
entre. Il y a conservation du champ dans le volume en question. Réciproquement, si un champ
de vecteur est a flux conservatif alors sa divergence est nulle.
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22.4.1 Théoreme de la divergence

THEOREME 22.4.1. Théoréme de la divergence
Soit u un champ de vecteurs quelconque. Pour tout volume V de surface S et de normale

sortante n :
#u-nds:///div u dv
S 1%

DEMONSTRATION. Soit un systéme de coordonnées rectangulaires (z'), de base naturelle
(e;). Soit S une surface fermée telle que toute droite parallele aux axes de coordonnées coupe
cette surface en au plus deux points (par exemple un balon de baudruche suffisamment gonflé) :

ﬂu-nds = #(ulel+u2e2+u3e3) ‘nds
s s
= #ulel~nd8+#u2e2~nd5’+#u3e3~nd$
S S s

el

Fi1c. 22.3 — Volume de surface S

Calculons le dernier terme du membre de droite. Imaginons un plan (z',z?) horizontal
coupant la surface fermée S en deux, de sorte que la ligne d’intersection soit la plus longue
possible. Nous intégrons maintenant sur les deux surfaces S; en bas et Sy en haut, non fermées,
de normales sortantes respectives n; vers le bas et ny vers le haut

# udes -nds = // udes - ny ds; + // udes - Ny dss
S S Sa

{eg -1 dSl = —d[L‘lde‘Q

avec

e; - Ny dsy = drtdz?
Les surfaces S; et Sy ont pour équation respective :

{51 c 2t =i (at, 2?)

Sy a® =l (2t %)
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Soit R le domaine d’intégration en x!, 2

ﬁiu‘geg ‘nds = //}%ufs(a:l,:cz,xg) dztdz® — //}%ufs(a:l,:cz,x?) dz'dx?
= //R[u?’(xl,xZ,xg) —ud(2t, 2%, 2%)) da'da?
:// ( :Q%dx) da'da®
zi
// %dv

Nous obtenons un résultat similaire pour les coordonnées z! et 22, si bien que :

#u nds—// %dv // @dv // ﬁdv
- (G 5+ )
:///Vdivudv

ou l'on a utilisé la définition (148) p. 243 de l'opérateur différentiel divergence en coordonnées
rectilignes. Le théoréme peut s’étendre aux surfaces qui ne satisfont pas la condition que des
droites paralleles aux axes de coordonnées rectangulaires les coupent en au plus deux points.
Pour établir cette généralisation, subdiviser le domaine S en sous-domaines dont les surfaces
satisfont la condition. O

u-n et divu sont des scalaires et I'intégrale de surface et celle de volume ne dépendent pas
du systeme de coordonnées, par conséquent ce théoréme est une égalité entre deux scalaires,
donc une relation tensorielle vraie dans tout systeme de coordonnées :

ﬂuini ds = // ou’ dv
s 1%

Avec (76) p. 162, remplagons dv par +/|g| d) et ds par y/|g| do :

ﬁi V0gluin; do = ///V Vgl 9yt (153)

22.4.2 Théoréme de Gauss

THEOREME 22.4.2. Théoréme de Gauss
Soit S une surface fermée quelconque, de normale sortante n. Soit r = re, un champ de
vecteurs d’origine O :

Si O est extérieur a S, — nds=0
s
. e . \ €
Si O est intérieur a S, — -nds = 4w
s

DEMONSTRATION. A partir du théoréme de la divergence 22.4.1 p. 254 avec u = e, /12

r2 nds-///dlv ) dv
s
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— Supposons O extérieur a S. Dans ce cas r ne peut pas étre nul dans le volume d’inté-
gration de la divergence (r # 0 dans V') :

(%) -an(2)

X l‘l I‘Q fE3
:dIV —3e1+—3e2+—3e3
T T T

L0 (), 0 (), o (+
-~ oxt \ 3 ox? \ rd ox3 \ rd

Pour le premier membre :

ow () = o \ g
donc :

— Supposons maintenant O intérieur a S. Entourons O d’une petite sphere s de rayon a
et de volume v. Soit ¥ le volume intérieur a S et extérieur a s, et soient ng et ny les
normales sortantes respectives des surfaces S et s :

Z%er”“ds—zza”nﬂm:iﬁydw(ﬁ)du—éydw(ﬁjdv
S TQ s T2 1% TQ v TQ
= /// div <e_;) dv
v T
=0
car O est extérieur a ¥ . Nous avons alors :

e, Ng e, - n,
5 s = 5 ds
S r s r

22.4.3 Loi de Gauss pour la gravitation

THEOREME 22.4.3. Loi de Gauss, forme intégrale
Le flux d’un champ de gravitation a travers une surface fermée est proportionnel a la somme
des masses intérieures a cette surface :

# g, - Nds = —4rG My,
s
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Le signe négatif indique que le flux est entrant.

DEMONSTRATION. Deux cas :

— Pour le « cas intérieur », remplagons le champ de gravitation par son modele (150)
p. 249, et intégrons sur une surface fermée autour de la masse :

GM,,
#ng-nd:s:#— 2ter-nd5
s s r

eT‘
= — Mzntﬂi -nds

g

Appliquons le théoreme de Gauss :
# g, - Nds = —4nG My
S

La masse intérieure a la surface est la source du champ de gravitation, dirigé vers la
masse (signe négatif car g M, €st entrant et la normale n est sortante).

4

— Pour le « cas extérieur » nous pouvons poser M;,; = 0, ou bien appliquer le théoreme
de Gauss sur une surface fermée ne contenant pas de masse :

#gM-nd:s:O
s

Le flux du champ de vecteurs g, issu de M est nul a travers une surface ne contenant
pas M. Il n’y a ni source ni puit dans le volume défini par cette surface, et le flux
entrant et égal au flux sortant.
THEOREME 22.4.4. Loi de Gauss, forme différentielle
div g = —4n1Gpin

DEMONSTRATION. A partir du théoréme de la divergence 22.4.1 p. 254 et de la forme
intégrale du théoreme de Gauss appliqué au champ de gravitation :

///divgdv:ﬂg~nd5’
1% s

= —47TG/// Pint dv
v

div g = =471 Gpjiny
[
THEOREME 22.4.5. Equation de Poisson

Soit ¢ le potentiel d’un champ de gravitation. A Uintérieur d’une distribution de masse de
densité volumique p (cas « intérieur ») :

A¢ = 4mpG (154)
DEMONSTRATION. A partir de la loi de Gauss sous forme différentielle :
div g = —4npG
—div grad ¢ = —47pG
ANp = 4mpG
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THEOREME 22.4.6. Equation de Laplace
En posant p =0 dans l’équation de Poisson, nous retrouvons le cas « extérieur » :

Ap =0 (155)

22.5 PRINCIPE D’EQUIVALENCE

Un observateur en chute libre dans un champ de gravitation est dans un référentiel inertiel, il
ne ressent pas le champ de gravitation. La réciproque de ce constat est le Principe d’équivalence :

Un champ de gravitation (ressenti) est localement équivalent a un référentiel non inertiel.

Un champ de gravitation homogene et constant est localement équivalent a un référentiel
uniformément accéléré, ou a un référentiel en rotation uniforme autour d’un axe loin du centre
du référentiel (en plagant 'observateur au centre du référentiel). Cette équivalence est locale
car

— dans un champ de gravitation les trajectoires de deux masses se rejoignent alors qu’elles
sont paralleles dans un référentiel uniformément accéléré, et divergentes dans un réfé-
rentiel en rotation uniforme.

— un champ de gravitation n’est homogene que localement, il tend vers zéro a l'infini
alors que le champ équivalent est constant dans un référentiel uniformément accéléré,
et croit indéfiniment dans un référentiel en rotation uniforme. L’inhomogénéité des
champs de gravitation est a 'origine des forces de marée, qui n’existent pas dans un
référentiel uniformément accéléré ou en rotation uniforme, les forces étant fictives.

De plus ce principe n’est valable que lorsque les masses passives sont petites par rapport a la
masse active qui crée le champ de gravitation. Dans le champ de gravitation terrestre, le Soleil
n’a pas la méme trajectoire que la lune.

Un champ de gravitation homogene et non constant (variable) est localement équivalent a
un référentiel accéléré non uniformément ou a un référentiel en rotation non uniforme.
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Nous avons vu, définition 11.2.2 p. 90, qu’un espace vectoriel est pré-euclidien s’il admet
une base orthonormée ou pseudo-orthonormée globale, autrement dit si le tenseur fondamental
G peut étre ramené par un changement de coordonnées a la forme :

Vi,j  gij = £0i
Cela n’est pas toujours possible car dans un espace a n dimensions, un changement de variables
fournit n fonctions 2 = z¥ (27) alors qu'’il en faudrait n(n + 1)/2 pour changer chaque élément

d’une métrique riemannienne quelconque. L’espace euclidien est donc un cas particulier d’espace
riemannien.

Pour une dimension donnée il existe une infinité d’espaces riemanniens, quelques espace pré-
euclidiens, et un seul espace euclidien. Si nous ne pouvons pas toujours ramener globalement
un espace riemannien a un espace pré-euclidien par changement de coordonnées, il est toujours
possible de le faire localement en un point, que nous noterons M. Cela revient a considérer
I'espace pré-euclidien tangent a l'espace riemannien en M. Les métriques de deux espaces
tangents en un point sont par définition égales, et par conséquent la dimension de ’espace et
celle de son espace tangent sont égales.

De plus, nous cherchons un espace tangent pré-euclidien dont les composantes du tenseur
métrique g;; sont des constantes (ne sont pas fonction des coordonnées)

donc exprimées dans un systeéme de coordonnées rectilignes.

23.1 METRIQUE EUCLIDIENNE TANGENTE EN UN POINT

23.1.1 Espace euclidien tangent

Soit (2%) un systéme de coordonnées curvilignes d’'un espace de Riemann R,, de métrique :
2 N g
ds” = g;;(2") da'dx
Pour douer cet espace de propriétés géométriques, nous l'identifions localement a un espace

ponctuel euclidien de méme signature.

Soit (y*) un systéme de coordonnées curvilignes d'un espace ponctuel euclidien &, de méme
signature que R,,, et de métrique :

ds* = gi;(y') dy'dy’
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Par changement de variables dans &,, y* = y‘(27), utilisons les mémes coordonnées (x%) que
celles de R,,. La métrique de &, s’écrit a présent :

ds® = g;j(z") da'da’

Construisons I'espace euclidien tangent & R,, en un point My(z§) de R,,. A ce point faisons
correspondre le point mg(zf) de &,, tel qu’en ces deux points les métriques soient égales :

Vi, g (Gij)mo = (9ij) Mo (156)

Pour I'instant nous avons fixé la métrique de ’espace euclidien en un seul point, le point my.

Prenons une métrique constante (dont les composantes ne sont pas des fonctions explicites ou

implicites des coordonnées) pour I'espace &, entier, qui soit en tout point égale a (g;;)m,. C’est

le plus simple et cela nous assure que I'espace que nous avons contruit est bien euclidien. Notons
(e;) sa base :

Vi, i gij = (9ij) o (157)

e; - € = (gij) Mo

23.1.2 Représentation du premier ordre

Nous avons la métrique constante g;; = (g;:), de Uespace euclidien tangent au point M,

ij ij) Mo 0
de I'espace riemannien. Etudions la correspondance entre ces deux espaces au voisinage de ce
point.

Supposons qu’a tout point M(z') du voisinage de My(z)) dans R, nous fassions corres-
pondre un point m du voisinage de my dans &,, tel que :

moem = sz — xg) + Ul (2" — 566)} €;

|da’ + W} (da”)] & (158)

>

ol les fonctions W) sont du deuxieme ordre par rapport aux variables (z" — z), pour " —
x(, voisins de zéro. Cette correspondance définit une représentation du premier ordre pour le

voisinage de Mj. Le point m est I'image de M dans cette représentation, et mg est 'image de
M.

D’aprés cette relation, m a pour coordonnées x° dans la base (my, €;). On vérifie ainsi que
le systeme de coordonnées curvilignes (z') de R,, constitue aussi un systeme de coordonnées
curvilignes de I’espace euclidien au voisinage de mg. On vérifie également que la base naturelle
de &, est définie par les (€;) :
omom 0

vi ort  Or

om
) - €; 1
W) (8:61 )mo e (159)

23.1.3 Caractere intrinseque de la représentation du premier ordre

Kx’ - ZL‘B) + U (2" — xg)} €;

b

Effectuons le changement de coordonnées (2%) — (ZL‘Z/) La représentation du premier ordre
prend alors la forme suivante

moem = K:cll — :L’g) + 6, (xrl — :176,)} €;
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\ . ; RN - ’ ! / !
ou les fonctions ©f sont du deuxiéme ordre par rapport aux variables ™ — x{, pour 2" — z,
voisins de zéro. Sa forme étant indépendante du systeme de coordonnées utilisé, elle présente
un caractere intrinseque.

Pour que la métrique euclidienne tangente présente elle aussi un caractere intrinseque, 1’éga-
lité (157) p. 260 doit étre également vérifiée dans le nouveau systeme de coordonnées :

Vk,l gk’l’ = (gk/l/)MO

D’apres les relations (108) p. 204, par changement de coordonnées, le tenseur métrique de
I’espace ponctuel euclidien tangent &, se transforme en tout point selon la loi :

oz oxt

Vi,j 9 = A I
’ Y Qxt Oxd
Par conséquent, il faut aussi que dans ’espace riemannien R,, nous ayons en tout point

o oz oxt
Vi, j gij = %% gk

et c’est ce que nous poserons. En effet, dans ce cas d’apres (157) p. 260
Vi, i Gij = (9ij) p,
8ixk’8jgjll gk/l/ = aixk’ﬁjxl' (gk/l/)Mo
VU g = (k) o

et I’égalité est conservée par changement de coordonnées. Nous pouvons alors, grace au caractere
instrinseque de la représentation du premier ordre et de la métrique euclidienne tangente,
étendre aux espaces riemanniens des notions géométriques d’origine euclidienne.

23.1.4 Propriétés déduites des métriques euclidiennes tangentes

Certaines propriétés de l'espace euclidien vont pouvoir étre transposées dans les espaces de
Riemann en utilisant la métrique euclidienne tangente en chaque point M de R,,.

Soit (z') un systeme de coordonnées curvilignes d’'un espace riemannien R,, de métrique :
2 _ i3 g
ds® = g;j dz'dw

Soit M un point de R,, et soit &, l'espace ponctuel euclidien tangent en M a R,, de méme
systéme de coordonnées curvilignes (z*) et de métrique constante :

d§2 = gij dl‘ldl‘]
= (gij)m dx'da?

DEFINITION 23.1.1. Tenseur de R,

Nous définissons un tenseur au point M d’un espace riemannien par ses composantes
relatives aux coordonnées (x'), en définissant un tenseur au point m de l'espace euclidien
tangent en M, par ses composantes dans le repére (m, €;).

Produit scalaire

Le produit scalaire de deux vecteurs attachés au méme point M d’un espace riemannien de
tenseur métrique G, est donné par :

v w = (gi)a 0w’
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Distance dans R,

Le carré de la distance élémentaire entre deux points My et M infiniment proches dans
I’espace riemannien est égale au carré de la distance élémentaire euclidienne des deux points
images mg et m :

mom > = gij da‘da’
— MM’

On déduit la longueur d’un arc de courbe en intégrant la distance élémentaire dans 1’espace
riemannien. La fonction indicatrice € ((34) p. 77) rend le carré de la distance positif dans les
espaces pseudo-riemanniens :

ds® = €Gij da'dx’
De facon équivalente
eds® = 9ij dzida’

Par intégration on en déduit la longueur d’un arc de courbe :

b
F:/ \/€9i; dxidzd

On retrouve (23) p. 65.

EXEMPLE 23.1.1. Soit la courbe paramétrée,
' =1
C(N\) ) (1<A<2)
e =\

dans un espace de métrique hyperbolique

g1 =0g2=Y()" : g2=g¢n1=0

ds 2 dz’ r dz?
el —=| = G| —
dA d\ dA

calculons sa longueur :

donc e = 1.

Hypervolume dans R,

L’hypervolume élémentaire d’origine M est donné par la relation (111) p. 220 :
dV =/|g|ldx" ... dz"
=\/|g| dz* ... da"
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ot le déterminant g est fonction des coordonnées du point M. Par intégration on déduit I’hy-
pervolume d’un domaine de dimension n :

vz/\/@i:ﬁldxi
:/\/@dﬁ

Utilisons les relations (76) p. 162 et (109) p. 205 :

Vialde = 7/l =

— gl ae (160)

L’élément d’hypervolume et par suite 'hypervolume sont donc invariants par changement de
coordonnées, ce sont des scalaires. Une arréte de 'hypervolume pouvant étre prise de longueur
nulle, un hypervolume de dimension quelconque d’un domaine de ’espace est un scalaire.

23.1.5 Représentation du second ordre

Pour étendre aux espaces de Riemann les notions d’analyse tensorielle de la géométrie
euclidienne, nous définissons la notion de champ de tenseurs sur un espace riemannien.

DEFINITION 23.1.2. Champ de tenseurs

Attachons a chaque point M d’un espace riemannien R, un tenseur T de la facon sui-
vante : au point M faisons correspondre dans l'espace euclidien tangent un repére (m,e;)
compatible avec la métrique riemannienne en ce point. La donnée des composantes du
tenseur dans ce repére en fonction des coordonnées (x*) communes aur deuz espaces dans
le voisinage de M, constitue un champ de tenseurs dans R,,.

EXEMPLE 23.1.2. Les composantes g;; du tenseur fondamental données en tout point M
sont un exemple de composantes covariantes d’un champ de tenseur d’ordre deux.

DEFINITION 23.1.3. Différentielle absolue

Soient Ty et T deux tenseurs de R,, attachés aux points infiniment voisins My et M.
Dans une représentation du premier ordre, leur différence est définie a des infiniment
petits du premier ordre. La partie principale de cette différence est appelée différentielle
absolue du tenseur T.

La notion de métrique euclidienne tangente ne nous permet pas de comparer entre eux des
tenseurs attachés a deux points, méme infiniment proches, de ’espace riemannien.

En effet, dans un espace riemannien R,,, donnons-nous un champ de vecteurs v par leurs
composantes contravariantes v’. Soient deux vecteurs de ce champ, attachés en deux points
infiniment proches M, et M. Leur différentielle absolue est la différence géométrique de leurs
vecteurs images dans ’espace euclidien tangent &,. La définition 21.7.2 p. 233 nous donne ses
composantes contravariantes dans le repere naturel en un point mg de &, :

Vi (Dvi)mo = (dvi)mo + (vj)mo (f‘ikj)mo du®
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Pour étendre la notion de différentielle absolue aux espaces de Riemann, et écrire

Vi <DUZ)M0 = (Dv’)mo
il faudrait avoir
vigik (), = (),
c’est-a-dire d’apres (127) p. 225 :

Pour cela, remplagons la représentation du premier ordre (158) p. 260 par une représentation
du second ordre, c’est-a-dire 'espace euclidien tangent par un espace euclidien osculateur. La
formule de Taylor s’écrit

0 0 o 0
Faw) = fet) + 3 @@+ 2 -t +3gd] woaPriT ] @obp
62
] == + Rl —a), (- )

ou les fonctions R3 sont du 3¢ ordre par rapport aux variables (z — a) et (y — b). En prenant
deux points infiniment proches :

OF gy Oy 1S 0 1T 0
ad+ad+262d +282d +88

En particulier pour le vecteur position, en utilisant la relation (119) p. 224 :

flx+de,y +dy) — f(z,y) = dzxdy + R3(dz, dy)

om(z' + da') — omg(2') = Oymda’ + 10, mda’da” + @} (da")e;
= dr'e; + %fijkd:cjda:kéi + ®L(dx")e;
= [da’ + 1T da da® + i(da’)]e;

ou les fonctions @4 sont du 3¢ ordre par rapport aux variables dz” au voisinage du point my.
Posons :

mom = [dl‘i + %Pikjdl‘jdxk + (I)g (dl‘r)} €; (162)

ol les symboles de Christoffel sont évalués dans ’espace riemannien. Cette représentation étant
déja du premier ordre, les relations (159) p. 260 restent valables :

. om _

— d’une part, en dérivant deux fois (162) :
, *m ; _
Ik <6xk8xj>m0 - <F kj)Mo ©i
— d’autre part avec les relations (115) p. 222 :

. 62 . B . 62 — _
i (gmms) =)o = wk () (),

On en déduit :

Vij ko (T'y) My (fikj)mo
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Nous pouvons alors étendre la notion de différentielle absolue aux espaces de Riemann. Quel
que soit le point mg, nous avons :

Vi Dv' = dv + vjwij

Si le champ de vecteur est défini par ses composantes covariantes v;, sa différentielle absolue
a pour composantes covariantes :

; _ J
Vi Dv; = dv; — vjw’;

De méme, on généralise aux espaces de Riemann la notion de dérivée covariante d’un vecteur.
Les quantités,

Vil Vo' =o', + 0T,

sont les composantes mixtes du tenseur (d’ordre deux) dérivée covariante du vecteur v.
Si le champ de vecteur est défini par ses composantes covariantes, les quantités,

Vi,k Vv, = Opv; — ijijk

sont les composantes covariantes du tenseur (d’ordre deux) dérivée covariante du covecteur 0.
Ces formules sont généralisées aux dérivées covariantes de tenseurs riemanniens.

DEFINITION 23.1.4. Equipollence

Deuz vecteurs d’un espace euclidien sont équipollents s’ils ont méme longueur, méme
direction et méme sens : leur différence géométrique est nulle. Dans un espace riemannien,
deuz vecteurs d’origines infiniment voisines M et M’ sont équipollents s’ils sont équipol-
lents dans [’espace euclidien tangent en M.

Soient deux vecteurs d’origines infiniment voisines. Ils sont équipollents ssi la différentielle
absolue Dv" correspondant au transport du premier vecteur au second est nulle :

Vi Dv'=0

DEFINITION 23.1.5. Transport paralléle ou transport par équipollence
Le transport paralléle d’un vecteur v d’origine M en un point infiniment voisin M’,
consiste a construire le vecteur v/ d’origine M', équipollent d v.

Les notions de représentation du second ordre et de métrique euclidienne osculatrice per-
mettent d’étendre aux espaces de Riemann les notions d’analyse tensorielle euclidienne relative
aux tenseurs attachés a deux points infiniment voisins. Il en est ainsi en particulier pour tous
les opérateurs différentiels que nous avons étudiés au paragraphe 21.14 p. 243.

EXEMPLE 23.1.3. Espace osculateur en un point d’une surface quelconque

Soit une surface S quelconque (un espace proprement riemannien de dimension deuz)
plongée dans l’espace euclidien a trois dimensions, et soit P un plan tangent a S au point
M. Soit (x,y, z) un systéme de coordonnées rectangulaires de centre M, tel que (x,y) soit
dans le plan. Le carré de l’élément linéaire du plan est donné par :

ds® = da? + dy®
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Dans le systeme de coordonnées rectangulaires (x,y,z) la surface a pour équation z =
2(x,y), le carré de son élément linéaire est :

ds® = dz® + dy2 + dz?

Or
0z 0z
92 \? 92\° 0z 0z
d? = [ =) dz? =) dy?+2 =" dad
: <8x> . +(8y> vt 0x Oy )

Si bien que

2 2
ds? = dx® + dy? + <%> dz? + <%> dy® + 2 %% dxdy

ox y Ox Oy

92\’ 9z\> 0z 0z
=1 — da? 1 — dy® + 2 =" dxd
+<8x> -+ +<8y> Yy + 0z Oy xdy

Au point M la coordonnée z est minimale, donc 0z/0x = 0z/0y = 0. Par conséquent, au
point M les coefficients des métriques sont égales (et valent ['unité), la représentation est
du premier ordre (relation (156) p. 260). De plus, les dérivées partielles du premier ordre
de ces coefficients par rapport auz coordonnées sont aussi égales (et sont nulles puisque
Uon dérive des constantes), la représentation est du second ordre (relation (161) p. 264).
L’espace osculateur a la surface est donc ici [’espace tangent a la surface.

23.1.6 Vecteur accélération dans un espace riemannien

Dans 'espace riemannien R,, considérons un point mobile M dont les coordonnées cur-
vilignes (z*) sont fonction du temps, M (z*(t)). Comme dans 'exemple 21.9.1 p. 236 pour un
espace euclidien, les composantes contravariantes du vecteur vitesse ont pour expression

., dr
Vi 0=
dt
et le vecteur accélération a pour composantes contravariantes :
d?z - dxt dad

7

= e

23.2 GEODESIQUES D’UN ESPACE RIEMANNIEN

DEFINITION 23.2.1. Géodésique
Une géodésique d’un espace riemannien R, est la trajectoire d’un point d’accélération
nulle :

Vi=1,...,n & +4+T%i*’ =0 (163)
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Toute géodésique est définie par ce systeme de n équations différentielles ordinaires du
second ordre, pour les n fonctions z*(\) du parametre quelconque A (habituellement le temps
ou l'abscisse curviligne).

REMARQUE 42. Dans l’espace-temps de la relativité générale, la quadriaccélération de la Terre est
nulle, ce qui implique que le trivecteur accélération d’un observateur terrestre est nul (mesurée par un
accélérométre). Pour un observateur non terrestre, le trivecteur accélération de la Terre est non nul et
son trivecteur vitesse varie en norme et en direction. Sa trajectoire est une géodésique de l’espace-temps
courbé par le Soleil.

Avec les relations (135) p. 235 :

Vi 4'=0

. DVt
\V/'l W =0

. Vvtda® B
Vi T =0
Vi Ukvk'vi =0

Ces équations montrent que sur une géodésique le vecteur vitesse reste équipollent a lui-méme.
Cela permet d’étendre la notion de transport paralléle a un voisinage quelconque. Deux vecteurs
formant un méme angle avec une géodésique seront dits paralleles. Les géodésiques constituent
I’extension en géométrie de Riemann des droites de I'espace euclidien. Les systémes de coordon-
nées construits avec les géodésiques d'un espace courbe sont appelés systémes de coordonnées
géodésiques (voir le paragraphe 23.4.6 p. 280). Un systéme de coordonnées rectilignes, dit carté-
sien, est un systéme de coordonnées géodésiques de ’espace euclidien, construit avec des droites
qui sont des géodésiques de I'espace euclidien.

Si nous adoptons pour parametre indépendant ’abscisse curviligne s le long de la géodésique,
le vecteur u de composantes dx®/ds est un vecteur colinéaire & dM et unitaire :
Juf =u-u
= uiui
= dx;dx’/(ds?)
= g;;da’dz’ [ (ds?)
=1
Il est tangent a la courbe, comme 'est la vitesse (voir (140) p. 238), les équations (163) donnent :
d?x’
ds?
En relativité générale, la présence de matiere et/ou d’énergie (d’agitation thermique, élec-
tromagnétique, etc.) définit le tenseur énergie-impulsion qui détermine la métrique de I’espace-
temps. d*r?/ds? est la quadriaccélération de I’espace-temps plat pseudo-euclidien de la relativité

restreinte, et Fikj uFu? est la courbure de l'espace-temps. Pour une masse m dans un champ de
gravitation :

Vi + T, =0

u’ (164)
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La force gravitationnelle de Newton est remplacée par le terme —mFijk u*u/ de courbure du
quadri-espace riemannien R, appelé espace-temps, dont les particules libres suivent une géo-
désique. Le tenseur métrique est le potentiel du champ de gravitation car sa dérivée donne
Pintensité du champ de gravitation I, (relations (127) p. 225).

Dans les espaces euclidiens et pseudo-euclidiens toute droite est a la fois une trajectoire
a accélération nulle (donc une géodésique) et un extremum de longueur entre deux points de
cette droite. Il en va de méme en géométrie riemannienne, comme nous allons le voir.

THEOREME 23.2.1. Géodésique
Une trajectoire joignant deux points a et b de R,, de longueur extrémale est une géodésique
de cet espace.
dzt dxi
Une courbe de longueur extrémale entre deux points est invariante par changement de
coordonnées. Nous retrouvons la propriété des géodésiques d’étre indépendantes du systéme de
coordonnées.

DEMONSTRATION. Si l'intégrale d’une fonction est extrémale, il en va de méme du carré de
cette fonction ou de n’importe quelle puissance de cette fonction :

ty ty
d/ Fdt=20 & d/ F*dt =0
ta ta

REMARQUE 43. De facon générale, on peut remplacer la fonction dans lintégrale par une fonction
monotone (fonction croissante ou décroissante) de cette fonction sur lintervalle [tq,ts] :

ty ty
d/ Fidt=0 o d/ F(F)dt =0
t ta

a

Dans (165), posons L = g;; &'/,
ty tp
d/ V0Ddt=0 & d/ Ldt=0
ta ta

en conservant la condition L > 0. Cela donne le systeme des n équations d’FEuler-Lagrange :

~d (0L\ oL
v E(aﬂ)_axi_o

vi & (29:547) — 9 (g 3*37) =0

dt ox!
. dgz‘j da” L 89@‘ koo
Vi QQZJ.T]—FQ@EI‘J—W%.T]:O

Vi 9ij i‘j + 9ij k l‘kl‘] — %&gk] {L‘kZL‘] =0
Vi gij i+ (gij,k - %aigkj) i*il =0
En remarquant que g;; i"i7 = gg; ja¥a7
Vi gij i’ + (% Gkij + 3 Gijk — %aigkj) i*il =0
Vi g & 4 5 (Grig + Gijk — Oigry) &3 =0
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En se servant des relations (126) p. 225 qui donnent 'expression des symboles de Christoffel de
premiere espece en fonction des dérivées du tenseur métrique :

Par multiplication contractée par ¢, nous retrouvons bien le systéme des n équations différen-
tielles (163) p. 266 d'une géodésique

Vho @+ T a0E" =0
avec g;; #'d7 > 0. U

En raisonnant dans l'autre sens, c’est-a-dire en partant de (163) p. 266, on montre que la
réciproque est vraie :

THEOREME 23.2.2. Une géodésique est une trajectoire joignant deux points a et b de R,, de
longueur extrémale.

Nous pouvons donner une nouvelle définition d'une géodésique :

DEFINITION 23.2.2. Géodésique
Une géodésique entre deux points d’un espace riemannien est la trajectoire de longueur
extremale entre ces deux points.

Cette définition est indépendante du systéeme de coordonnées puisque la notion de distance
en est elle-méme indépendante. Dans 'espace-temps de la relativité générale, la distance spatio-
temporelle entre deux évenements quelconques sur la trajectoire de la Terre est extrémale. Dans
le cas limite d'un espace-temps pseudo-euclidien, le carré de l'intervalle élémentaire d’univers
a pour expression :

ds? = Adt* — da* — dy* — d2?

Or, les évenements sur la trajectoire terrestre ont lieu au méme endroit dans le référentiel
terrestre et seul le temps propre varie. Il s’agit alors de chercher la condition pour avoir ds?
extrémal lorsque sa partie spatiale est nulle. C’est le cas lorsque l'intervalle de temps propre dt
est maximal et rend le ds* maximal (si dt était minimal, une partie spatiale non nulle rendrait
le ds® plus petit encore a cause des signes négatifs).

Si la forme quadratique fondamentale n’est pas définie, la détermination de la longueur de

la géodésique
/ ko dzt dxi it
S = i ——
L V99 ae

devra se faire dans une région de 1'espace ot elle conserve un signe constant.

EXEMPLE 23.2.1. Trouver [’équation des géodésiques a la surface d’une sphére.

(1) Premiére méthode

L’exemple 12.1.2 p. 97 donne les composantes du tenseur métrique sur une
sphére de rayon r en coordonnées (0,9) : goo = r°, gpp = r*sin®(0). Les dérivées
partielles des g;; sont nulles sauf ggp9 = 2r*sin(f) cos(6). Les relations (131)
p. 227 donnent les symboles de Christoffel de deuzriéme espéce en coordonnées
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1%
ds?
d2<]§

ds?

(2)

orthogonales :
i i é
ii = 9 oy =174 =0
ri i L9y =0
T 20 = I, = cot(0)
Fj.. _ﬂ é
I'p=0 i,jk# F9¢¢ = —sin(@) cos(0)
Les géodésiques ont alors pour équations :
2
o\’ o de
2] - v —
I (E) =0 N T sin(6) cos(0) o = 0
d? 2 dhd
po d0d¢ o dpdi 4o @do _,
% ds ds 9 ds ds ds*> = tan(f) ds ds
La seconde relation s’écrit :
d (do . , B
P <% sin (9)) =0
d
d—f sin?(f) =
La solution évidente ¢ = c**¢ donne pour la premicre relation :
#_,
ds?
do
_— a/
ds
0 =as + 90
ot a est une constante. En prenant @ =0 en s =0 on a by =0 et :
0 =as
0 et ¢ étant constants
s=rb
d’ot
1
a= -
,
L’équation d’une géodésique est donc :
0=s/r
t (166)
¢ — CS e

Comme 6 varie de 0 da 7, la géodésique est un demi-arc de grand cercle allant
d’un pole a l'autre. Par symétrie sphérique, tous les arcs de grands cercles sont
des géodésiques.

Seconde méthode
A partir du carré de 1élément linéaire sur une sphére de rayon r :
ds* = r*df* + r* sin®(0) dp*
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ol gog = 12 €t gy = r*sin?(6). Plutot que de calculer les symboles de Christoffel,

résolvons le probleme de variation,

d/ds:O

d / r (d6 + sin®(9) dg?) " =
d/ (62 + sin?(0) <ﬁ2)1 2dp =0
d/ (92 + sin?(0) ¢2) dp =10

ot le point désigne une dérivation par rapport au paramétre quelconque p. Le

Lagrangien s’écrit

Z(0,0,0,0,p) = 6%+ sin’(0) ¢*

et les équations de Lagrange :

d (0Z 0L 0
dp\ o6 ) 90
i (o2) o2 _,
dp \ 0¢ 0
2 d_6 — 2sin() cos(#)p? = 0 (167a)
= dp
;; (sin®(0)¢) = 0 (167D)
6 — sin() cos(#)p> = 0 6 — sin() cos(9)p? =0
2sin(f) cos(#)0¢ + sin(0)d = 0 - ¢+ 2cot(0)0h =0

On retrouve les 2 équations différentielles (163) p. 266 d’une géodésique, qui nous
donne les symboles de Christoffel :

{é + F6¢¢ ¢* =0 e {F9¢¢ = —sin(#) cos(f)
¢+ F‘b% 0 + F¢¢6 P =0 F¢9¢ = cot(0)
L’équation (167b) donne une intégrale premiére du mouvement :
sin?(0)¢ = ¢;
¢ = ¢/ sin®(6)
$* = ?/sin* 0
Une seconde intégrale premiére est obtenue en posant £ = ¢y (la variation d’une

constante est nulle) :
0% + sin%(0) ¢ =
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A partir des deux intégrales premiéres :

2 4 ci — &
sin?(0)
6?2 Co 1
2 & sin?(0)
62 o 1

$?sin* 6 a A2 sin?(0)

Posons
a = cot(h)
da —sin?(0) — cos?(6) db
do sin?(0) do
(%) - ()
dp) — sin*f \do
Co 1

& sin?(0)
2 _1_a
ci

Donc a est une fonction sinus :
a =asin(¢ +b)

do
i acos(¢p + b)

da 2 = a*cos?(¢ +b)
dg) ~
On trouve ’expression de la nouvelle constante :
a® cos®(¢ +b) = ——l—a sin®(¢ + b)
c?

1

C2
a2:—2—1
1

Revenons a l'ancienne variable :

cos(6) sin
sm(g) @S +0)
cos(f) = sin() (A cos(¢) + Bsin(g))
(0) = Arsin(0) cos(¢) + Brsin(f) sin(¢)

z = Ax + By

T COS
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Les géodésiques sont donc les sections de la sphére par des plans passant par son
centre, c’est-a-dire des grands cercles.

23.3 METRIQUE EUCLIDIENNE DE RACCORDEMENT

23.3.1 Développement d’une courbe de R, sur I’espace ponctuel euclidien

Dans un espace riemannien R,,, soit C' une courbe d’équations paramétriques z* = x(t). A
chaque point M de C faisons correspondre un point m et un repere (m, ;) de ’espace ponctuel
euclidien &,. Au point My de C pour t = 0, faisons correspondre un point mgq arbitrairement
choisi dans &,, et un repere (mog, €;,) indéterminé en orientation mais défini en forme (angles
entre les vecteurs) et grandeur par :

Vi, i e €jo = (i), (168)

Posons également que les points m de ’espace euclidien et les vecteurs des reperes naturels
dans &,, vérifient les relations différentielles :

{dm = da'e;

169
Vi de; = (Fhki)M da"ey, (169)

ol les symboles de Christoffel au point M sont évalués dans I’espace riemannien et ne dépendent
que du parametre t.

L’intégration du systeéme différentiel (169) pour obtenir m(t) et les e;(t) avec les conditions
initiales que nous nous sommes données, fait alors correspondre a la courbe C' de R,, une
courbe I' de &, appelée développement de la courbe C' sur 'espace euclidien.

La modification des conditions initiales revient a effectuer un déplacement quelconque de
la courbe I'" dans 'espace euclidien. Par suite, I' se trouve définie a un déplacement pres dans
E,, et est indéterminée en orientation.

23.3.2 Meétrique euclidienne de raccordement le long d’une courbe

Au sujet du développement de la courbe I'" de C, nous allons établir le théoreme suivant :

THEOREME 23.3.1. Métrique euclidienne de raccordement

On peut trouver dans [’espace ponctuel euclidien &, une métrique telle que les valeurs nu-
meériques que prennent ses coefficients et leurs dérivées premieres le long de la courbe ' de &,
coincident avec les valeurs numériques que prennent les coefficients de la métrique riemannienne
et leurs dérivées premieres auzr points homologues de la courbe C' de R,,.

Autrement dit, on peut construire une métrique euclidienne qui soit osculatrice a la métrique
riemannienne en tous les points de C.

DEMONSTRATION. Nous pouvons choisir les coordonnées dans R,, de sorte que la premiere
coordonnée soit la courbe C', les autres coordonnées étant nulles :

=1

Ty
VM e C {2 .
l’M:"':SL’MIO
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Avec la convention que les indices grecs varient de 2 a n, le systeme différentiel (169) p. 273
s’écrit :

{dm = dzr'le;

170)
o (ph 1 (
Vi de; = (F ki)xa:O dz ey
ot les symboles de Christoffel sont évalués sur la courbe C, c’est-a-dire pour z® = 0. A tout
point P(x?) au voisinage d’un point M de C, faisons correspondre un point p au voisinage du

point m de C, en posant

mp = [x; —at + 30, (x; - xZn) (x’; - xfn) + @ (x; - 575;1)] e (171)

h : % e : T r T r f ol
ot les fonctions @4 sont du 3¢ ordre par rapport aux variables x; — x7, pour x;, — xy, voisins de
zéro. Le point m décrivant la courbe C| ses coordonnées sont telles que :

rl o=t
xp, =0
Le point p étant au voisinage de m :
2t =1,
T, #0
La relation (171) devient :
mp = xﬁeg + [% (Fiw) x;xf, + @} (x;)} €e; (172)

Le point p de &, se trouve défini comme fonction des n variables (z°). Les (2') constituent donc
aussi un systéme de coordonnées curvilignes pour &, dans le voisinage de C. Pour ce systeme
de coordonnées, le repére naturel en m(t,z® = 0) est défini par :

o) _dm _
ox') ., dy' !

op B
%ﬁwﬂ_%

Ce repere naturel coincide avec le repere (m, e;) du développement de la courbe dans 'espace
ponctuel euclidien &,. La métrique de &, dans le systéme de coordonnées (x"), admet donc pour
coefficients en m les produits scalaires e; - e;.

(173)

Montrons qu’en tout point de la courbe C|, ces coefficients sont égaux a ceux de la métrique
riemannienne. Avec la seconde relation de (170) nous avons :

d(e;-e;) =de;-e;+e; - de;
= (Fikh)M e, - de;dx” + (Fhkj)M ey, - de;da”
- [(Pikh)M 9nj + (Fhkj)Mghi} dy*
= dgij

Les quantités e; - e; et g;; satisfont donc au méme systeme différentiel. Or, d’apres la relation
(168) p. 273, les conditions initiales sont les mémes. Il en résulte

€ €; = Gij

identiquement quand M décrit C'. Les métriques euclidienne et riemannienne sont donc tan-
gentes en tous point de C'.
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Pour monter qu’elles sont osculatrices (tangentes a l'ordre deux), il faut monter que les
symboles de Christoffel en m dans &, sont égaux a ceux en M dans R,. Pour la premiere
coordonnée, d’apres les relations (170) p. 274 et (173) :

O*p _d (0p
Oxidxt) ., da' \Ox') .,

Pour les autres coordonnées, avec (172) :

o Z.
(35557~ (0o

(Le facteur § disparait car la somme dans (172) donne deux termes). Les métriques sont donc
osculatrices, et la métrique euclidienne obtenue est appelée métrique euclidienne de raccorde-
ment le long de C. U

Ainsi, grace a un choix convenable de systeme de coordonnées, on peut rendre nuls tous les
symboles de Christoffel, non seulement en un point donné mais le long d’une courbe de I’espace
de Riemann. En relativité générale, cela revient a dire qu’il est toujours possible de trouver un
référentiel qui soit inertiel le long d’une ligne d’univers quelconque, géodésique ou non.

23.3.3 Application géométrique a la métrique euclidienne de raccordement

Soit C' une courbe de 'espace riemannienn R,, en chaque point M de C' on attache un
vecteur unitaire u tangent a la courbe. Lorsque ’on passe du point M a un point de C' infiniment
voisin, le vecteur w est transporté parallelement (définition 23.1.5 p. 265), sa différentielle
absolue est nulle. Cette différentielle absolue est égale a celle du vecteur image dans 1’espace
ponctuel euclidien &,, dans une représentation du second ordre du voisinage de M (par exemple
celle d’'une métrique euclidienne de raccordement). Le vecteur image n’est autre que le vecteur
unnitaire tangent a la courbe I' développement de C'. Par transport parallele d’'un vecteur dans
un espace euclidien, on construit une droite. On en conclue que les géodésiques d’un espace
riemannien sont les courbes qui se développent sur I'espace euclidien selon des droites.

23.4 TENSEUR DE COURBURE D’UN ESPACE RIEMANNIEN

Introduisons le tenseur de courbure d’un espace riemannien en suivant une méthode géo-
métrique due & Elie Cartan. Dans un espace riemannien on constate que l'orientation d’un
repere partant d'un point M dépend au point d’arrivée N du trajet qu’il a suivi. Par exemple
un repére qui parcourt un triangle sphérique ne retrouve pas son orientation de départ a son
retour au point initial, et sa nouvelle orientation dépend du sens de parcours. Notez qu’il n’est
pas nécessaire de suivre des géodésiques pour mettre en évidence la rotation d’un repere.



276 Géométrie des variétés riemanniennes

23.4.1 Quasi-parallélogramme

Introduisons deux symboles de différentiation, d et §, que I'on supposera échangeables, c¢’est-
a-dire tels que :

Vi dda’ = déx’ (174)

Sous cette hypothése, pour une fonction scalaire f(27) deux fois continfiment différentiable des
7, nous avons :

dof = d (0;foa")
= 0jiféx’da’ + 0; fdox’
=0 (0:f62")
= odf

La fonction f pouvant étre par exemple un changement de variables, on en déduit que le
caractere échangeable de deux symboles de différentiation subsiste par un changement arbitraire
des variables 7.

Soit M(z7) un point de R, :
— la différentiation d fait passer de M(x?) & My(2? + da’) = M + dM
— la différentiation § fait passer de M (z?) & My(z? + d27) = M + oM

Nous supposerons que dM et M ne sont pas colinéaires, c’est-a-dire que da? et da’ ne sont
pas proportionnels.

— de My (27 + d27), la différentiation § fait passer au point Ms(x’ + da? + dz’ + ddx?)
— de My(2? + 627), la différentiation d fait passer au point My(x’ + dz’/ + dx7 + ddx?)

D’apres les relations (174) p. 276, les points M3 et My sont confondus. Le circuit fermé formé
des quatre points M, My, M3, My est appelé quasi-parallélogramme dans R,,.

23.4.2 Développement du quasi-parallélogramme

Développons le quasi-parallélogramme dans l'espace ponctuel euclidien &, tangent a 1'es-
pace riemannien au point M. Pour rester dans cet espace nous nous maintenons au voisinage
infinitésimal du point M en considérant un trajet fermé infiniment petit. Lorsque dans R, on
passe du point M au point infiniment proche M;, dans &, on passe du repere (m, e;) au repere
(m +dm,e; + de;), et d’apres (169) p. 273 :

dm = dxjej
Vi dej = wijel- = Fijkd:ckei

Puis, lorsque dans R,, on passe du point M; au point Mjs, dans &, on passe au repere (m + dm
+om + ddm, e; + de; + de; + dde;).

Maintenant, si dans R, on passe du point M au point M, dans &, on passe du repere
(m,e;) au repere (m + dm, e; + de;), et avec les relations (169) :

om = dxjej
Vi de; = d)ijel- = Fijk&ckei

Le tilde indique la forme différentielle prise par w pour les d27. Puis, lorsque dans R,, on passe du
point M, au point M3, dans &, on passe au repere (m + dm + dm + dém, e; + de; +de; + doe;).
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Comparons les positions des repéres finaux :
dém — §dm = d(dz’e;) — d(dz’e;)
= d2'de; — da’de;
= (5a:j1“ijk da® — da:jFijk 5l’k) e
= (5xjfijk da® — dxkfikj 5$j) e;
— (Fijk - Fikj) dzFéale;
On suppose que les conditions d’intégrabilité des points sont satisfaites, et donc que les symboles
de Christoffel de deuxiéme espece sont symétriques par rapport a leurs indices inférieurs :
dém — ddm =0

Les développements conduisent alors au méme repere final, et le quasi-parallélogramme est
fermé également dans &,.
Comparons les vecteurs des deux reperes finaux :
\V/j déej — 5dej =d (@’]e,) -0 (wijei)
= (d@ij - 5wij) e, + d)kjdek — wkj(Sek
= (dd}ij — &uij + d}kjwik — wkj&ik) e;
ou l'on a posé
- ' ~i i~k k ~i
Vi,j Q2 da — 0wt 4+ o — whiad, (175)
Les vecteurs finaux ont mémes forme et grandeur puisque les produits scalaires de ces
vecteurs sont donnés par les coefficients de la métrique en M;s. Par conséquent, les quantités
', définissent la rotation permettant de passer d’un repeére a l'autre autour du point mg de
&,. La courbure d’'un espace riemannien se manifeste ainsi par le fait qu’en développant sur

I’espace euclidien, a partir d'un méme repere initial, deux chemins ayant mémes extrémités, les
reperes finaux sont différents en orientation.

REMARQUE 44. Nous aurions pu comparer les repéres finauz par ¥j dde; — dde;. Ainsi le tenseur
rotation Q°; est défini au signe pres.

23.4.3 Tenseur rotation
THEOREME 23.4.1. Les quantités Qij sont les composantes mixtes d’un tenseur d’ordre deuz.

DEMONSTRATION. Soit un changement de base naturelle tel que :

, oz
VJ €; = % (S)¥}
: oz oz
\V/j 58] = % 5ek/ + 5 (%) (ST

, oxF ox* ox¥ oxF'
VJ d(Sej = 7 déek/ +d (%) 5ek/ + ) (%) dek/ + do (%) ey
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De méme :

_ oxF oz oz oz
VJ 5dej 8 5dek/ + ) <aZL‘ ) dek/ +d < O ) 5ek/ + od (aZL‘j ) (S7%}

d et § étant échangeables devant les dz*' /07 :

_ oxF ox¥
VJ déej — 5dej % déek/ — 8— 5dek/
k;/
= 8; (déek/ — 5dek/)
_ , oxF
Vj szei =5 Or €

, 4
oxk p 0x'

A —— e
Oxi K oxh

, .

oxk Ox O
Qi Ol k!

23.4.4 Tenseur de courbure de Riemann-Christoffel de seconde espece
A partir des relations (175) p. 277 :
Vi,j Q) =da'; —bw'; + 0"t — Wt ah,
— avec d’'une part
Vi j di'y - ow'y = d (T 0a) = 6 (I, da*)
= 0, I"; dx" o2 + 1", dox® — O, 1" 0" da® — I, oda®
= 01", dz"ox® — 0,1 ; 0" dx®
= 0, I"; dx" 6z — O,I",; ox*dx”
= (&Fisj - 881"irj) dx"z*
— et d’autre part

Vi,j ofwh — ot =TF 62T da” —T% da" T 62

- (stj IS ng) da’ 2°
nous avons :
Vij Q= (0,1 = a.I",;) da"oat + (I, T, — %, T, ) da’da®
= (o1, — oI +TF T, — Tk, rgk) da" 6z
= R%N dx"z*
Les da” et les d2° étant les composantes contravariantes de deux vecteurs arbitraires, et les f
étant les composantes mixtes d’un tenseur d’ordre deux, il en résulte que les quantités R’

7,rs
sont les composantes d'un tenseur d’ordre quatre, trois fois covariant et une fois contravariant,

antisymétrique par rapport aux indices r et s. Tout comme le tenseur rotation, il est défini au
signe pres.
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DEFINITION 23.4.1. Tenseur de courbure de Riemann-Christoffel de seconde espéce
Le tenseur d’ordre quatre

Vi, j,rs R =000, =0T + T8 T, —T% T,
est appelé tenseur de courbure de Riemann-Christoffel de seconde espéce de l’espace rie-
mannien R,.

7,rs

Etant donnée une forme différentielle quadratique arbitraire, pour qu’elle soit la métrique
d’un espace euclidien, il est nécessaire que les conditions suivantes soient satisfaites :

Vi,j,r,s R, =0 (176)

Dans ce cas, l'orientation du repére ne dépend pas du chemin suivi (par exemple le long d'un
parallélogramme), et les conditions (112) p. 222 sont intégrables.

Lorsque la variété correspondante est topologiquement équivalente a I’espace euclidien, on
démontre que ces conditions sont suffisantes. Lorsque la variété correspondante n’est pas to-
pologiquement équivalente a l’espace euclidien, si les conditions (176) sont satisfaites, 1’espace
riemannien est dit localement euclidien : ses propriétés purement locales ne different pas de
celles d'un espace euclidien.

23.4.5 Tenseur de courbure de Riemann-Christoffel de premiére espece

En abaissant I'indice contravariant dans la définition 23.4.1 p. 279, nous obtenons :
V’i, j, r,s Rij,rs = Gin thﬂ"s
_ h h k h k h
= Gih (aTF sj _aSF rj+F st rk_F er sk)
= Jinh arrhsj — Gin asrhrj + stj Firk - Pkrj Pisk
=0, (gin T";) = T"; Orgin — Os (gin T",;) + ", Ougin + T*; Tinge — T, T
=0, Tisj — 05 Uiy + stj (Cirie — Orgir) — Pkrj (Ciske — OsGik)

Les relations (123) p. 224 donnent :

Liji + ik = Okgij Uijie + Tjie = Ogij
Liji — Okgij = —Ljik Liji — Okgis = —Ljir
Lity — Orgit = —Thir et LCits — OsGik = — s
Livie — Orgit = —Thir Ligk — OsGik = —Liis

si bien que I'on a la définition suivante :

DEFINITION 23.4.2. Tenseur de courbure de Riemann-Christoffel de premiére espéce
Le tenseur d’ordre quatre

Viv jv r,s Rij,rs é ar Fijs - as Fijr + ijr Fkis - ijs Fkir
est appelé tenseur de courbure de Riemann-Christoffel de premiére espece de l’espace de
Riemann R,.
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En dérivant les relations (126) p. 225 :

Lijr = % (Gijk + Grij — Gjk.i) Lijr = % (Gijk + Grig — Gjk.i)
i = % (gz‘s,j + Gjis — gsj,z') et Uiy = % (gz‘r,j + Gjir — grj,i)
arrisj = % (gis,jr + gji,sr - gsj,ir> asFirj = % (gir,js + gji,rs - grj,is>
\V/ia ja r,s Rij,rs = % (gis,jr + Gji,sr — gsj,ir) - % (gir,js + Gjirs — grj,is) - Pksj Fkri + Fkrj sti
= % (gis,jr + grj,is - gsj,ir - gir,js) - Pksj Fkri + Fkrj sti (]-77)

23.4.6 Systéme de coordonnées localement géodésiques

En tout point d'un espace de Riemann il est toujours possible de définir un systeme de
coordonnées localement géodésiques. Ce systeme de coordonnées utilise les géodésiques passant
par un point donné comme systéeme de coordonnées pour les points du voisinage. On peut
toujours choisir ce systeme de coordonnées de sorte qu’il soit orthonormal, on parle alors de
systeme de coordonnées géodésiques normal, ou systeme de coordonnées riemanniennes normal.
En tout point d’un espace passent une infinité de géodésiques, une par direction. Par exemple
une infinité de droites passent par un point du plan ou de l'espace euclidien, une infinité de
grands cercles passent par un point de la sphere. L’ensemble des géodésiques passant par un
point ne se croisent pas ailleurs qu’en ce point si 'on prend un voisinage suffisamment petit.
Les coordonnées géodésiques sont donc utilisées la plupart du temps localement. Cela revient a
se placer dans ’espace plat tangent au point considéré a ’espace de Riemann, et a utiliser un
systeme de coordonnées rectilignes.

L’emploi de ce systeme facilite les calculs car les propriétés (intrinseques) des tenseurs
démontrées dans ce systeme de coordonnées sont valides dans tous les autres systemes de
coordonnées. Nous montrons que dans les systemes de coordonnées localement géodésiques, les
dérivées des composantes du tenseur métrique sont nulles et par conséquent les symboles de
Christoffel également. En ce point, la dérivée covariante se réduit a la dérivée partielle ordinaire.

Soit (x%) un systéme de coordonnées curviligne d'un espace riemannien R,. Soit un point
M(a,...,a") de R, et soit P un point suffisamment voisin de M pour que deux géodésiques
passant par M ne passent pas par P. Considérons 'unique géodésique M P passant par M et
P, d’équations paramétriques

Vi 7' = 2'(s)
ol le parameétre est 'abscisse curviligne s. Prenons le point M(a’) pour origine de 1’abscisse
curviligne de cette géodésique :

Vi 2'(0) =a’

Les coordonnées des points de cette géodésique peuvent se développer en série de puissance de
s au voisinage de M :

) ] dz 1 d2i
Vi=1,...,n xl(s):azjts(x) +—52< x2> +
ds ), 2 ds* ) .,

Les coordonnées du vecteur unitaire u(u®) tangent a la géodésique M P au point M s’écrivent :

Vi uz:<6237>
S/ M

Ce vecteur unitaire est dans 'hyperplan tangent a ’espace riemannien R,.
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REMARQUE 45. L’hyperplan en question est un espace pré-euclidien de méme dimension n que l’espace
riemannien, qui contient toutes les tangentes en M a toutes les courbes de R,, passant par M.

Les équations (163) p. 266 d’une géodésique nous donnent I'expression de la dérivée seconde
des coordonnées de la géodésique z'(s) par rapport a s au point M,

R - (dx* dz?
TS
ds? v T\ ds v \ds ).

. i i i 1.2 (i k, j
Vi=1,...,n r=a"+su" —3s (ij)Muu + ...

si bien que :

Placons-nous dans le systeme de coordonnées de centre M en effectuant le changement de
coordonnées (ou en posant a' = 0 Vi)

-/

Vi 2" =2 —d (178)
Alors

;!

Vi=1,...,n xzzsuz—%f (F’k-) uFud + .
1) M

DEFINITION 23.4.3. Coordonnées localement géodésiques

Les coordonnées localement géodésiques y* d’un point quelconque P suffisamment proche
de M(a' = 0) sont définies par :

Vi oyt 2 su (179)

ot s est la distance de M a P le long de la géodésique.

Les coordonnées localement géodésiques ne conservent que la partie linéaire en s des co-
ordonnées curvilignes en prenant les tangentes aux géodésiques, et reviennent a effectuer le
changement de coordonnées :

- i o4 1.2 (i k, j
Vi=1,...,n y'=1" +35s (ij)Muu
. 7/ . \ 7’ 7’ ’ . ;/
On a supprimé localement au point M la courbure du systéeme de coordonnées géodésique (z" ).
Les termes de courbure d’ordre supérieur sont négligés.

REMARQUE 46. Parmi linfinité de géodésiques passant par le point M de lespace riemannien R,
nous pouvons en choisir n dont les tangentes en M sont perpendiculaires, et construire ainsi un systéme
de coordonnées géodésiques normal.

THEOREME 23.4.2. Au point origine M des coordonnées localement géodésiques, les symboles
de Christoffel de premiere et de deuriéme espéce sont nuls, ainsi que les dérivées partielles des
composantes du tenseur métrique.

DEMONSTRATION. Pour un vecteur unitaire u de direction fixée et d’origine M, la dérivée
de (179) donne :

. dyi i
Vi e =
d2 7
vi 4

ds?
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Les équations (163) p. 266 donnent :

iy N\ (dyF\ (dy
(), (), (%), =0
S m S/ \4 )y

Vi (Fikj)Mukuj =0

Les symboles de Christoffel étant symétriques par rapport aux indices inférieurs, ils ne peuvent
s’annuler par soustraction. Par exemple pour k et 7 variant de 1 a 2 :

(Fin)M u'u' + (1"'12)Mu1u2 + (Fim) w?u' + (1”22) w?u® =0
()t 4 [() - (U) | to® + (T
(

)
(Fiu)Mulul +2 (Fiu) utu® + F222) w*u? =0
(

= (M), = (M), =

Par conséquent
Vi, j, k @ﬁ»Mzo

dans le systéme de coordonnées localement géodésiques de centre M. Les relations (117) p. 223
donnent les symboles de Christoffel de premiere espece :

Vi,j,k  (Dijr)yy = in (Thik)M
=0
Les relations (123) p. 224 donnent les dérivées partielles des composantes du tenseur métrique :
Vi, jok (Okgis)pr = (Ujir) ar + (Tijh) o
=0
OJ

D’apres les équations (164) p. 267 le champ gravitationnnel de la physique non relativiste
devient la courbure de I’espace-temps en relativité générale. En un point arbitraire de ’espace-
temps, le systeme de coordonnées localement géodésiques permet d’éliminer localement autour
de ce point la courbure de 'espace-temps, donc le champ gravitationnel. En physique non
relativiste, 1’égalité observée entre masse grave et masse inerte (principe d’équivalence entre
masse grave et masse inerte) entraine 1’égalité locale entre forces d’inertie et force de gravitation :
principe d’équivalence locale entre ces forces. Le caractere local de cette équivalence est en
accord avec le fait que les lois de la physique sont toutes locales. Le choix toujours possible
d’un systeme de coordonnées localement géodésiques est 1’expression du principe d’équivalence
en relativité générale. En physique relativiste et non relativiste on parle de systéme de référence
localement inertiel, et de systeme de coordonnées galiléen.

23.4.7 Propriétés du tenseur de courbure de premiere espéce

A partir des relations (177) p. 280, dans le systéme de coordonnées localement géodésiques
le tenseur de courbure de Riemann-Christoffel de premiere espece s’écrit :

V’i,j, rs Rij,rs = % (arigsj + asjgri - 877‘93@' - asigrj) (180>
ou les g;; sont les coefficients de 1’élément linéaire en coordonnées localement géodésiques.

REMARQUE 47. Cette derniére relation n’est valable qu’en coordonnées géodésiques, par exemple en
coordonnées cartésiennes dans le plan mais pas en coordonnées polaires dans le plan. De plus elle n’est valable
qu’en un point, au centre du systéme de coordonnées géodésiques. FEn revanche les propriétés de symétrie du
tenseur de courbure sont valables dans tous les systémes de coordonnées.
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23.4.7.1 Antisymétries et symétrie par blocs
(1) Antisymétrie par rapport aux indices 7 et j :
Vi7j7 rs Rji,rs = % (arjgsi + 8sz'grj - 8rigsj - aszm')
Via ja r,s Rji,rs - _Rij,rs (]-8]-)

(2) Antisymétrie par rapport aux indices r et s :

Vi7j7 r,s Rij,sr = % (asigrj + arjgsi - 8sjgri - am'Qsj)

Via ja r,s Rij,sr - _Rij,rs (182)
(3) Symétrique par blocs d’indices ij, et rs :
Vi, j, 7,8 Rysij = % (0ingjs + 0sGir — OisGjr — Ojris)

Vi7j7 r,s RTSJj = Rij,rs

283.4.7.2 Premiéres identités de Bianchi
Le tenseur de courbure est cyclique. Par permutation circulaire sur les indices j,r, s puis
addition, nous obtenons les premieres identités de Bianchi :
Vi, 3,78 Rijrs = 5 (0rigsj + OsjGri — Orjgsi — OsiGrj)
Vi,j,r,5 Rirsj = 3 (0sigjr + 0jrgsi — Os19ji — 0jigsr)
Vi, .15  Risjr =% (0jiGrs + Orsgji — 0jsGri — Origjs)

Via ja r,s Rij,rs + Rir,sj + Ris,jr =0

23.4.7.3 Composantes indépendantes

Dans un espace a n dimensions, le tenseur de courbure de Riemann-Christoffel a n* compo-
santes. A l'aide de propriétés précédentes, calculons le nombre de composantes indépendantes.
Par composante indépendante on entend une composante non nulle qui ne soit pas 'opposée
d’une autre composante déja comptabilisée comme indépendante, ou qui ne soit la somme de
deux autres composantes.

(1) Commencons par dénombrer les composantes ayant 4 indices identiques, du type Rag.aa
ou a est la valeur prise par les indices i, j, r, s. L’antisymétrie par rapport aux indices
1 et j donne :

Raa,00 = —Raa,aa
=0
(2) Les composantes ayant 3 indices identiques sont de 4 types :
Raa,abs Raapar Rab.aar Rba,aa avec a#b
La symétrie par blocs puis 'antisymétrie par rapport aux indices 4, j ou r, s donnent :
Rag.ab = Rab.aa Raapa = Rba,aa

= _Raa,ab et = _Raa,ba
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(3)

Les composantes ayant exactement 2 fois 2 indices identiques sont de 6 types :

Raa,bba Rab,aba Rba,aba Rba,baa Rbb,aaa Rab,ba

La condition a # b est trop faible et I'on doit poser soit a < b soit a > b pour ne pas
tout compter deux fois (si a prend l’ancienne valeur de b, et b prend I’ancienne valeur
de a). Cette condition sert au dénombrement et n’a pas de rapport avec les propriétés
de symétrie du tenseur de courbure.

On peut aussi écrire que les composantes sont des 3 types suivants
Raa,bba Rab,aba Rab,ba avec a 7& b
La symétrie par blocs puis 'antisymétrie par rapport aux indices 4, j ou r, s donnent :
Raa,bb = Rbb,aa

= _Raa,bb et
=0

Rab,ab = _Rba,ab = Rba,ba = _Rab,ba a<b
= _Rab,ba a # b

Donc 2 types de composantes nulles et 4 types de composantes non indépendantes. Il ne
reste plus qu’a dénombrer les composantes du type R qp, ce qui revient a dénombrer
ab. Dans un espace de dimension n, I'un des indices prend n valeurs et l'autre n — 1
valeurs car il est différent du premier (a # b). Il s’agit de choisir deux nombres différents
parmi n ou 'ordre des nombres choisis n’intervient pas. Ceci est équivalent a tirer sans
remise 2 boules parmi n boules numérotées de 1 a n sans tenir compte de 'ordre. C’est
une combinaison :
C?=n(n—1)/2

Les composantes ayant exactement 2 indices identiques (autrement dit exactement 3
indices différents) sont de 12 types

Raa,bm Raa,cb7 Rbc,aaa Rcb,am Rab,cm Rac,baa Rba,acu Rca,ab7 Rba,cm Rca,baa Rab,aca Rac,ab

avec a # b et a # ¢ sinon on serait dans le cas (2). Ici aussi la condition b # ¢ est
trop faible et I'on doit poser b < ¢ (ou b > ¢) pour ne pas tout compter deux fois.
En revanche, a étant présent deux fois, les valeurs de a et de b, et celles de a et de
¢ peuvent s’échanger sans redonner la méme composante. Ainsi les conditions a # b,
a# cet b<cdonnent les troiscas:a<b<c,b<a<cetb<c<a.

On peut aussi écrire que les composantes sont des 6 types suivants
Raa,bca Rbc,aaa Rab,caa Rba,aca Rba,caa Rab,ac avec a 7& b7 a 7& C, b 7& (&
L’antisymétrie par rapport aux indices ¢, j ou r, s donne :
Raa,bc = Raa,cb = Rbc,aa = Rcb,aa =0
L’antisymétrie et la symétrie par blocs donnent :
Rab,ac = _Rab,ca = Rba,ca = _Rba,ac = _Rac,ba = Rac,ab = _Rca,ab = Rca,ba

Donc 4 types de composantes nulles et 8 types de composantes non indépendantes. 11
ne reste plus qu'a dénombrer R, ... Par hypothése a # b, a # ¢, b # ¢, donc un indice
prend n valeurs, I'autre prend n — 1 valeurs et le dernier prend n — 2 valeurs. Nous
avons trois cas, a < b < ¢, b<a < cetb< c< a, pour chaque cas C2 combinaisons :

302 =n(n —1)(n —2)/2
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(5) Les composantes ayant leurs 4 indices différents sont de 24 types :

Rab,cd - _Rab,dc = Rba,dc = _Rba,cd - _Rcd,ba - Rcd,ab = _Rdc,ab - Rdc,ba
Rac,bd = _Rac,db = Rca,db = _Rca,bd = _Rbd,ca = Rbd,ac = _Rdb,ac = Rdb,ac
Rad,bc - _Rad,cb = Rda,cb = _Rda,bc - _Rbc,da = Rbc,ad = _Rcb,ad - Rcb,da
avec a < b < ¢ < d pour ne pas tout compter plusieurs fois. Nous avons 3 ensembles

de 8 types de composantes non indépendantes. Les identités de Bianchi montrent que
le dernier ensemble dépend des deux premiers car

Rab,cd + Rac,bd - _Rad,bc

Il reste deux ensembles de huit types de composantes non indépendantes. Nous dé-
nombrons C?! combinaisons pour les composantes de type Rgpcq €t autant pour celles
de type Rgc,pd, SOit :

204 =n(n —1)(n —2)(n — 3)/12

Au total, dans un espace de dimension n, le nombre de composantes non nulles et indépendantes
du tenseur de courbure de Riemann-Christoffel est donné par :

n(n2— 1)+n(n—12)(n—2)+n(n—1)(n1; 2)(n—3) n—l {I‘F 9 <1+ng3>}
n+3)]

| |
3
I
H

—_

+

EXEMPLE 23.4.1. Dans un espace riemannien a une dimension le tenseur de courbure a
1* = 1 composante, dont 12(12 — 1)/12 = 0 indépendantes. Le tenseur de courbure d’une
courbe est nul

Ry =0

car c’est bien la courbure intrinséque qui est mesurée.

EXEMPLE 23.4.2. Dans un espace riemannien a deuxr dimensions le tenseur de courbure
a 2* =16 composantes, dont 2%(22 — 1)/12 = 1 seule indépendante :

Ri912 = —Ri291 = Ro101 = —Ro1.12
Les composantes ont 2 fois 2 indices identiques, et l'on a bien 2(2 —1)/2 = 1.

(1) En coordonnées cartésiennes du plan, autrement dit pour [’élément différentiel

ds® = (dx1)2 + (dx2)2

le tenseur métrique est constant, tous les symboles de Christoffel sont nuls (21.4.6
p. 226). D’apres la définition 23.4.2 p. 279 du tenseur de courbure de premiére
espece, toutes les composantes du tenseur de courbure sont nulles, [’espace est
plat.
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(2) En coordonnées polaires appliquées au plan, U’élément différentiel (voir (21)
p. 63) s’écrit :

ds* = (d2')" + (21)" (da?)”

avec xt = p et =0, ot gy = 1 et gy = ([El)2. Calculons la valeur de la
seule composante indépendante potentiellement non nulle grace aux symboles de
Christoffel non nuls donnés dans l'exemple 21.4.3 p. 227 :

[a1g = ooy = 2 r2,=r2, =1/z'
{Fuz = =@ ! {F122 = —a!
Avec la définition 25.4.2 p. 279 du tenseur de courbure de premicre espéce :
Vi,j,7,8 Rijrs £ 0, Tsg = @ Dz A ijr Mg — ijs Iy
Rig10 =01 Tog — 02Ty + Fk21 L2 — szg Fen
= 01 D192 — 0 T1o1 + Iy Tiip — Doy Tinn + T2 Torp — T, Tony
=01 D10 + % T
=—1+a'/2!
=0

Le tenseur de courbure est nul et [’espace est plat.

EXEMPLE 23.4.3. Dans un espace riemannien d trois dimensions le tenseur de courbure
a 3* = 81 composantes, dont 3*(3% — 1)/12 = 6 indépendantes.
3(3—1)/2 = 3 composantes ayant 2 fois 2 indices identiques :

Ri212 = —Riz01 = Ro121 = —Ro112
Ri313 = —Ri331 = R3131 = —Rs1.13
Ra323 = —Ra3 32 = R3a32 = — 3203
3(3—1)(3—2)/2 =3 composantes ayant ezactement 2 indices identiques :
Ri213 = —Ri231 = Ro131 = —Ro113 = —Riz1 = Riz 12 = —Rz112 = Raim
Ra123 = —Ra132 = Ri232 = —Ri223 = —Roz12 = Razo1 = —Raz01 = Ra212
R3132 = —R3123 = Ri323 = —Ri332 = —R3213 = R3231 = —Ra331 = Ra3 13
En coordonnées sphériques dans l’espace euclidien, autrement dit pour I’élément différen-
tiel (voir (22) p. 65)
ds’ =d (x1)2 + (a:ldx2)2 + (:171 sin :E2)2 (dx3)2

avec ' = p, 2% = 0 et 23 = ¢, d’aprés Uexzemple 21.4.4 p. 228 les symboles de Christoffel
non nuls sont les suivants :
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[yp1 = [opp = 2! 2 9 1
1 .9 9 [Py =T%, =1/
I'ss1 =I'si3 =2 sin“z 3 5 L
[Py =173 =1/z
12 02 2 5 5 )
F332:F323:(x) sin z“ cos 3, =I%, = cotw
1 et 1 !
[0 =—x Iy, =—=z
I35 = —x' sin® 2 I, = —x'sin® 2
2 2 2 2
[og3 = — (961) sin 22 cos 22 [%,; = —sina” cosx

Avec la définition 23.4.2 p. 279 du tenseur de courbure de premiére espece :
Ris12 = 01 o — 0o Moy + F121 g — Flgz I+ F221 [0 — F222 o1y
= 01 T2 +F221F212 =-1 ﬂLSUl/SU1 =0
Rizi3 =01 Tsg — 03131 + F131 ['ig — F133 [+ F331 313 — F333 I3
= 0y 133 + I3, Tg13 = —sin® 2% + 2 sin® 2% /2! = 0
Ros93 = 02933 — O3 930 + P232 ['y03 — F233 o290 + F332 303 — F333 ['399

3 1\2 2 2 2 (N2 i 2 2
:82F233+F32F323:—(x) cos“z° + cotx (x) sinz“cosz” =0

Vi, g, 78 Fjre £ 0, s = @ sz 4 ijr D0 — ijs Lkir
Risas = 01 T1as — 93 1a1 + T Tis — T3 T
= 01 D193 — 037191 + Iy Ty — Ty Tiay 4 T2y Tagg — T3 Tony
+ %) D3 — [Py T3y = 0
Ro13 = 05 Ta13 — 93 a1z + T¥ 5 Thog — T 3 T
=03 D913 — 037919 + Dy Tiog — I3 Dyoo + 125 Tagy — I3 Tany
+ 1%, D393 — %3390 = 0
R31 30 = 031310 — 02 313 + Fk13 Tiso — ["1p Tras
= 030312 — 0y Tg13 + D3 Tigp — Iy Digg 4+ T2 Tago — [ Togy
+ 1% 3 D330 — %) sz

= —82 F313 — F212 F233 + P313 F332

2 2 2

= —2z'sin 2% cos 2?2 + x'sin 2% cos 2% + x' sin 2% cos 22 = 0

Le tenseur de courbure est nul et [’espace est plat.

EXEMPLE 23.4.4. Dans un espace riemannien a quatre dimensions le tenseur de courbure
a 4* = 256 composantes, dont 4?(4*> — 1)/12 = 20 indépendantes.
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4(4 —1)/2 = 6 composantes ayant 2 fois 2 indices identiques :
Rizp2 = —Rigo1 = Ror1 = —Ra 2
Rizns = —Rizs1 = Rs1,31 = —Rai3

Rigia = —Riuuss = Runan = —Rua

Ro393 = —Ro330 = R3230 = — 3293
Rosos = —Rosao = Rupas = —Ruo s
Rsy34 = —R3443 = Ruza3 = — R334

4(4 —1)(4 — 2)/2 = 12 composantes ayant exactement 2 indices identiques :

Rig13 = —Ri231 = Ro131 = —Ro113 = —Ri301 = Ri312 = —R3112 = Ra1 01

Rig14 = —Rips1 = Roya1 = —Ro114a = —Riso1 = Rig12 = —Ra112 = R
Riz1a = —Rizg1 = Raya1 = —R3104 = —Risz1 = Rigi3 = —Rai3 = Ruz
Ro193 = —Ro130 = Rig3p = —Rig03 = —Roz120 = Rag o1 = —R3zo1 = R3o 12
Roi 04 = —Ro1420 = Rigus = —Rig04 = —Rosg12 = Roup1 = —Razo1 = Rz 1o
Ro3 04 = —Ro340 = Rapup = —R3poq = —Royz0 = Royp3 = —Ryz o3 = Ry 3o
R3130 = —R3123 = Ri303 = —Ri3320 = —R32.13 = R3a31 = —Raz31 = Ro313
R334 = —R3143 = Ri3u3 = —Riz 34 = —R3413 = Rau31 = —Raz 31 = Rus s
R3p 34 = —R3pu3 = Rozu3 = —Roz3q4 = —R3u03 = Rayzp = —Ry3 30 = Ryz 30
Ryig0 = —Ry194 = Riyps = —Riguo = —Ryp 14 = Ryo g1 = —Roy a1 = Rog s
Ryiu3 = —Ry3a = Riuss = —Risuz = —Ryz1a = Rz a1 = —Ragun = Rzaa
Rypu3 = —Rys3sa = Roy3n = —Royu3 = —Ryz 04 = Ryz 40 = —R3g 49 = R3404

44 —1)(4 —2)(4 — 3)/12 = 2 composantes ayant 4 indices différents :

Rigss = —Rio43 = Ro143 = —Ro134 = —Rau01 = Raa2 = —Ruz 12 = Rus o1

Rizos = —Ri342 = R3149 = —Rg104 = —Rou31 = Ros13 = —Ragi3 = Rag3

23.4.8 Dérivées covariantes secondes d’un vecteur

Soit un champ de vecteurs de composantes contravariantes v”, cherchons la différence entre
V., (sth) et Vg (V,nvh). Reprenons les relations (149) p. 246, Vh,r, s

V, (Vo) = 8p" + 00,17 + T, 00" — TF, O — 0/ T, T + 1", 0k + 0 TH, T,
Vo (V") = 0" + 000", + T, 000" = T%, 90" — v/ T, TF, 4+ T 90F 40 T8, T
si bien que Vh,r,s :
V, (Vo) = V. (V,0")
=0'9,I",, —v'o,I", +T" o' —T", 00" + T, 0% — T 00" + ' Tk, T — o' TF, T",.
=o' (0,1, — 0., ) + T" 00" = T, 00" + T", 00" — T 00" + o' (TF, Ty, — TF, T",)
On en déduit qu’au point M :
Vhors Ve (Vo) = Vo (V) = o (9,1, — 0", + % T, — T8, 1)
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On reconnait la définition 23.4.1 p. 279 du tenseur de courbure de Riemann-Christoffel de
seconde espece :

Vh, r,s Vr (vsvh> - Vs (Vrvh> = viRhi,rs

Dans un espace courbe, les dérivées covariantes secondes d’un vecteur, et plus généralement d’un
tenseur, dépendent de I'ordre des dérivations (ce qui n’a pas lieu pour les dérivées ordinaires).

23.4.9 Tenseur de courbure de Ricci

Nous verrons au paragraphe 26.9 p. 347 que pour établir les équations de la relativité
générale nous devons trouver un tenseur chronogéométrique (lié uniquement a la courbure de
I'espace-temps) symétrique d’ordre deux.

Effectuons toutes les contractions possibles du tenseur de courbure de Riemann-Christoffel.
En utilisant les symétries du tenseur de courbure du paragraphe 23.4.7 p. 282 :

Rij,rs = _Rji,rs = Rji,sr = _Rij,sr = Rrs,ij = _Rsr,ij = Rsr,ji = Rrs,ji
g JRij,rs =g JRji,rs =4g ]Rji,sr =—g ]Rij,sr =4 JRrs,ij =—g JRsr,ij =4 JRsr,ji =4 ]Rrs,ji
Rrs = _Rrs = Rsr = _Rsr =0

grsRij,rs = ginrs,ij
=0

ir i ir i ir i ir i
g Rij,rs =g Rji,rs =g Rji,sr =g Rij,sr =g Rrs,ij =—g Rsr,ij =g Rsr,ji =49 Rrs,ji
st:_st:RSj:_RSJZO

gstij,rs = gieri,sr
=0

s s s s s s s s
g Rij,rs =—g Rji,rs =4 Rji,sr =—g Rij,sr =4 Rrs,ij =—g Rsr,ij =4 Rsr,ji =4g Rrs,ji
Rj - Rrj
T X
gj Rij,rs =g Rji,sr
s _ S
Ri £ Rj ,ST"
Ris = Rjr
Par contraction du tenseur de courbure de Riemann-Christoffel, nous ne pouvons donc former
qu’un seul tenseur, le tenseur symétrique d’ordre deux R;s, qui s’écrit également ;.

DEFINITION 23.4.4. Tenseur de courbure de Ricci
Le tenseur symétrique d’ordre deux

. A i
VZ, ) Ris = g] Rij,rs

= Rir,rs

= a7”1—‘Tsi - asrrri + sti Frrk - Fkri Frsk

est appelé tenseur de courbure de Ricci de [’espace riemannien R, .
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Montrons que ce tenseur est symétrique en montrant que chacun de ses termes est symé-
trique :

arl—‘rsi — arl—‘ris
sti Prrk = Fkis Frrk
ka’ Frsk = Fkrs Frik
- 1 9
L7, = 0. (5 dig)
= %@(83 In ‘g|>
= al']‘_wrs

EXEMPLE 23.4.5. Tenseur de Ricci dans les espaces pré-euclidiens

D’apres le paragraphe 21.4.6 p. 226, dans les espaces pré-euclidiens les symboles de Chris-
toffel sont nuls. Par conséquent le tenseur de Ricci est également nul. Par exemple dans
l’espace-temps pseudo-euclidien de la relativité restreinte :

Vu,v R, =0

EXEMPLE 23.4.6. Tenseur de Ricci d’une sphére
En se servant de 'exemple 21.4.5 p. 229 :

Rop = 0,199 — 0p" g + T g T" . — T¥ g Ty
=1+ cot?*(#) — cot*(#)
=1

Ryp = 0,1 4y — Oy + T, T7p — T* T
= 0oL g + D0y Iy — T, Ty = T% Ty
= 00T 3+ 0y (T + T%40) = D00y Ty = D04y Tl — Doy T4y = T4y T,
= 00T g5 + 104y T 045 — T4 T4y = T4, T4
= 94T%4 —T%, T’y
= sin?(#) — cos?(6) + cos?(A)
= sin?(f)

R0¢ = arFTe(z) - aQFTT¢ + Fk0¢ FTTk - FkT¢ Frgk
S 39F09¢ - 89F60¢
=0
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EXEMPLE 23.4.7. Tenseur de Ricci pour la métrique de Schwarzschild

Grace auz symboles de Christoffel, exercice 21.4.6 p. 229, calculons la composante Ry :

Roo = 0,I"gg — Bl + T T = TF0 T
arFT()() — aOFOOO -+ 81F100 -+ 82F200 -+ 83F300
_ actoz—i—la ( /aﬁ)
=1la+ (10/’ + 1a” %o/ﬁ’) S
- %actd e %arﬁ
1s 15
T 00 I = M0 Iro + Tloo Tt + T2 T g + TP00 T
=T %0+ oo M

=T (Fooo + D+ TP + ngo) + T <F001 + Ty + 0% + F331)

C <a+lﬁ)+ o/eaﬂ<oz+16+ 4= )
=1a*+ L+ (Lo + 1/f + L) e

T*, 0T, = T o0 + Do Mo + T2 Top + T34 T
- Foro [0 + Flro I
=TT 00 + T30 g0 4TI 00 + T30 00
+ Tl 4+ Tl gr + Thygl%gy 4+ Ty,
=T %0 + T oo + Tl 001 + Tl
142 4+ 10/260‘ Ay 0/260‘ f 4 46

il s

4

1 2 2
:4O(+46+Oé,aﬂ

Roo = 2+ (10/’ + 1a” - o/ﬁ’) e —Lla— %6
+1a% + 148 + (10/2 + 30/ + %o/) e p
- 4o = 7~ Jaer
—1B+1ap - 152+ (Lo + Lo — Lo/B + L) e
Calculons la composante Ry :
Ryg = 9,I"g; — QoI + T I7 = T5,, T,
0, T7; = 0T 01 + 01T gy + BTy + 5T,
= 9o, + 'y,
= %acta/ + %&«B
=14 + 15
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I,y = 80F001 + 80F111 + 80F221 + 80F331
= %acta, s %actﬁl + act% + act%
=1a' + 15
T T = T T + Tlon Ty + T2, Ty + T2, T 5
=T o+ T Ty
=T (Fooo + T+ TP + F330) + Ty, (F001 + D0+ T2 + F331)
= T%:1T%0 + Tl i0 + Tloal % 4+ Tloal iy 4+ Tl 4+ T Ty
=ldla+idB+idp+ 15 + 15
=1da+1a/B+ 186 + 15
Fkrl [Mop = Forl oo + Flrl Mo + F2r1 Moo + F3r1 IMos
=T%; T + T Ty
= T T + T3 T gg + T T2 + T%; T
+ gy Ty + Ty Ty + Ty, %, + T Ty
= 1% %0 + Tl + Tl Ty + T Ty
= d'a+ io/ﬁ + io/ﬁ + iﬁﬁ'
= ta'a + id/B + 155

S [®-

Ry =
Calculons la composante Riy :
Ry =0,I"y —ol", + Fkll I Fkrl I
0, T, = 0%, + 0Tt + 0oT%, + 8513,
=9I’ + 0T,
= 10 (8" + $0.8'
=18+ (3 3 — ) P
Iy = (91F001 + (91F111 + a1F221 + a1F331
=20.d + 10,8 + 0,1 +9,1
e CRRC
Fkll g, = FO11 [0+ Fl11 Iy + F211 Iy + F311 I
= FO11 Mo+ Fl11 Iy
=T, (Fooo + T+ TP + F330) +I, (F001 + T+ T2 + F331)
= FO11F000 + FO11F11o + Flnrom + T T + T T2, + Fl11F331
= 18aeP™ + 1% 4 180/ + 187 + L'+ Lp
— iﬁ’o/ + iﬁ/z + %B/ + (iﬁd + iﬁQ) g
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T T =10 + T Ty + T2, T, + 19,17
= T M0 + 10 Thg + T2 T2 + %1
+ D D0 + T Ty + Ty T2, + T T8
+ T2 00 + T2 Ty + T2 T2, + T2 T2,
+ D20 D05 + T2 Tl + T2 T2 + T2 19
=TT + 0 g + T Ty + T Ty + T2, T2, + T2, 10
1o + 1% g 1g2efme p 192 4 14 L
ia& + iﬁﬁ + T% + %5.266_01
Ry =18"+ (33 + 18— pa) " — Lo" — 18"+ 2
+ 3180/ + 187 + 18 + (§Ba + 18%) &£
M N
=—1a"+ 18 + 15 — Lo + (%5 +152 - %Bd) e
Calculons la composante Ry :
Ryy = 0,175y — Dol 1y + TF5 17y = TF 5 Iy
0,75y = 8oL % + 01Ty + 9o, + 5T,
- 81F122
=0, (—re‘ﬁ)
=—eP4rpe?
0oL,y = 85005 + 0Ty 4 Bo %, + T,
= 82F332
= Oy cot(0)
= —1 — cot*(0)
T T = T T + Ty Ty + T2 T + T35, T
- Fl22 (Fom + Fln + F221 + 1—‘331)
= —re? (%O/ +38 +1+ %)
= —%r (o +p)e P — 2"
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D%, T g = Tl a0 + T ol gy + T2, 5T gy 4+ 12,5154
=TTy + T2 0T + T2,
= Tl + Ty + Ty T2 + 75,1,
+ D20 000 + T25T gy + T2, %00 + 123510,
+ 20T 005 + T2 5T 05 + 1205 %05 + 125510,
= Fl1211121 + F21211122 + F33211323
=1 x—re?+1x—re’ + cot(6) cot(f)
= —2¢~? + cot?(9)

Royy=—e " +rfe? +1+cot’(0) — 3r(a/ + ) e’ —2eF +2¢7F — cot®(0)
= — {1 Ll = 6’)} e?+1

23.4.10 Courbure riemannienne scalaire

La contraction du tenseur de courbure de Ricci, définition 23.4.4 p. 289, donne un invariant
(le seul possible) :

DEFINITION 23.4.5. Courbure de Ricci
Le scalaire

R= gisgerij,rs
= gisRir,rs
= 9" Ris
=R

est appelé courbure de Ricci ou courbure riemannienne scalaire de l’espace R,,.

Dans un espace de Riemann a n dimensions :
Ri=R)+R +R,+  +R!
Réciproquement, avec la relation (52) p. 102 pour un espace a n dimensions :

9i;9" Rij = gi; R
Ri; = %gin

EXEMPLE 23.4.8. Dans un espace riemannien de dimension deux, d’apres l'exemple
23.4.2 p. 285, les seules composantes du tenseur de Riemann-Christoffel non nulles sont
les suivantes :

Ri212 = —Ri291 = Ro121 = —Ra1 12



Géométrie des variétés riemanniennes 295

Avec la relation (50) p. 102 sur le déterminant du tenseur métrique dual, la courbure de
Ricci a pour expression :

R = 912921312712 + 921912321,21 + 911922312721 + 922911321712
_ (912921 + 921912 i 911922 _ 922911) Risyis
=2(g"¢” - 9"¢") Rio1o
= =29 'Rz 12
Réciproquement :

312712 = —%QR
= —%R (911922 — 912921)

EXEMPLE 23.4.9. En utilisant linverse du tenseur métrique (54) p. 103 et l'exemple
23.4.6 p. 290, la courbure de Ricci d’une sphére de rayon r s’écrit :

R = ginij
= Q%Ree + QWRM
1 1 )
=~ 4~ sin?(8
r2 + r2sin?(0) ()
2
T2

23.4.11 Secondes identités de Bianchi

Nous pouvons obtenir de nouvelles identités par dérivation du tenseur de courbure de
Riemann-Christoffel. Adoptons un systeme de coordonnées localement géodésiques en un point
M de R,, les symboles de Christoffel sont alors nuls, la définition 23.4.1 p. 279 du tenseur de
courbure de Riemann-Christoffel s’écrit :

Vh,i,r,s R, =0I",—oI",

Dans le systeme de coordonnées localement géodésiques la dérivation covariante se réduit a la
dérivation partielle ordinaire :

: h h h
Vh,i,r,s,t VR = Oy 1", — O,
Par permutation circulaire sur les indices r, s, t, nous avons :
. h - h h
Vhyi,r,s,t VR ;= 0psI™"; — 0™,
. h o h h
Vhyi,r,s,t VR" . = 04", — 0,1,

7S

puis par addition :
Vha i) TS, t VtRhi,rs + VTRhi,st + VSRhi,tr =0

La dérivée covariante d'un tenseur étant un tenseur, chacun des membres de l'identité est un
tenseur, cette relation est une relation tensorielle. Les identités de Bianchi sont donc valables
dans tout systeme de coordonnées, en tout point de R,.
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23.4.12 Tenseur d’Einstein

Toujours au paragraphe 26.9 p. 347, nous verrons que pour établir les équations de la
relativité générale, la divergence du tenseur symétrique d’ordre deux que nous cherchons doit
étre nulle. En effet, ce tenseur qui représente la courbure de 'espace-temps doit étre égale au
tenseur impulsion-énergie qui est conservatif, donc de divergence nulle (théoreme de divergence
22.4.1 p. 254). Effectuons une double contraction des secondes identités de Bianchi :

(1) Pour t = h :
Viu s vthi,rs + vTRhi,sh + VSRhi,hr =0
Vthi,rs - VT’Rhi,hs + VSRhi,hr =0
Vthiﬂns - eris + vsRir =0

Vkoros VAR, = 9"V, Ris + g"V Ry = 0
La dérivée covariante du tenseur métrique étant nulle, (143) p. 242 :
Vi (9%R",,) = Vi (0% Ris) + Vs (6" Rir) = 0
ViR"™ . = V,R! + VRl =0
(2) puis pour s =k :
Vr VthkM + ViRF —V,.Rf =0
ViR 4+ ViRF —V,.R=0
2ViRF —V,R =0
ViR — 1685V R =0
ViRE—IViSFR =0
Vi (RE—30ER) =0 (183)

DEFINITION 23.4.6. Tenseur d’Einstein
Le tenseur

Vk,r S 2RI — 'R

est appelé tenseur d’Einstein.

Par symétrie du tenseur de courbure de Ricci et du tenseur fondamental, ce tenseur est
symétrique. La relation (183) exprime que la divergence du tenseur d’Einstein est nulle (relation
(146) p. 243). Les composantes covariantes de ce tenseur s’écrivent :

Vk, 7  gaS. = giR. — %gikéiR
Sk:r = Ry — %gkrR (184>



24

Dynamique classique

24.1 EXEMPLE D’APPLICATION DE LA GEOMETRIE DE RIEMANN

La géométrie de Riemann trouve une application importante dans les problemes de mé-
canique. Soit un systeme dynamique se déplacant dans l’espace ordinaire, euclidien a trois
dimensions. Prenons le cas d’'un pendule sphérique. La tige du pendule exerce une force sur la
masse 1'obligeant a se déplacer sur une sphere. Nous pouvons ignorer cette force et considérer
directement que la masse se déplace sur une sphere, sans jamais la quitter. Nous savons que
I’espace accessible a la masse du pendule simple est une sphere. Dans le cas général pour trou-
ver la forme de l'espace accessible, la force doit pouvoir étre remplacée par une fonction des
coordonnées, de la forme

F (xl,xz,x?’) =0
La force est alors dite holonome. Par exemple pour le pendule spherique :
p= Cste
Dans le cas présent elle est aussi scléronome, c¢’est-a-dire indépendante du temps. Grace a cette
relation, pour décrire le mouvement de la masse nous passons de :

— trois coordonnées sphériques (p, 0, ¢), une force, un espace euclidien

— deux coordonnées (6, ¢), aucune force, un espace courbe (la sphere)

Lorsque 'on utilise un nombre minimal de coordonnées pour décrire I’évolution du systeme, on
parle de coordonnées généralisées. Ici ce sont deux angles, et ’espace riemannien correspondant
est une surface.

En I'absence de champ de gravitation, la masse ne peut décrire que des grands cercles de
la sphere, c¢’est-a-dire des géodésiques de cet espace riemannien. De plus la masse se déplace a
vitesse constante en norme.

Lorsqu’il existe une force dérivant d’une énergie potentielle, par exemple un champ de gravi-
tation, nous verrons qu’il existe quand méme un espace riemannien dans lequel les trajectoires
sont encore toutes des géodésiques.

Enfin, lorsque la longueur de la tige varie dans le temps, par exemple un moteur allonge ou
raccourcit la tige, la liaison est holonome rhéonome. Nous pouvons encore supprimer la force,
mais ’espace riemannien évolue dans le temps. Le temps devient une nouvelle coordonnée,
au méme titre que les coordonnées spatiales, et nous considérons 1’évolution du systeme dans
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un nouvel espace riemannien ayant une dimension supplémentaire. Dans le cas du pendule
sphérique, 1'espace riemannien a alors trois coordonnées, (6, ¢,t).

24.2 SYSTEMES HOLONOMES A LIAISONS SCLERONOMES

Considérons un systeme dynamique S a n degrés de liberté, c’est-a-dire un systéme a n
coordonnées généralisées (¢'). L’évolution temporelle de ce systéme est représentée par un point
M se déplagant dans un espace de dimension n ayant les (¢°) pour systéme de coordonnées,
appelé espace de configuration. Cet espace de configuration est I’ensemble des configurations
possibles du systeme, il constitue une variété différentielle & n dimensions, autrement dit un
espace riemannien V,,. Lorsque les liaisons sont holonomes, parfaites et indépendantes du temps,
I'espace de configuration n’évolue pas dans le temps : les composantes g;; du tenseur métrique
de l'espace de configuration ne sont pas des fonctions explicites du temps. Soit ds 1’élément
linéaire de l'espace de configuration, d’apres (72) p. 144

ds® = gz‘jdqidqj

ol les indices latins varient de 1 & n, et o les g;; sont fonction des ¢ uniquement.

24.2.1 Cinématique

Le vecteur vitesse a pour composantes contravariantes,

. z‘_dqi_
Vi U_dt_

X3

q

et pour composantes covariantes :
Vi v = gi;v! = gii¢’ = G
Exprimons I’énergie cinétique a partir de la vitesse et de 1’élément linéaire :

T =

On remarque que le carré de ’élément linéaire s’écrit :

2T
ds* = ~— dt? (185)
m

REMARQUE 48. On peut toujours changer d’unité de masse et poser m = 1 pour avoir :
ds® = 2T dt*

On peut également diviser ['unité de longueur des ¢* par \/m et obtenir le méme résultat.
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Dérivons I’énergie cinétique par rapport a la vitesse :

. aT a 1 \i e
Y 5d T o (smoui'¥)
m 0 o .
— ot At
> 30 (;gwqq +;gwqq)
m 0 o .
— At AT Ly
2 90 (;gmqq +2i:g@]qq>
= mgi; ¢’ (186)
= mv;

Or, les composantes de 'impulsion généralisée s’écrivent :

0L
Vi pi = 8—(12

ou .Z =T — V est le lagrangien. Lorsque 1’énergie potentielle totale V' ne dépend pas des
vitesses généralisées :

aT
94t

= muv;

Vi p;=

Les composantes de I'impulsion généralisée ne sont autres que les composantes covariantes de
la vitesse du point représentatif M dans l’espace riemannien V,, des configurations, multipliée
par la masse.

Pour l'accélération, servons-nous de la définition (140) p. 238 du vecteur unitaire u tangent
a la trajectoire € au point M :

u-u=1
d
g(u~u):0
2d_u u=20
ds N
d_u u=20
ds N

Le vecteur du/ds est soit nul soit orthogonal a u partout sur la trajectoire €. D’apres (136)
p. 236, il a pour composantes les dérivées absolues Du’/ds. Il n’est pas unitaire, appelons p sa
norme. On définit un vecteur unitaire n qui lui est colinéaire :

Le vecteur unitaire n, colinéaire au vecteur orthogonal a la tangente a %, est appelé vecteur
de la normale principale a €. La dérivation absolue de la vitesse par rapport au temps donne
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l'accélération :

dv | N Du' ds

u 4+ v —
dt ds dt
dv v?

— e 187
dtu+pn (187)

Le vecteur accélération se décompose en une accélération tangentielle et une accélération
normale. Le scalaire p(s) a la dimension d’une longueur et est appelé rayon de courbure de €
au point considéré. p=! est appelé courbure de € dans V.

24.2.2 Les équations de la dynamique

En T'absence d’hypotheses sur le caractere conservatif ou non des forces généralisées @);
s’exercant sur le systeme, le mouvement du systéme est déterminé par les équations de Lagrange
sous leur forme la plus générale :

, d (0T or

Désignons par Q;0¢" le travail élémentaire des forces extérieures appliquées au systeme lors d'un
déplacement virtuel arbitraire dq°. C’est un scalaire qui ne dépend pas du systéme de coordon-
nées dans lequel on I'exprime, car si ¢’était le cas le systéme gagnerait ou perdrait de 1’énergie
par changement de coordonnées. C’est donc un invariant par changement de coordonnées. Les
dq* étant les composantes contravariantes d'un vecteur, les Q; sont les composantes covariantes
du vecteur force généralisées de V,,. Remplagons I’énergie cinétique par son expression donnée
par les relations (186) p. 299 :

Vi % (mgijqj) —

0
aq’

(% mgqukqj) = Q; (189)

Le calcul suivant est identique a celui de la démonstration du théoreme 23.2.1 p. 268 :

Vi m <g¢j(jj + CZZ; dd—qtk ¢ — % % qk(ij> = Qi
Vi m (gid + giird"d — § 0igrsd"d’) = Q:
Yi m {gijq'j + (gz‘j,k — %aigkj) qkqj} = Qi

En remarquant que ¢;;xd"¢’ = gri ;4%¢’

Vi m|gyd + (595 + 5 9k — 5 O0ky) °¢| = Qi
Vi m [gu@ + 1 (guig + gk — o) 4] = @
Vi m (gij(jj + ki qkqj) = Qi
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Par multiplication contractée par g;g™" = 4 (relation (52) p. 102) :
Vi mgn (5;1 ¢ + 9" Thij qkqj) = Q;
Vi mg (" + T ") = Qi

Vi g <dvh + U;trhkj qu> _ 0,
Vi mgp (%) = Q;

Vi mgin Dd_:h =@

Vi mot=Q,

Vi ma; = Q;

Ainsi les membres de gauche des équations de Lagrange (188) p. 300 ne sont autres que les
composantes covariantes du vecteur accélération de M dans ’espace riemannien de configura-
tion. Les équations de Lagrange étendent la relation fondamentale de la dynamique aux espaces
courbes. D’apres les relations (187) p. 300, on peut encore écrire les équations du mouvement
sous la forme :

dv v?
Vi mEuier;ni:Qi (190)
Au cours du mouvement le vecteur force généralisée reste dans le plan défini par la tangente a

la trajectoire et par la normale principale.

24.2.3 Absence de forces extérieures

En I'absence de forces extérieures exercées sur le systeme, c’est-a-dire lorsque les @); sont
nulles, I’énergie cinétique est constante puisqu’il n’y a pas d’énergie potentielle, la vitesse est
donc constante et I'accélération nulle, le point M suit une géodésique de V,, :

Vi CLZ':O
. dv v?
Vi m—u;+m—n; =0
dt p
Soit :
dv_o
dt
1/p=0

La courbure est nulle dans I’espace riemannien. A partir des relations (189) p. 300 nous avons
également :

. d y 0 /4 ki
Vi o (md’) - g’ (3 margd"d’) =0
G — 20igx;0"¢ = 0 (191)

Ce sont les équations des coordonnées de la géodésique suivie par le systeme dans 'espace de
Riemann des configurations
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24.2.4 Forces dérivant toutes d’une énergie potentielle

Supposons que le vecteur force généralisée dérive d'une énergie potentielle indépendante du
temps :

En prenant le produit scalaire de la relation (190) p. 301 par le vecteur vitesse,
/d 2 _
v (md—:uier%ni) = Qv

; (dv v? ) oV dq'
mow | —u;+—n; | = —
P

dt g dt
4
dt — dt

/mvdv:—/dv

Imw® +V =
qui est I’équation de conservation de ’énergie mécanique d'un systeme conservatif (dont les

forces dérivent toutes d'un potentiel). La constante est 1’énergie mécanique totale E. Cette
équation nous donne l'expression de la vitesse d’un systéme conservatif :

v=1\/2(E-V)

A partir des relations (189) p. 300, la loi du mouvement du systéme s’écrit :

, d > m OGkj .1 .; A%
i) — 2 2R k-j _

ma —

Ce ne sont pas les équations des coordonnées d’une géodésique a cause du membre de droite
non nul. Cependant, dans le paragraphe suivant nous montrons que nous pouvons quand méme
réduire le probleme a la recherche d’une géodésique.

24.2.5 Recherche d’une géodésique

Déterminons la trajectoire fictive du point représentatif d’'un systeme en présence d’une
énergie potentielle, sous la forme d'une géodésique. Gardons I’hypothese de conservation de
I'énergie mécanique du paragraphe précédent (systéme conservatif).

— Dans la loi du mouvement, remplagons le temps par la fonction a déterminer 6(t). Les
coordonnées sont maintenant des fonctions de la fonction 6(¢) :

Vi ¢ =q[0(t)]

dg'[0()] _ dg' do(t)
dt d6(1) ~dt
dq .

T

Vi

Vi ¢
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La loi horaire ne dépend plus explicitement du temps mais cela ne change pas la forme
de la trajectoire suivie par le systeme :

, do d dq’ df m Ogx; dq* df dg? do OV
Vi m— —gj—— | - L —— —— + — =
dt do do dt 2 0¢" df dt df dt = Oq'
.- d dg’ . 1 ., Ogr; dg¥dg’ 1 0V
0— | q.. 0l — 29 Nt et S 192
v (g” d ) 2" ¢ a9 a8 " m og (192)

— Changeons d’espace de configuration en changeant de métrique mais pas de systeme
de coordonnées (¢') :

ds” = F(q")ds?
= F(¢')gyydg'd¢’
= gijdqldq
Par la suite nous fixerons la nouvelle métrique par I'intermédiaire de la fonction inconnue F(q)
de telle sorte que la trajectoire soit une géodésique dans le nouvel espace de configuration.
Cherchons la composante covariante de la vitesse dans cette nouvelle métrique en utilisant la
fonction 6(t) :
Vi ¢ =g,
= F(q")9;;¢
dgz o ( z) dq]
T
Par analogie avec les relations (191) p. 301, les équations des coordonnées d’'une géodésique de
ce nouvel espace de configuration sont données par :

vi d<d%>_l%@dq —0
do\do )~ 2 0g do do
d dg’\ 1,09 dg" d¢’ 10F —dg* dg’ _
d@( g d@)

Vi

Vi

o do d0  20¢ 7 q9 a9

Puisque le choix de la fonction 0(t) est libre, prenons la égale a 'abscisse curviligne s’ (qui est
bien fonction du temps). Nous avons alors,

dg* dg’ dq* dqﬂ
ki 4o do ki s’ ds’ ds’
d 8/2
= d8'2
dq* dqﬂ 1
g0 a8 T F

et par conséquent (en gardant 6 plutot que s') :

d < dqj> 1 dgr; dq® dg 1 OF

Vi Z
boag \" g B¢ do df  2F ag¢

. d dg’ o Ogrj dg® dgo 1 or
Vi F Fyg; e
' d0< i d@) 27 g do df  20¢
Cette relation s’identifie avec la loi du mouvement du systéme (192) p. 303, si 'on prend :

. ) A 2V
F(¢') =106 et F(q') =" — —
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Pour la constante, prenons le double de 1’énergie mécanique totale divisée par la masse :

) 2 )
Fl¢)=—|E-V(q¢

(') = — [ ()]

Dans cette relation il vaut mieux ne pas remplacer £ — V par T, car T est fonction des
vitesses. Dans I'hypothese de la conservation de ’énergie mécanique, la trajectoire d’'un systeme
dynamique qui correspond a une valeur donnée de I'énergie mécanique est une géodésiques de

I'espace de configuration pour la métrique riemannienne :

ds” = F(q")gi;dg'dq’

& (B = V(1)) gijdg'dg’

m
La loi horaire selon laquelle ces géodésiques sont décrites au cours du temps est donnée par :

d 2 |
T m (E - V(ql))
0(t) / % (E—-V(g))dt
_ % (E- V() +6(t=0)

24.3 SYSTEMES HOLONOMES A LIAISONS RHEONOMES

Considérons un systeme dynamique a n degrés de liberté. Lorsque les liaisons sont holo-
nomes, parfaites et dépendantes du temps, les configurations possibles pour le systeme dé-
pendent de l'instant considéré. Nous sommes amenés a substituer a I'espace de configuration,
l’espace-temps de configuration, c’est-a-dire une variété a n + 1 dimensions V,,. 1, pour laquelle
les ¢ et le temps ¢° constituent un systéme de coordonnées. Le point représentatif du systéme
dynamique se déplace en fonction du temps, sur une hypersurface qui se déforme dans le temps.

REMARQUE 49. Le passage a un systéme de coordonnées en mouvement est traité comme un cas
particulier de liaisons holonomes dépendantes du temps. On utilise les mémes formules mais le nombre
de coordonnées ne change pas.

Soit ds I’élément linéaire de ’espace-temps de configuration,
ds® = gap dg®dq®
ot les indices grecs varient de 0 & n, et ol les g,s sont fonction des ¢*.

Le vecteur vitesse a pour composantes contravariantes,

o_ 40" _ o
Va v* = prai
de sorte que :
Ci dg’
Vi d =y (193)
=1

Le vecteur vitesse a pour composantes covariantes :

Vo Vo = gozB'UB - gaﬁqB = (joz
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Exprimons I’énergie cinétique a partir de la vitesse et de 1’élément linéaire :

2

T:%mv

1 ds\>
= —m —_—
2 dt
3Mas 4"
Comme pour le cas scléronome :
2T
ds® = = dt?

m

En dérivant I'énergie cinétique par rapport a la vitesse :

oT Jd m
v v _ v m . o -3 . o -
a a° 0 2 (Ea:g 84 q +§ﬁﬁg 84 q)
m 0
— ca 3 ~a -3
— 8 A~ « + «
2 D (Ea:g 84 4 Ea:g 5‘JQ>
= MGapd”
= M,

Les n composantes p; de 'impulsion généralisée sont donc encore égales aux n composantes
covariantes v; de la vitesse multipliée par la masse.

La dérivée absolue de la vitesse par rapport au temps donne 'accélération :
Dv®
dt
=q§* + 1"0475 qvq'ﬁ

YVa a° =

Pour les composantes covariantes de 'accélération :

DvP
Va  ay = gap o

= gaﬁ‘jﬁ + Tays qﬂyqﬁ
Avec (193) p. 304, ¢° =1 = {° =0, pour la composante temporelle de I'accélération :
ao = gosG” + Loy 74
= goiG’ + Lo 4'¢" + Toio 4" + Toor " + Tooo
Avec les relations (126) p. 225, Toio = 5 gooi> Look = 3 Jooes Looo = 3 Goo,o

ao = goid' + ok 44" + goo,id" + % goo,o

24.3.1 Les équations de la dynamique

Quel que soit le type de liaison, scléronome ou rhéonome, le mouvement du systéeme est
déterminé par les équations de Lagrange :

Qi

d (OT\ T
=1,... — - | — — =
vi=bhoen g (aqz> g
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ou énergie cinétique est maintenant fonction de ¢°. Cherchons ’équation pour l'indice 0.
Effectuons le produit scalaire par ¢* :

d (oT\ ., T ,
@< ) ¢ = Qiq

o )1 " ag
at\og ) " og ] ot T
it (aqi q) ) <aq'i T 5 q) — o

Réécrivons le premier terme du membre de gauche. L’énergie cinétique est une fonction homo-
gene de degré deux des vitesses généralisées (si les variables, ici les vitesses généralisées, sont
multipliées par un scalaire, le résultat est multiplié par ce scalaire au carré) :

T(Aqo,...,xq") :AQT(QO,...,Q")

En différentiant :

orT
—d (\*) =d (N°T
0 ()\qa) ( ) ( )
T  d(A™)  d(A\T)
J(AG¥) dA T d
orT
— ¢ =2\T
9 (Ag®)
En posant A = 1 nous trouvons
oT
—¢*=2T
g !

appelée identité d’Euler, ici pour une fonction homogene de degré deux. Changeons d’indice :

or ., or
'+ —¢ =2T
8q'z q + 3(]0

d (0T ;\ _,dT d (0T
at\ag )~ a  dt \ogo

Réécrivons le second terme du membre de gauche :

A . or ... oT or .. J0T
dT (6 0 1 0:—.d'2 _d-O = ddt _dO
(q,q,q,q) gg Wt gt g+ 55 da
ar_or . oT . or
at —0¢? "o T T a0
ar 9T 9T , 9T

)

ot op ol T g
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Injectons ces deux relations dans (194) p. 306 :

oL A (0T (dT 0T\ _ )
dt  dt \ 9 at o)

dr d (0T or

' %(8—(]'0>+0—(]0_Qiq
d (or\ or dr
it i) ~ = 1

Cette relation remplace celle de conservation de I’énergie que nous avions pour le cas holonome
scléronome. L’énergie mécanique ne se conserve plus car les liaisons, variables au cours du temps,
effectuent des travaux que nous ne pouvons prévoir explicitement. Nous obtenons les mémes
équations que pour le cas holonome scléronome, ainsi qu'une équation pour la composante
temporelle :

ar (195)
mag = a Qig

Ces deux équations sont les équations du mouvement de M dans V1. Si le mouvement du
systeme a lieu sans forces extérieures exercées sur le systeme, les n composantes a; sont nulles,
mais ag est en général différent de zéro et les trajectoires du point M dans V,,;1 ne s’interpretent
pas géométriquement d’une maniere simple.

24.3.2 Forces dérivant toutes d’une énergie potentielle généralisée

Supposons que toutes les forces dérivent d'une énergie potentielle généralisée U (¢°, ¢', ..., q")
pouvant contenir explicitement le temps ¢°. Si 'on introduit le lagrangien
L=T-U
les équations du mouvement du systéeme deviennent :
d (0L 0L
Vi=1,...,n — — | —— =
dt \ 0¢* oq

La métrique de la variété V,, ., s’écrit :
do? = GaB dqadqﬁ
= gi;dq"dq’ + 2 gio dq'dq” + goo dg°dq"
o, 0)?2
= 9idq"dq’ + goo (dq )
2
=ds® + Joo (dqo)

ou l'on a choisi Vi g;0 = 0 en prenant des vecteurs de base orthogonaux entre l'espace et le
temps. Avec la relation (185) p. 298 et en faisant entrer la fonction U dans g :

do? = 2 dt? + goo (alqo)2
m

2T 2
=g 22U g
m m
2.7
== dt
m



308 Dynamique classique

Les formules (195) subsistent avec cette métrique a condition de remplacer les forces par leurs
énergies potentielles, c’est-a-dire T' par .Z et les Q; par zéro. Les équations du mouvement du
point représentatif M dans l'espace V1 doué de la nouvelle métrique s’écrivent :

W) ai:O
g — 4L
07 Tt

24.4 DYNAMIQUE DES MILIEUX CONTINUS

24.4.1 Les milieux continus

D’un point de vue microscopique tout milieu est composé de particules. Cependant, en
prenant un volume de matiere suffisamment grand, nous pouvons nous placer d’'un point de
vue macroscopique et supposer le milieu continu. Cette approximation est valable pour les
fluides en hydrodynamique et pour les solides en théorie de I’élasticité. On utilise donc les
mathématiques du continu pour modéliser un milieu physique qui ne I’est pas. Rien de nouveau
en cela, en physique l'espace et le temps sont aussi supposés continus, et en mécanique classique
les échanges de matiere, d’énergie et de quantité de mouvement ou de moment cinétique sont
supposés continus.

En relativité la notion de solide n’existe pas car elle suppose un déplacement simultané
des différentes parties du solide lorsqu’il est soumis a une force. En faisant vibrer un solide on
pourrait transmettre un signal avec une vitesse infinie, en désaccord avec la relativité restreinte.
Pour cette raison on utilise les milieux continus en relativité.

Plagons-nous dans un référentiel inertiel et étudions I’évolution dans le temps et dans l'es-
pace d’une caractéristique ¢ quelconque du milieu, sa masse volumique, sa température, sa
pression, sa vitesse, son accélération...

Plusieurs points de vue sont possibles :

— Dans le point de vue d’Euler on imagine un volume infinitésimal en un point fixe de
notre référentiel, au travers duquel circule le milieu continu. La caractéristique ¢ du
volume infinitésimal varie dans le temps mais pas dans 1’espace.

— Dans le point de vue de Lagrange on choisit un volume infinitésimal de matiere du mi-
lieu continu et ’on suit son évolution dans le temps et dans I'espace. La caractéristique
¢ du volume infinitésimal varie dans le temps et dans 'espace. En général la vitesse
de I’élément de matiere que 1’'on suit est fonction du temps.

— Il existe un troisieme point de vue qui consiste a se placer dans le référentiel inertiel
de repos instantané du volume infinitésimal de matiere. Dans ce référentiel la vitesse
du volume infinitésimal de matiere du milieu continu est nulle, mais son accélération
est en général non nulle. La caractéristique ¢ du volume infinitésimal varie dans le
temps mais pas dans I'espace. C’est en fait un cas particulier du point de vue d’Euler,
dans lequel le référentiel inertiel de I'observateur est choisi de fagon a ce que la vitesse
instantanée du milieu continu soit nulle.
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24.4.2 Dérivée particulaire

Rapportons l'espace a un systéme de coordonnées curvilignes quelconques (x'). Prenons
le point de vue de Lagrange, et soient v'(t) les composantes contravariantes de la vitesse du
volume infinitésimal de matiere du milieu continu par rapport a ’'observateur inertiel :

| 9
ol (1), 1] = ai) dt + af 2(#)

dp ¢  0¢ da

i ot o dt (*)

g

ot
_ 9%
=5 +v(t)-grad ¢

(196)

La dérivée particulaire de ¢ nous dit qu’en chaque point du référentiel d’'un observateur inertiel,
la variation dans le temps de la caractéristique ¢ du milieu continu est due a sa variation locale
(en un point fixe) dans le temps et au mouvement relatif de I'observateur par rapport au milieu
continu, dans le gradient de ¢.

L’équation (196) ne fait pas de supposition concernant l'origine de la variation locale de la
caractéristique ¢. Dans le paragraphe suivant, on explicite ce terme pour le cas de la masse
volumique.

24.4.3 Equation de continuité

Nous nous plagons dans le référentiel inertiel de repos instantané de ’élément de volume du
milieu continu, cas particulier du point de vue d’Euler. La masse et la masse volumique de cet
élément de volume ne sont fonction que du temps :

= JJ] e

Le volume V' d’intégration est suffisamment petit pour considérer que la matiere de ce volume
a un mouvement d’ensemble, autrement dit que la vitesse est bien la méme en tout point de ce

volume.
=l e

Comme il n’y a ni création ni destruction de masse dans ce volume (on suppose la conservation
de la masse), la variation de masse ne peut étre due qu’a un flux de matiére a travers la surface

S délimitant le volume V
/// @ dv = // pv - nds
v ot S

ol n est la normale sortante a la surface S. Le produit scalaire d’une vitesse avec une surface
orientée définit bien un volume par unité de temps. Si le terme de gauche est positif, c’est-a-dire
si la masse et la masse volumique augmente avec le temps, alors de la matiere entre dans la
surface et le produit scalaire v - n est négatif. Le signe négatif devant le terme de droite le rend
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positif. Avec le théoreéme de la divergence 22.4.1 p. 254 :

///_pd +///diV(pV)dv=o
///l +leﬂV)1dv:o

E + le( ) 0

Cette équation s’appelle équation de continuité ou équation de conservation de la masse. Elle
nous dit que si en un point d’'un référentiel inertiel la masse volumique varie localement, alors
il y a un flux de matiére vers ce point (ou en éloignement).

En notation indicielle, avec 'opérateur divergence en coordonnées rectilignes (148) p. 243,

dp  9(pv")

— — — 197

ot i Ox! 0 (197)
et en coordonnées curvilignes (146) p. 243 :

op

2L V(') =0 (198)

ot

24.4.4 Tenseur des contraintes

Pour étudier 1’équilibre des forces dans un milieu continu, nous considérons un volume a
face planes ayant le nombre minimal de faces planes, c’est-a-dire un tétraedre. Pour les autres
volumes, comme par exemple le cube, le systeme d’équations des forces est surdéterminé car
I’équilibre est hyperstatique.

Rapportons I'espace & un systéme de coordonnées rectangulaires (z!, 22, 23) et & son repere

naturel orthonormé (o, ey, ez, e3).

x3

|
§

Fi1Gc. 24.1 — Tétraedre

Soient f', f? f? des forces extérieures par unité de surface (des pressions) s’exercant sur
chacune des trois faces identiques du tétraedre. Elles le mettent en mouvement accéléré de
rotation et de translation. Dans le cas statique, une quatrieme force extérieure par unité de
surface F maintient le tétraedre immobile. Le tétraedre étant supposé a I’équilibre, la somme
des forces extérieures s’exercant sur lui est nulle :

Fs+ fls) + f2sy + f3s3 = 0 (199)
F +f's)/s+f%sy/s +fs3/s =0
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Les surfaces s; sont les projections de la surface s sur les plans coordonnées. Soit o le vecteur
unitaire sortant normal a la face inclinée, de composantes covariantes o1, 09,03 :

F+f1(a-e1)+f2(a-e2) +f3(U 'eg) :0
F+f101+f202+f30320
F+fo,=0

Les trois vecteurs unitaires sortants normaux aux surfaces n; = —e; forment une base ortho-
, . 1 . .
normée. La pression f* qui s’exerce sur la face (:cQ, a:3) a pour expression :

1 — 'y + 120, + 30
= tljn]-
= —tljej
ol tY est homogene & une pression. Avec cette convention de signe pour les composantes, le

vecteur f' a pour composantes une fois contravariantes ¢ dans la base (n;) et —t dans la
base (e;). Pour I'ensemble des forces :

Vi=1,2,3 f' =—te;
Nous avons alors
F = —fiCTZ'
Fjej = tijal-ej
Vji=1,2,3 FI=tg
Donc, dans la base naturelle (e;) la force par unité de surface F a pour composantes contrava-
riantes t“o;. Les FY sont des composantes contravariantes et les o; des composantes covariantes,

d’apres le critére de tensorialité 20.9.2 p. 211, les ¥ sont les composantes deux fois contrava-
riantes d’un tenseur appelé tenseur des contraintes.

REMARQUE 50. Vérifions-le en effectuant le changement de coordonnées de x* a xi/, auquel correspond
le changement de base naturelle :

oxF
— €L/

Vj:1,2,3 eJ:W

La force par unité de surface se transforme selon :
i
F=t jO'iej

= tij (0’ 0 ei)ej

_ il ozl ¥
AT

’ ’
ij oxt ox*
=t 5t a7 (7 ev)ew
Or la force exercée sur la surface S ne dépend pas du systéme de coordonnées (la force est un vecteur) :
F=F
44 813ll 813]6, k'l
t* 50t D7 (o-ep)ey =t"" (o-ep)ey
x? Ox
U gk
ox" Ox ij _ tk/l/
ox' OxJ

D’apreés le théoréme 20.7.1 p. 202, la matrice 3 x 3 des t¥ est un tenseur deux fois contravariant.
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Cherchons 'expression de la force infinitésimale :

Fjej = tijaiej

FjejS = t”SZ-ej

Fjede = t”dsiej
Vj=1,2,3 Fids=tds, (200)
Lorsque le fluide est parfait (ni transfert de chaleur ni viscosité en cisaillement ou en traction-
compression) le tenseur des contraintes devenu tenseur des pressions prend la forme suivante,
Vi,j 19 = pg” (201)

ot le scalaire p est la pression du fluide au point et a I'instant considéré, et ot les g¥ sont les
composantes du tenseur métrique dans le systeme de coordonnées choisi. Lorsque ce dernier est
orthogonal, le tenseur métrique est diagonal ainsi que celui des pressions.

24.5 EQUATIONS DE LA DYNAMIQUE DES MILIEUX CONTINUS

On considére un élément de matiere du milieu continu, de surface fermée ds, de volume dv
et de masse volumique p. On utilise un systeme de coordonnées rectangulaires et on se place
dans le référentiel inertiel de repos instantané de cet élément de matiere. On note f, la somme
des forces extérieures par unité de volume des forces de volume (forces électromagnétiques et
gravitationnelles) et > f' 1a somme des forces extérieures par unité de surface des forces surfa-
ciques, les forces s’exercant sur I’élément de matiere. La relation fondamentale de la dynamique
s’écrit :

f,dv + f'ds; = ypdv
avec (199) p. 310 :
f,dv — Fds = ~pdv
En notation indicielle :
Vi=1,2,3 fidv— F'ds= py'dv
avec (200) p. 312 :
Vi=1,2,3 fldv—tFds, = pyidv

Intégrons sur un volume V' quelconque, de surface S :

//V (fi=p7) dv—//stkidsk =0

En utilisant le théoréme de la divergence 22.4.1 p. 254 dans un systeéme de coordonnées recti-

lignes :
// o= py —8kt]”) dv=0

— t*" = py' (202)

qui sont les équations de la dynamique des milieux continus en coordonnées rectilignes. Elles
sont homogenes a une force par unité de volume.
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La somme des moments des forces extérieures est égale au moment des forces d’inertie :
r X (fydv — Fds) = r X ypdv
rx (f, —yp)dv —r x Fds =0

En notation indicielle et en intégrant sur un volume quelconque V' de surface S :

/// f]—PV)—wj(fi—m dv—// Liki _ xjt/ﬂ)dsk_o

En utilisant le théoreme de la divergence 22.4.1 p. 254 :

/// fj —py - 8kt"”) — a7 (fz —py - 8kt’“ dv — /// tw t]z) dv — 0

Les relations (202) montrent que la premiere intégrale est nulle :

///V (t7 = /") dv =0

tij — tji

Le tenseur des contraintes est donc symétrique par rapport a ses deux indices.

24.5.1 Ecriture des équations en fonction de I’impulsion

Les relations (202) p. 312 peuvent s’écrire en fonction de la densité volumique d’impulsion.

Ecrivons I’accélération (138) p. 237 dans un systeme de coordonnées rectilignes ou les symboles
de Christoffel sont nuls (21.4.6 p. 226), puis utilisons les relations (196) p. 309 :

dv’
dt
o

ot
La vitesse de I’élément de matiere varie localement et il existe un gradient de vitesse dans le
milieu continu.

Vi A=

kakvz

En vue de passer au cas relativiste, plagons-nous dans le référentiel inertiel instantané R,
au repos par rapport a I’élément de matiere du milieu continu. La vitesse relative est nulle :
o’
ot
9 (pv') i @

viopt=—g vy,
_ 0(pv')
ot

ol I'on utilise une seconde fois le fait que les v* sont nulles dans le référentiel propre du milieu
continu. Les équations de la dynamique des milieux continus en coordonnées rectilignes (202)
p. 312 par unité de volume s’écrivent en fonction de 'impulsion :

Vi ff— Opt® = 0,(pv")

Vi A=

Soit p le trivecteur impulsion par unité de volume non relativiste, de composantes contra-
variantes :

Vi piE v (203)
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Les équations de la dynamique et I’équation de continuité (197) p. 310 s’écrivent :

{atp + aipi =0

4 o 204
opt + ottt = 4 Vi=1,2,3 (204)

24.5.2 Forme générale des équations de la dynamique des milieux continus

Généralisons les relations (202) p. 312 a un systeme de coordonnées curvilignes. Les équa-
tions tensorielles

Vi fl— Vith = pyt (205)
sont invariantes par changement de coordonnées et redonnent les relations (202) pour un sys-

teme de coordonnées rectilignes. Ce sont donc les équations de la dynamique des milieux conti-
nus dans un systeme de coordonnées curvilignes arbitraires.

24.5.3 Ecriture des équations générales en fonction de I'impulsion

Ecrivons ces équations en fonction de Pimpulsion. Les relations (138) p. 237 donnent 'ac-
célération en fonction de la vitesse :

dv'
dt
= 9t + VROt + Fikjvkvj
= ot + oF (8kvi + Fikjvj)

En multipliant par la masse volumique et avec la définition 21.8.1 p. 234 de la dérivée covariante :

Vi 4= — + T ok

Vi py = pow' + pF Vi
_ a (pv') ; Op ki i k
=—5 Y a—l—vk(pvv)—vvk(pv)

_ 00 g, (o) — v [@ v, (pvk)]

ot ot
Avec I'équation de continuité (198) p. 310 le dernier terme est nul :
Vi py' =0, (pvi) + Vi (pvkvi)

Les équations de la dynamique des milieux continus en coordonnées curvilignes (205) s’écrivent
en fonction de 'impulsion :

Vi 0, (pv') + Vi (v’ + 7)) = f° (206)

Ces trois équations et celle de continuité déterminent la dynamique des milieux continus sous
'action de forces de volume et de surface. Il reste & remplacer les t* et les f? par des modeles
de forces.
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25.1 LA TRANSFORMATION DE LORENTZ

25.1.1 Transformation de Galilée

En physique non relativiste, pour passer des coordonnées spatiales et temporelle d’un point
dans un référentiel galiléen aux coordonnées du méme point dans un autre référentiel galiléen,
c’est-a-dire pour effectuer un changement de référentiel galiléen, nous utilisons la transformation
de Galilée. Pour deux référentiels en configuration standard :

¥=x—vt ; Y=y ; F=z ; t'=t
Appliquons cette transformation a 1’équation de la sphere de lumiere dans R’ :
224y 4 2% =
(r — vet)® + 42 + 2% =
2% = 2av.t + v+ Y7 + 2% = Pt (207)

Ce n’est plus une spheére dans R a cause des termes supplémentaires —2xv.t et v2t2,

25.1.2 Transformation spéciale de Lorentz

Au paragraphe 9.3 p. 74, nous avons vu que ’équation de la sphére de lumiere est invariante
par changement de référentiel (changement de coordonnées spatio-temporelles). A partir de
(207), pour obtenir une sphére nous ne pouvons pas garder ' = ¢ si nous voulons éliminer le
terme croisé —2xv.t. On essaye alors la transformation la plus simple envisageable,

/

¥=x—vt ; Y=y ; Z=2 ; t'=t+Kzx

ou K est une constante qu’il faut déterminer. Appliquons cette transformation a 1’équation
(207) de la sphere de lumiere dans R’ :

2% — 2zv,t + 022 +y? + 22 = A (t + Ka)’
= t? + 2 Kot + A K*a?
2 (1 _ 27:2) _ 2 2 2 2.2(1_ .22
x (1 cK) th(ve+cK)+y +2°=ct (1 ve/c)
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Pour éliminer le terme en zt on pose v, + ¢?K = 0, soit K = —v/c?. La transformation et
I’équation dans R deviennent,

P=x—vt ; Y=y ; =z ; t'=t—vux/c
z? (1 — vg/cg) +y? + 22 = At (1 — vg/CZ)

Pour obtenir I’équation d’une sphére dans R nous devons diviser 2’ et ¢’ par le terme constant

V1 — 02/

DEFINITION 25.1.1. Facteur relativiste
On définit le facteur relativiste ou facteur de Lorentz ou encore coefficient de parallaxe
spatio-temporelle par :

a 1

v(ve) T— o2/ 022

~¥(ve) est noté .. Ce facteur est sans dimension. Pour toute vitesse relative, c’est-a-dire
pour tout couple de référentiels ou d’observateurs, il existe un facteur relativiste. Lorsque il y
a plusieurs vitesses relatives il faut préciser de quel facteur relativiste il s’agit. De plus :

0<v.<c & Ye =1 (208)
La transformation devient

t' =7, (t — vex/c2>
T’ =7, (x — vet)

y =y

Z =z

appelée transformation spéciale de Lorentz-Poincaré. La transformation est dite « spéciale »
parce qu’elle n’inclue pas les rotations statiques ordinaires de l'espace. Elle est obtenue ici
grace a 'hypothese de l'invariance de ¢ (qui entraine celle de I’équation de la sphere de lumiére)
et grace a la transformation de Galilée en considérant un mouvement de R’ dans le sens des x
croissants. La transformation de Lorentz-Poincaré s’écrit :

{t’ =Y (t—ve:c/CQ) N {ct/ = 7, (¢t — zve/0)

¥ =, (r — vet) a’ =, (x — ctoe/c)

La transformation de Lorentz-Poincaré est symétrique en = et ct. On pose

fe = ve/c

ct" = ye(ct — Bex)
r = 76(‘75 - BeCt)

(Ct/> _ [_7666 Ve ‘| <Ct>
') Ve _7666 x

Sous forme matricielle :
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NOTATION 28. Matrice de Lorentz
La matrice changement relativiste de référentiel galiléen, ou matrice de Lorentz, est notée avec la
lettre grecque lambda majuscule en ’honneur de Lorentz :

A=

On a la transformation inverse en changeant . en —f,. et en permutant les coordonnées :

/ /

ct =7 (ct' + Bex’) ; T=7 (2" 4 Pect) ; y=y ; z=2z2

25.2  QUADRIVITESSE

Définissons le temps propre 7 comme le temps qui s’écoule dans le référentiel du point
matériel.

DEFINITION 25.2.1. Temps propre
Le temps propre d’un référentiel est le temps indiqué par une horloge fize dans ce référen-
tiel.

L’intervalle de temps propre, ou durée propre, entre deux éveénements, est la durée mesurée
dans le référentiel dans lequel les deux évenements ont lieu au méme endroit (dx = dy = dz = 0).
Le choix d’écriture du carré de la métrique (30) p. 76 donne un ds réel :

ds® = Adr?

ds = +edr

ol d7 et ¢ sont toujours positifs. On choisit ds positif, le sens de parcours se fait dans le sens
de I’écoulement du temps :

ds = cdr (210)

L’intervalle s est égal au temps propre au facteur ¢ preés, dans la convention de signe (30) p. 76
choisie pour la métrique. Le temps propre d'une particule est la mesure de la quadridistance
qu’elle parcourt dans I'espace-temps.

En revanche, le temps ¢ dans un référentiel quelconque est arbitraire au méme titre que
les coordonnées spatiales. Il dépend de notre choix de référentiel. On 'appelle alors temps
coordonnée.

Dans I'espace-temps de Poincaré-Minkowski on considere un point matériel en mouvement
avec une vitesse inférieure a ¢, donc pour lequel ds?* > 0. Ce mouvement peut étre défini par
la donnée des coordonnées galiléennes réduites x* ((9) p. 24) de ce point en fonction d'un
parametre. Prenons pour parametre le temps propre 7, c¢’est-a-dire 'intervalle s au facteur ¢
prés. Nous avons alors 2 = x%(7), ou les indices grecs varient de 0 a 3.
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DEFINITION 25.2.2. Quadrivitesse
Le quadrivecteur vitesse d’univers, aussi appelé quadrivitesse, vitesse spatio-temporelle,
vitesse quadridimentionnelle, ou encore 4-vitesse, est défini par :

dx®
Va u®&——
o U dr

Dans le systéeme de coordonnées galiléennes réduites (pseudo-orthonormées), sa pseudo-
norme vaut :

luf* =u-u

= T’aﬂuauﬁ
dz0\ dzt\? dz?\? da3 >
- (7) - (7) i (7) - (7)
_a»
dr?
g C2
Nous avons :
0
u = di u’ = cﬁ
dr = dr
i dx’ U= ot ﬁ
v dr o dr

ou les indices latins varient de 1 a 3. La relation (30) p. 76 donne

ds? = Adt* — da* — dy* — d2*
s
dt?
ds
dt
dt 1

ds cy/1—v?/c?

& ) (211)

:C2—U2

— 2 — 2

ou l'on s’est servi de la définition 25.1.1 p. 316 du facteur relativiste . Si bien que la quadri-

vitesse s’écrit :
u’ = cy(v) (212)
u’ (V)0
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NOTATION 29. On note 9, la dérivée partielle par rapport d la coordonnée galiléenne réduite x®.

9N\ —1/2
Byl® — cdy(v) _ i (1 v )

dzo dt 2

1 v2\ 732 1 dv?
—_ (1= -

2( 02> % c? dt

3 2 3
Ve dv Ve d 2 2 2
=20 @ e @t u )

3

o du,, dv, dv,
= Lo 2y, =2 4 29, =¥ 4 20, —=

202<v a7 T
e e

Sk

v =

2 dt 2
Dans le référentiel inertiel au repos instantané R le vecteur vitesse d’espace est nul Vi, v* = 0
et y(v) =1:

=0

u’ =c 0
et Jou” =0 (213)
D’apres la définition 23.2.1 p. 266 le point matériel décrit une géodésique de I'espace-temps de
métrique (30) p. 76. Nous pouvons a présent écrire le principe d’inertie en relativité restreinte :

Un point matériel isolé admet pour trajectoire d’univers une géodésique de l’espace de
Poincaré-Minkowski pour laquelle le ds* est positif (dans la convention choisie).

Les géodésiques pour lesquelles ds? = 0 sont parcourues & la vitesse ¢, elles correspondent
aux rayons lumineux si l'on suppose que la lumiere se propage a la vitesse limite. Elles sont
dites nulles ou isotropes.

25.3  (QUADRI-IMPULSION

25.3.1 Impulsion relativiste

La masse inerte d’un systeme mesurée dans le référentiel propre de ce systéme, notée simple-
ment m (parfois mg) ne peut étre qu’absolue. Elle est appelée masse propre, masse intrinséque,
masse au repos ou simplement masse.

DEFINITION 25.3.1. Inertie
L’inertie d’un systeme de vélocité v dans un référentiel galiléen est le produit de la masse
propre de ce systeme par le facteur relativiste lié a sa vélocité :

I(v) & y,m
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DEFINITION 25.3.2. Quantité de mouvement relativiste
Le trivecteur quantité de mouvement relativiste ou impulsion relativiste est le produit :
= ymi (214)
£ Iy

A —

= mu

mu®

p | muY

mu®

REMARQUE 51. A faible vitesse devant ¢ ou lorsque ¢ tend vers Uinfini, mii tend vers m@, le trivecteur
quantité de mouvement non relativiste.

DEFINITION 25.3.3. Quadri-impulsion

La quadri-impulsion d’un systéme dans R est le produit de sa masse (propre) par sa
quadrivitesse dans R (212) p. 318 :

A
p

La quadri-impulsion généralise a I’espace-temps I'impulsion relativiste purement spatiale en
lui ajoutant une composante temporelle.

25.3.2 Energie relativiste

Pour faire le lien avec la mécanique non relativiste, prenons une vitesse v petite devant la
vitesse limite c. Le facteur relativiste v, tendant vers un, 'inertie tend vers la masse. La partie

spatiale du quadrivecteur impulsion, c¢’est-a-dire la quantité de mouvement relativiste p, tend
vers la quantité de mouvement non relativiste muv.

Pour la partie temporelle, a faible vitesse nous devons prendre le développement limité de

~1/2
Yo = (1 - ,UZ/CZ) /
pour v < ¢, donc pour v?/c? proche de zéro :

~ 14 1 [2? 4 3 (v2\? n
Yo = 2 02 R 02 .
Notons p; la composante temporelle de la quadri-impulsion :

br = ypmce

2
b€ = "pmce

,  mv:  3mov?
~me 4+ —— +

5 W—i_
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La multiplication par ¢ nous a fait passer du domaine des impulsions au domaine des énergies.
A faible vitesse le deuxieme terme E;, = muv? /2 se confond avec l'énergie cinétique de la
mécanique non relativiste. Le premier terme mc? est une énergie constante qui existe aussi a
vitesse nulle, donc dans le référentiel propre.

DEFINITION 25.3.4. Energie au repos
L’énergie au repos d’un systeme, ou énergie propre, ou énergie de masse est le produit de
sa masse par ¢ :

A
Ey & mcé?

Ey n’existe pas en mécanique non relativiste parce que ’on ne mesure ou calcule que des
différences d’énergie. Au facteur ¢? prés, que I'on peut prendre égal & 1'unité, I’énergie au repos
est la masse (inerte au repos) de la particule. Faire la différence entre ces deux notions revient
a faire la différence entre un prix en dollars et un prix en euros avec un taux de change fixe.

DEFINITION 25.3.5. Energie cinétique relativiste

L’énergie cinétique relativiste est toute [’énergie due au mouvement relatif, donc [’en-
semble des termes contenant v :

A mv?  3mw

2 + 8c2
(7v _ 1) mc2

4

T oo

REMARQUE 52. Lorsque la vitesse tend vers c le facteur relativiste y, tend vers Uinfini et donc I’énergie
cinétique tend aussi vers l'infini. 1l existe une vitesse limite mais pas une énergie cinétique limite.

DEFINITION 25.3.6. Energie totale relativiste
L’énergie totale est la somme de l’énergie au repos et de [’énergie cinétique relativiste :

E£E,+T
= yymc’ (215)

= I

Au facteur ¢? prés, que 'on peut prendre égal a l'unité, 1'énergie totale relativiste du systéme
est son inertie.

25.3.3 Quadri-impulsion

La définition 25.3.3 p. 320 de la quadri-impulsion est homogene a une quantité de mouve-
ment :

p(Ic,p) (216)

La multiplier par ¢ la rend homogene a une énergie, pour former la « quadri-énergie » :
E (E,cp)
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Elle n’est jamais homogene aux deux en méme temps, sauf lorsque ¢ = 1. Diviser la quadri-
impulsion par ¢ la rend homogeéne a une masse, pour former la « quadri-inertie » :

Nous devrions I'appeler quadrivecteur inertie-énergie-impulsion, mais nous retiendrons le terme
quadri-impulsion.

Les relations p= It et E = I¢* donnent la nouvelle relation :
Ap=FEv

De part leur définition, 1’énergie totale est liée a I’énergie au repos et a la quantité de

mouvement relativiste :

1
ﬁ@)zl_BQ

e =

,ygm2c4 - ’)/3’02771202 — m204

E? = B + 2 (217)

25.3.4 Conservation de la quadri-impulsion

Comme tout quadrivecteur, la quadri-impulsion est invariante par changement de référentiel
galiléen, mais cela ne signifie pas que la somme des quadri-impulsions se conserve lors d’une
interaction, autrement dit que la quadri-impulsion d’un systeme isolé se conserve dans le temps.
A basse vitesse elle donne I’énergie cinétique et la quantité de mouvement, deux quantités qui se
conservent lors d’une interaction en mécanique non relativiste (I’énergie d’agitation thermique
est une forme d’énergie cinétique).

On vérifie expérimentalement mais on ne peut démontrer que la quadri-impulsion se conserve
lors d’une interaction. Soient deux systemes de quadri-impulsion p, et p,. Par hypothese basée
sur ’expérience :

Va=0,....,3  pi+py=p"+p5

(1) La partie temporelle donne la conservation de I'inertie et non plus de la masse inerte.
Avec la relation (216) p. 321 :

P+ Py =pi + 1Y
Lic+ Iye = Iic+ Iie

L’inertie I(v) d’une particule, donc son énergie totale E = Ic?, n’est pas invariante par
changement de référentiel par la transformation de Lorentz-Poincaré puisque fonction
de la vitesse, mais la somme des inerties (donc des énergies totales) est conservée par
hypothese lors d'une interaction.

Réciproquement, la masse m d’une particule, donc son énergie au repos Ey = mc?,
est absolue puisqu’elle n’est définie que dans le référentiel propre de la particule, mais la
somme des masses (donc des énergies au repos) ne se conserve pas lors d'une interaction
puisque c’est la somme des énergies totales qui se conserve.
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(2) La partie spatiale donne la conservation de la quantité de mouvement relativiste selon
chaque axe :

Pt =D APy S Pey tDey = P, 1,
LAy =pF+05 =y =1, oy,
PiAp =0y Py = Py b =0, 1
B+ = 7 + )
La conservation de la quantité de mouvement est remplacée par la conservation de la
quantité de mouvement relativiste, l'inertie /(v) = ~,m remplagant la masse inerte m.

La quantité de mouvement relativiste d’'une particule n’est pas invariante par chan-
gement de référentiel galiléen par la transformation de Lorentz-Poincaré puisque fonc-
tion de la vitesse, mais par hypothese la somme des quantités de mouvement relativistes
se conserve lors d'une interaction.

25.4 DYNAMIQUE RELATIVISTE DES MILIEUX CONTINUS

Nous nous plagons dans un référentiel inertiel Ry au repos par rapport au milieu en un lieu
et a un instant précis, c’est-a-dire en un point d’univers donné (évenement Fy). En ce point les
composantes du vecteur vitesse relative d’espace du milieu dans le référentiel sont nulles, en
revanche les dérivées de ces composantes peuvent étre non nulles. Nous choisissons un systeme
de coordonnées rectangulaires.

En dynamique relativiste toutes les formes d’énergie apportent leur contribution au qua-
drivecteur énergie-impulsion. Or les énergies s’additionnent, nous devons donc raisonner en
termes d’énergie. Dans les équations de la dynamique des milieux continus non relativistes
(204) p. 314, le vecteur impulsion volumique non relativiste p ne contient que le terme de
masse volumique correspondant a I’énergie de masse. Pour faire apparaitre I’énergie de masse
multiplions la définition du trivecteur impulsion volumique non relativiste (203) p. 313 par ¢?
(on utilise £ = mc?) :

Vi p' = pctv’
ou p est la masse volumique propre, celle mesurée dans le référentiel propre Ry. Pour for-

mer le quadrivecteur énergie-impulsion relativiste nous devons prendre en compte 1’énergie des
contraintes mécanique. En revanche nous supposons ’absence de champ électromagnétique.

Le travail par unité de temps de la force de contrainte est son produit scalaire euclidien par
la vitesse de 'élément de matiere considéré. A partir de (200) p. 312 :

ijjds = vjtijdsi

REMARQUE 53. Les composantes covariante v; sont nulles mais la substitution se fera d la fin. De
méme que lorsque Uon écrit la relation fondamentale de la dynamique > F = d(mwv)/dt la vitesse peut
étre nulle sans que l’accélération le soit.

Au terme ¢?pv® homogene a une énergie par unité de temps et de surface correspond le terme
de mémes dimensions v;t”. La partie spatiale du quadrivecteur densité volumique d’impulsion
relativiste p a alors pour composantes contravariantes :

Y i1
Vi p:pv—gt]vj
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Le signe négatif vient de ce que les composantes covariantes de la vitesse sont négatives dans
la métrique (+ — ——) de la relativité (voir 'exemple 17.3 p. 146).

EXEMPLE 25.4.1. La pression p est homogéne a une densité volumique d’énergie. Fn
mécanique non relativiste, [’énergie contenue dans un volume élémentaire de fluide parfait
a la pression p a pour expression

E = pdv
qui donne
Ev' = pvidv
= pg" v;dv
= {4 vjdv
En relativité, avec une signature (+ — ——), l’énergie contenue dans ce méme volume

élémentaire a pour expression
E = pdvc® + pdv
qui donne
Ev' = (pv' + pv*)dv
Evt P
— = (pv + = P9 ij> dv

i g L g
P :<pv —gtjv])dv

C

Les composantes spatiales du quadrivecteur p sont nulles en P, mais il n’en est pas de méme
de leurs dérivées. Les équations non relativistes (204) p. 314 deviennent :

) 1 ..
Op + 0; (pv’ -2 t”vj) =0
) 1 .. ) )
o) (pv’ — gt%j) + ottt =1 Vi=1,2,3
En tenant compte de la nullité des v’ en P, :
N P
Op + po;v* — = O0it”v; =0
) 1 - . .
pow' — = Vv + Ot = f1 Vi=1,2,3
c
Introduisons la variable 2° = ct :

cdop + poiv* — — 0t v; =0

T o (218)

cpOpv' — = Opt”v; + Otk = f? Vi=1,2,3
c

25.5 FORME TENSORIELLE DES EQUATIONS DU MOUVEMENT

I s’agit d’écrire les relations (218) dans l’espace-temps de la relativité, c’est-a-dire sous forme
de quadri-tenseurs et quadrivecteurs. Nous introduisons le quadri-tenseur d’'univers symétrique
T de composantes deux fois contravariantes T qui généralise le tenseur des contraintes du
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paragraphe 24.4.4 p. 310. Dans le référentiel inertiel de repos instantané R et au point d’univers
Py, ce tenseur a pour composantes :

Vik T =t* Vi TO=T"=T"=0

Les indices latins varient de 1 a 3, les indices grecs de 0 a 3, 'indice 0 étant la composante
temporelle. Nous introduisons également le quadrivecteur force d’univers par unité de volume,
qui a pour composantes dans Ry en F :

Vi = =0
ainsi que le quadrivecteur vitesse d'univers (212) p. 318
Vi ul =y ; u’ = e
qui a pour composantes dans Ry en F :
Vi =0 ; u’=c

Montrons que les équations (218) s’écrivent

Va Vs (putu’ +T°) = ¢° (219)
équivalent au systeme d’équations :
Vs (pu u Toﬁ) ¢’ \ ( uouﬁ) + Vi T% + VTP =0
Vo (pu'v® + T7) = ¢' - Vs (pu'u?) + VoT™ + V, T = f

En coordonnées rectangulaires :
85 (puouﬁ) + akT0k + 80T00 =0
s (puiuﬁ) 1 9,T™ + 9, Tk = fi

w0uPdgp + puP dpu® + puldpu’ + 0T + 9T™ = 0
{uiuﬁagp + puP Opu’ + puidgu” + 0T  + 9, T* = f*
Nous avons aussi les relations suivantes :
8Bu6 = 9pu® + Opu”
uP0sp = u’Bop + u'Osp
uPdgu’ = udyu’ + u'onu’
Dans Ry avec les relations (213) p. 319 (Vi u’ =0, ug = 1, dyug = 0), elles deviennent :
Opu” = Opu”
u’0sp = cOop
u’ 8Bui = cOpu’

Remplacons :
{0280p + pcdpu® + O, T 4+ 0,7 = 0

u'cOop + puPdgu’ + puldgu’ + 0T + 0, T™* = f
De nouveau avec les relations (213) p. 319 :
0p + pcoju’ + 0T + 0T =0
{pc@oui + 0T + 9, T = fi
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Par hypothése Vo, T = 0 :
TaﬁU5 = TaOUQ + T“juj \V/OZ
~0 (220)

Les tenseurs et vecteurs ayant une existence propre indépendante de tout référentiel, cette
relation vraie dans R est vraie dans tout référentiel.

T +T%u; =0 Va
T = —-T%u; Va
cgT™ = —05Tu; Va,f
cO, T = —8kajuj Va =k
= T = —0,T"u; Vi

{c@kTO‘O = —akT“juj Ya
C&QTOO = —80T0juj = —UjaoTOj - Toja()u]‘ =0

0T = —9,T u; Vo
Avec ces relations :
0yp + cpoyu' — %@Tkjuj =0
cpOyu’ — %80Tiju]‘ + 0, T = f
Or, nous avons également
o' = Yo' + v'0;y = YO
o' = yOpv' + V' 0yy = Yo'
Dans Ry, v =1
ot = o'
dou’ = Iyv*
Nous retrouvons les équations (218) p. 324 :

) 1 .
cOpp + poiv* — = 0it"v; =0

cpov' — - Ot v; + OttF = f? Vi=1,2,3

25.6 LE TENSEUR ENERGIE-IMPULSION

Les équations (219) p. 325 s’écrivent :
Va VaP = ¢~ (221)
ou l'on a posé
Va,8 P* = puuf + T (222)

Le tenseur symétrique P®? est le tenseur énergie-impulsion du milieu continu considéré. Le
produit scalaire avec la quadrivitesse s’écrit (en utilisant (220) p. 326) :

Va PPy = (puauﬁ + T“ﬂ) ug
= puo‘uﬁuB

— Cquoz



Relativité restreinte 327

Le tenseur énergie-impulsion peut étre vu comme une application linéaire ayant pour vecteur
propre le quadrivecteur vitesse et pour valeur propre correspondante la masse volumique p.

D’apres (201) p. 312, lorsque le milieu continu est un fluide parfait le tenseur énergie-
impulsion admet pour composantes :

Le signe négatif vient du choix de la métrique Vi, k n** = —1. En tenant compte du fait que
Vi ul = 0 = Vi, k v'u® = 0 et u®u® = 2, dans un systéme de coordonnées quelconque :
T = —pg* + % u®u”
c
D’ou
af _ 0B ap P B
Va,5 P = pu®u” — pg —|—gu u

25.7 PRINCIPE DE MOINDRE ACTION EN RELATIVITE RESTREINTE

En mécanique non relativiste, 'action de Hamilton d’un systéme de lagrangien £ entre les
évenements A (départ du point A a U'instant t4) et B (arrivée au point B a l'instant tg) a pour
expression :

s- [ " 2 i), 9). 0 dt

Dans le cas d’un systeme libre, le principe de moindre action se réduit a un principe de moindre

temps :
tp
S=¢ / dt
ta

ol ¢ est invariant sur la trajectoire, ayant la dimension d’une énergie et caractérisant le systeme.
Le principe de moindre action

0S5 =0

donne I'équation de la trajectoire du systeme. Cette trajectoire existe en elle-méme et doit étre
indépendante du référentiel galiléen de I’observateur.

Par analogie, en relativité restreinte I'action doit étre invariante par changement de réfé-
rentiel galiléen pour que la trajectoire le soit aussi. L’action relativiste est donc de la forme :

B
S:»S/ dr
TA

ou 7 est le temps propre du systeme et ¢ un invariant relativiste ayant la dimension d’une
énergie et caractérisant le systeme. L’action écrite dans un référentiel galiléen quelconque doit
étre invariante, donc de la forme que nous avons indiquée :

B

/t:Bg(y(t),y(t),t)dtzg/ 0

TA

tp 1
:5/ —dt
ta Yo
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On en déduit 'expression du lagrangien dans le référentiel galiléen quelconque :
L =ce/m
Prenons le développement limité de 1/, pour v < ¢ :
& ~ell—0v?/(2F)]
Le lagrangien est défini a une constante additive pres donc :

2
€V
L~ -
2c

A faible vitesse devant ¢ il doit redonner I'énergie cinétique du systéme libre

On a donc pour le lagrangien relativiste d’un systeme libre

L = —mc?/v, (223)

B
S = —mc? / dr
TA

tp 1
= —mc? / — dt
ta Yo
Le principe de moindre action s’écrit :

tp 1
—m025/ —dt =10
ta fYU

Avec les relations (210) p. 317 et (211) p. 318,

et pour 'action du systéme libre :

dt = v,ds/c

nous avons

B

S = —mc/ ds (224)
A

et le principe de moindre action dans ’espace-temps quadridimensionnel de la relativité res-

treinte s’écrit :

B
—mcd/ ds =10 (225)

A

ot A est I'événement départ du point zy, 7%, 2% a linstant 2%, et B événement arrivée au
point x}, %, x5 a instant z%. L’action est inversement proportionnelle & la quadrilongueur de
la ligne d’univers parcourue par le systéme entre les événements A et B. D’apres (30) p. 76, la
quadrilongueur est maximale pour une ligne d’univers droite (objet immobile dans le référentiel
galiléen), par conséquent 1’action est minimale lorsque la ligne d’univers est une droite.
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25.7.1 Trajectoire d’un systéeme libre

Cherchons la trajectoire a partir du principe de moindre action sans utiliser les équations
de Lagrange :
B
—mcd / ds =0
A

B
—m/ cods =0
A

En coordonnées galiléennes réduites (ct, x,y, z) :
ds® = dx®dx,,
§(ds?) = §(dz“dz,)
2dsdds = dx“ddx, + dr,odx™

Dans 'espace-temps pseudo-euclidien de la relativité restreinte dz® = —dz,, :

2dsods = (—dz,)d(—dx®) + dxo0dx®
= 2dz,0dx®

d(uadz®) = dugdx® + unddz®
= dug0x® + u,0dx®
—d(ua0x®) + dundzr® = —uyn0dzr®

Le principe de moindre action devient :

B
—m/ u,0dr® =
A
B B
—m/ (uadz®) —|—m/ dugdx® =
—m [uadz®]] + m/ —25z%ds =0 (226)

Or 0z*(A) = dz*(B) =0

m/ %&cads—o

o
ds

Le quadrivecteur vitesse est constant pour un systeme libre.

=0 (227)
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25.7.2 Impulsion relativiste

En notation vectorielle, I'impulsion relativiste d'un systeme libre s’écrit :

L, 0Z
b= o7
- OJ1—7v-v/c?
ov
2—}
o W
/1 —v2/c?
p=Yomi

Cette relation définit le trivecteur quantité de mouvement relativiste.

REMARQUE 54. Avec le lagrangien d’un systéme libre, les équations de Lagrange s’écrivent

4 (o2 oz
dt \ ov oF
402y

dt \ 0v
dﬁ_
E_O

25.7.3 Energie relativiste

En notation vectorielle, la fonction énergie d’un systéme libre s’écrit :

R VR
ov

=7 — ety /1 —v?/c?
1 —v2/c?

H = ~y,mc?

Cette relation définit I’énergie totale relativiste.

25.7.4 Equation de Hamilton-Jacobi relativiste pour une particule libre

Nous avons obtenu précédemment la relation (226) p. 329 :
B
dug
—m [uadz®]’ + m/ — dz%ds =0
A ds
Sur une trajectoire réelle, la quadrivitesse d’une particule libre est constante, ‘ZL—S‘D‘ =0:

—m [ua02°])% =0

Si 'on considere deux trajectoires ayant méme point de départ dz% = 0 mais une arrivée
différente, il reste :
0S = —muydx®
= —pa0x®
oS

fan ~ P
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REMARQUE 55. La relation (48) p. 101 donme le passage entre composantes covariantes-
contravariantes, pour le quadri-vecteur position

r(2°,2%) = r(20, —x;)
et pour la quadri-énergie-impulsion,
p(®°,p") = p(po, —ps)
st bien que l'on a également :
oS
E =P

(03

J

Avec la définition (25.3.3) p. 320 de la quadri-impulsion et la relation (217) p. 322 sur
I’énergie :

oS

g = P
95 _ B
cot ¢

L (08\"_E
2\ot) 2

L (05 _miet
2\ot) 2 p

Nous obtenons ’équation de Hamilton-Jacobi relativiste :

1 /08\° [0S\ [o8s\® [0S\ .,
s\=| - |\=| (=) |5 | =mc
2\ Ot ox oy 0z







Gravitation relativiste

26.1 PRINCIPE D’EQUIVALENCE

On utilise le principe d’équivalence du paragraphe 22.5 p. 258 pour guider notre réflexion.
Un champ de gravitation est équivalent a un référentiel en rotation. Dans un référentiel d’inertie
R de systeme de coordonnées galiléennes (¢, x,y, z), I'intervalle ds est donné par :

ds? = Adt* — da* — dy* — d2?
L’ 11 fi 1 I 3 6fé iel i iel
intervalle conserve sa forme lorsque 1'on passe a un autre référentiel inertiel. Voyons com-

ment il se transforme lorsque nous passons dans un référentiel non inertiel R’ de coordonnées
(t',2',y,2') en rotation uniforme dans R :

o

Fi1c. 26.1 — Référentiel R’ en rotation uniforme dans le référentiel inertiel R

Ecrivons 'expression des vecteurs de base du référentiel R’ en fonction des vecteurs de base
du référentiel R, dans le référentiel R’. A priori nous ne connaissons pas la transformation du
temps, nous supposons t' =t et envisagerons une transformation du temps un peu plus loin :

' = cos(wt)i + sin(wt)j
{j’ = —sin(wt)é + cos(wt)g
Soit P un point quelconque fixe dans R’ :
OP=00"+0P
=ri +2'i + o5
i+ yj = (r+ 2")[cos(wt)i + sin(wt)j] + y'[— sin(wt)i + cos(wt) 7]
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r et w sont ici des parametres :

x = (r+ ) cos(wt) — y sin(wt) x=g(t 2 y)
y = (r+2')sin(wt) + 1/ cos(wt) = y=h(t,2',y)
z=2 z2=2
Oz Oz Ox
dr = —do' + — dy' + —dt
TEor oy W T
= d ., 9 ., 90y
dy = —d —d —dt
V=00 ™ Ty Wt o
dz = dz
dx = cos(wt)dx’ — sin(wt)dy" — w[z’ sin(wt) + ¢ cos(wt)]dt
= dy = sin(wt)dz’ + cos(wt)dy’ + wlz’ cos(wt) — y' sin(wt)]dt
dz = dz'

dz® = cos®(wt)da? + sin®(wt)dy® — 2 cos(wt) sin(wt)da'dy’
+ w?[2"? sin®(wt) + y% cos®(wt) + 22y sin(wt) cos(wt)]dt
— 2wlcos(wt)dx’ — sin(wt)dy'| [z’ sin(wt) + 3’ cos(wt)]dt
= dy? = sin®(wt)dz’? + cos®(wt)dy? + 2sin(wt) cos(wt)dx'dy’
+ w?[2"? cos? (wt) + ¢ sin’(wt) — 22"y’ cos(wt) sin(wt)]dt
+ 2w[sin(wt)dz’ + cos(wt)dy'|[z’ cos(wt) — y' sin(wt)]dt
dz* = d2"?
Dans le référentiel tournant, l'intervalle s’écrit :
ds® = [* — W (2 + y?)]dt* — da™ — dy”* — d2? — 2wdt(y'da’ + 2'dy’)

Quelle que soit la transformation du temps on ne peut faire disparaitre le dernier terme et
cette expression ne peut se réduire a une somme de carrés de différentielles des coordonnées
t', 2,y 2. Ce systeme de coordonnées est donc curviligne est le carré de 'intervalle élémentaire
ds s’écrit sous la forme quadratique générale

ds® = g, datdz”

ou les g, sont fonction des coordonnées spatiales et temporelle. Les référentiels non galiléens
étant équivalents a un champ de gravitation, on en déduit que les masses et donc 1’énergie
déterminent les propriétés géométriques de I'espace-temps.

26.2 METRIQUE DE LA RELATIVITE GENERALE

En mécanique classique la gravitation est une force attractive entre les masses. Nous aban-
donnons ici la notion de force gravitationnelle pour un modele ot les masses et distributions
énergétiques courbent l’espace-temps. Une masse d’épreuve tres petite ainsi que la lumiere
suivent les géodésiques de 'espace-temps.

L’univers est représenté par une variété riemannienne Vj a quatre dimensions, de métrique
ds® = g, datdz” (228)

de signature (+ — ——) ou (— + ++). En particulier 1’équation ds* = 0 définit en chaque
point de la variété V, un hypercone élémentaire de lumiere. Les g,, sont des fonctions des
coordonnées z#, dont les dérivées déterminent les symboles de Christoffel qui apparaissent dans
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les équations des géodésiques. Ils définissent donc completement les géodésiques de ce systeme
de coordonnées, donc la gravitation, c’est pourquoi on les appelle potentiels de gravitation de
ce systeme. Dans l'espace-temps de dimension n = 4 ils sont au nombre de seize (4 x 4), mais
d’apres la relation (35) p. 82, seules dix composantes sont différentes :

n(n+1)/2=10
Le probleme consiste en la détermination de ces potentiels de gravitation.

La relativité restreinte traite les référentiels accélérés mais pas la gravitation. L’espace-
temps plat pseudo-euclidien de la relativité restreinte est osculateur a l’espace-temps courbe
pseudo-riemannien de la relativité générale. Quelle que soit 'intensité du champ gravitationnel,
un observateur inertiel se déplace sur une géodésique de 'espace-temps de la relativité générale,
dans 'espace pseudo-euclidien de raccordement de la relativité restreinte.

26.3 CHAMP GRAVITATIONNEL FAIBLE

Une faible courbure de 'espace-temps doit redonner la théorie de la gravitation newtonienne
pour des vitesses petites devant la vitesse limite. En coordonnées galiléennes, un champ de
gravitation faible s’écrit de la forme :

G = N + h;u/

ol 7, est le tenseur métrique de I'espace plat pseudo-euclidien de Poincaré-Minkowski (relation
(32) p. 76), et hy, est le tenseur symétrique

hOO hOl h'02 h'03
[h ]: hOl hll h'12 h13
wj h02 h12 h'22 h23
h03 h13 h,23 h'33

tel que Vu,v, hy,, ~ 0. On suppose également que dans le systéme de coordonnées choisi la
métrique est stationnaire (constante dans le temps) :

aOg;u/ =0

Cela suppose que le référentiel inertiel ne tourne pas sur lui-méme.

REMARQUE 56. Un référentiel inertiel peut tourner sur lui-méme, par rapport aux étoiles dites fives.
Imaginons deux masses gravitant autour de la Terre dans le méme plan, en décrivant dans le méme sens
une trajectoire circulaire de méme rayon. Elles se suivent donc. Relions ces deur masses par une tige
rigide pour qu’elles me constituent qu’un seul et méme objet. Cet objet est inertiel, pour autant il tourne
sur lui-méme par rapport au reste de l'univers (ou, par rapport auz étoiles fizes) car il montre toujours
la méme face a la Terre. Les forces d’inertie ne sont donc pas dues a la rotation par rapport au reste de
lunivers, mais d la sortie du solide hors de la géodésique que suit son centre d’inertie.

La ligne d’univers d'une particule en chute libre dans ce champ de gravitation est une
géodésique, relation (163) p. 266,
a2z \ dzt dx”
dr? modr dr

ol en relativité générale, 7 est le temps propre de I'observateur sur la géodésique, et 2° = ct
est le temps coordonnée, mesuré loin de toute masse-énergie. La particule est supposée non

VA=0,1,2,3
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relativiste, son trivecteur vitesse est petit devant la vitesse limite c :

dx’

dt

da’ < cdt

da’ < da°

dz'  dx®
dr < dr

Vi=1,2,3 <ec

En faisant cette approximation puis en remplacant z° par ct :

d*z* y  dx®dx®
+ —_— &
dr? 0 dr dr

2, (dt)’
T T () ~0 (229)

YA=0,1,2,3

Ecrivons les symboles de Christoffel de deuxiéme espéce en fonction des potentiels de gravitation
selon la relation (127) p. 225. Dans la relation qui suit, les deux premiers termes du membre
de droite sont nuls car le systéme de coordonnées est stationnaire :

VA=0,1,2,3 11)‘oo = %QM (90,0 + Gow,0 — Joo,x)
= _% gARQOO,n

Faisons 'approximation du premier ordre

De plus

9oo,x = hoo,n

car les composantes du tenseur métrique 7, de l'espace de Poincaré-Minkowski sont des
constantes :

YA=0,1,2,3 I & =20 hoo

La relation (229) devient :

PRE c? dt\?
YA=0,1,2,3 ~ — 1 hoos | —
) Ly 4y d7'2 2 n 00, <d7’>

— La premiere relation, pour A = 0, donne pour la partie temporelle :

P20 2 (@)’
dTQ ~ D) n 00, dr

Seule n° est non nulle donc k = 0, et le systéme de coordonnées étant stationnaire

hoo,0 = goo,0 = 0 :
d?z® 2 dt\>
~ 7700h00,0 e
~
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Soit « une constante :
d?t

dr?

— X«

dr

AN
(&) ~
~ &

dr? ~ 5
«

— Les trois relations suivantes, pour ¢ = 1,2, 3, donnent pour la partie spatiale :

A2 2 dt 2
Vi=1,23 o xS ihg, <_>

dr? 2 dr

Pour une signature de I'espace de Poincaré-Minkowski (+———) nous avons ¥ = —§% :

A2 2 dt 2
Vi=1,23 SEPONY ] <—>

dr? 2 dr

% ~ —0—22 (j—j)Qgrad hoo
a? CCZ;T;E ~ —0—22 a? grad hy

65127:2” ~ —0—22 grad hgg

Comparons avec ’équation de Newton d'une particule dans un champ de gravitation. Soient

mg la masse grave et m; la masse inerte de cette particule :

J=myg
d*x
m; o —mg grad ¢

Nous avons alors :
c? m
——grad hog ~ ——= grad ¢
2 m;

En posant 1'égalité entre masse grave et masse inerte :

Par conséquent, dans la limite des champs de gravitation faibles :

2¢
goomlJrg

ou d’apres (152) p. 250 ¢ est négatif.

(230)

Cette derniere relation peut étre obtenue grace au principe de moindre action. En mécanique
non relativiste, le lagrangien d'un systeme dans un champ de gravitation de potentiel ¢ s’écrit

< = %mivz — My

En relativité restreinte, la relation 223 p. 328 donne

L= —mc*\J1 —v2/c2 — myé
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A faible vitesse nous avons :
_ 2,1 2
L~ —mic” + 5mvT — myd

On remarque que si 'on supprime le terme constant m;c®> du lagrangien (ce qui est toujours
loisible de faire) on retrouve bien le lagrangien non relativiste. L’action s’écrit :

:/gdt
2
z—mc/(c—v—+?>dt
2¢c ¢

ou l'on a posé 'égalité entre masse inerte et masse grave. En comparant avec (224) p. 328 :

2
dss(c—;—Jr?)dt

(5 o () vle-2) o
ds? ~ {02+v2 [(”—2> —1] + 2¢ [1——+i }dt2
4c2 2c2

On approxime a moins un et un les termes entre crochets :

ds® ~

ds® ~ (02 + 2¢ — 1)2) dt?

2¢
~ (1 + §> (cdt)? — dr?
= gw/dl’“dxy
= goo(dﬂfo)2 - gz‘z‘(dﬂfi)Q

si bien que

EXEMPLE 26.3.1. Calculons quelques valeurs de la correction a apporter a un espace plat.
La relation (152) p. 250 donne lexpression du potentiel de champ gravitationnel ¢ :

2¢ —2GM

c? rc?
ot la vitesse limite vaut exactement ¢ = 299 792 458 m/s, et la constante de gravitation
a pour valeur G = 6,674 30 x 107" m3/kg/s?.
Prenons la Terre qui a pour masse Mg = 5,973 6 X 10%* kg et pour rayon moyen Te =

6 371 km. A sa surface, la correction est de :
—2GMyg  —2x6,674 30 x 107" x 5,973 6 x 10**
re2 6 371 x 103 x 299 792 4582
=—1,392 59 x 107*
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Prenons le Soleil qui a pour masse M = 1,989 x 1030 kg et pour rayon re = 696 342 km.
A sa surface, la correction est de :
—2GMg  —2x 6,674 30 x 1071 x 1,989 x 10%
re2 696 342 x 103 x 299 792 4582
= —4,242 35 x 1076

Ces valeurs petites devant 'unité n’invalident pas l'approximation d’un champ de gravi-
tation faible (elles ne le valident pas non plus).

s D

REMARQUE 57. On ne peut démontrer ce que l’on a posé en hypothése, par ezemple que le
champ de gravitation est faible. Tout ce que l’on peut faire est de montrer que le raisonnement est
cohérent, en vérifiant que les valeurs sont petites devant l'unité. Si ce n’était pas le cas ’hypothese
serait fausse, mais comme c’est le cas on ne peut pas conclure. Il se pourrait que le raisonnement
en supposant que le champ de gravitation est fort donne des valeurs grandes devant 'unité.

26.4 ECOULEMENT DU TEMPS DANS UN CHAMP DE GRAVITATION

Un horloger et son horloge sont fixes dans le champ de gravitation terrestre. Cet horloger ne
peut observer la dilatation du temps en comparant l'intervalle de temps de ’horloge avec celui
donné par le constructeur, puisque le champ de gravitation affecte le temps et non 'horloge.
L’horloger n’a pas conscience de la dilatation du temps, son horloge fonctionne de maniere
nominale. Ainsi, le carré de 'intervalle entre les deux évenements que sont le tic et le tac de
I’horloge marque le temps propre de I'horloger :

ds® = A2dr?

Un observateur dans un champ de gravitation de méme intensité, et sans vitesse relative avec
I’horloger, mesure le méme écoulement du temps que 1’horloger, leurs horloges sont synchrones.
En revanche, un observateur inertiel loin de toute masse-énergie créant un champ de gravi-
tation ou en chute libre dans un champ de gravitation peut observer la déformation de 1’espace-
temps due a la présence de la Terre.
Dans son systeme de coordonnées (z#), le carré de I'intervalle entre le tic et le tac de I’horloge
est donné par :

ds”® = g, datdx”

L’intervalle entre deux éveénements est un invariant. Les carrés des intervalles dans les deux
référentiels (dans les deux systemes de coordonnées) sont égaux :

Adr? = Gudxtdx”

o (drY _, datda
dz0 ) Ju dx® dx?
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t = 2°/c est le temps propre de I'observateur galiléen, et u* sa quadrivitesse dans le référentiel

terrestre de ’horloger :
ar\’ B dx* dx”
dt )~ edt cdt

d 2
(5] e

Si le trivecteur vitesse spatiale u® de I'observateur galiléen est nul dans le référentiel terrestre :

dr\’
¢ (E) = goou"u’

ar\’
dr = Joo
dr = v/ 900 dt (231)

ol goo est le coefficient temporel de la métrique au niveau de I'horloge. En utilisant (230) p. 337
comme approximation d’un champ de gravitation faible, nous obtenons d7 en fonction de dt :

1/2
2
dr =~ (1 + —f) dt
C
~ |1+ f dt (232)
REMARQUE 58. Le potentiel gravitationnel ¢ étant négatif, on peut aussi écrire :

dT%(l—@)dt
c

Si 'horloge s’approche d'un objet massif, ¢ augmente en valeur absolue, On observe que le
temps propre de 1’horloge ralenti. De méme, nous obtenons dt en fonction de dr :

~1/2
2
dt ~ (1 + —¢> dr

REMARQUE 59. Le potentiel gravitationnel ¢ étant négatif, on peut aussi écrire :
dt ~ (1 + @) dr
c

Pour un intervalle de temps fini

AT:/\/goodt

D’apres cette derniere relation, notre choix de signature de métrique implique
Goo >0

Lorsque le champ de gravitation est constant dans le temps

AT = w/gOOAt
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26.5 DECALAGE GRAVITATIONNEL VERS LE ROUGE

Soit un atome en un point d’'un champ de gravitation, de fréquence propre
__dN
vy = i
Gréce a la relation (232) p. 340, nous avons :
__dN
diy
_dN di
=i d

Vo

En un point A ou régne un champ de gravitation de potentiel ¢4, la fréquence d'un atome
vaut :

®a OB  QadB
Pt e T
~ Vo (1+¢A—2¢B>
C

—¢
Voo ~ Yoo <1_¢®Cz 5)
1 [(—GM, GM
~o o3 (T2 )|
GM,
~ VO@ <1 — 02R8>

Voo — Voo ~ GM@

Yoo CZ R@

Constante gravitationnelle : G = 6,674 28 x 107'* Nm? /kg?
Vitesse de la lumiére : ¢ = 299 792 458 m/s
Masse du Soleil : M ~ 1,988 5 x 10* kg
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Rayon moyen du Soleil : Ray ~ 696 342 x 10° m

Av 5

— =~ -2x10

Yoo
Les raies spectrales d’émission des atomes venant du Soleil et observées depuis la Terre
sont décalées vers les basses fréquences (vers le rouge) par rapport auz raies spectrales

d’émission de mémes atomes situés sur la Terre.

EXEMPLE 26.5.2. On considére un photon émis verticalement vers le haut, depuis un
point A de la surface terrestre, vers un point B a une hauteur H au dessus du point A.
On note M la masse de la Terre et R son rayon :

i(GM_ GM >]
2\ R R+ H

-G ()]
Re2 \R+ H

On fait la nouwvelle approximation R+ H ~ R :

1—

VB = VoA

~ oA

GMH)

o o0 (1=

o — VpA ~ —GMH

~

oA R2C2

~

&
ot est le champ de pesanteur d la surface de la Terre (supposé constant jusqu’d la hauteur
H). En B la fréquence du photon est décalée vers le rouge.

Accélération de la pesanteur d la surface de la Terre a Paris : g ~ 9,81 m/s?
Vitesse de la lumiéere : ¢ =299 792 458 m/s
Hauteur : H =20 m

A
2 218 x 1071
1%

26.6 DISTANCE DANS UN CHAMP DE GRAVITATION

Contrairement a la relativité restreinte, en relativité générale on ne peut définir I’élément de
distance spatiale en posant dx® = 0, car d’aprés (231), dans un champ de gravitation le temps
propre est fonction de 2° par I'intermédiaire de go lui méme fonction du lieu. On proceéde alors
de la facon suivante : d’'un point B de coordonnées spatiales z* +da’ on emet un rayon lumineux
vers un point A de coordonnées spatiales x?, qui réfléchit le rayon vers le point B. Le temps
mesuré en B multiplié par ¢ est égal au double de la distance AB. L’intervalle d'univers entre
I’évenement émission du rayon en B et I’évenement réception du rayon en B s’écrit :

ds® = g,\ud:c’\d:c“
En séparant les coordonnées spatiales et temporelles :

ds® = gijdxidxj + 2g0;dx’dz’ + goo(dx®)?
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En supposant que la lumiére se propage a la vitesse limite, d’apres (31) p. 76 l'intervalle est
nul :

gijda'da? + 2go;da’da’ + goo(da®)® = 0

Cherchons pour quelles valeurs de dz° cette équation est vérifiée. Le discrimant réduit de cette
équation du second degré en dz® s’écrit :

AN =V?—ac
= go;(dz")? — googijda’da’
Les deux racines de I’équations sont :
de% = (=0 £ VA /a

= (_QOidxi + \/g8i<dxi>2 - googz'jdfb’idl’j) / goo

En remplagant go;dz’ par go;da? :

dz} = (—gmdﬂfi + \/.QOingdxidxj — googijdﬂdﬂ) /900

= {—gmdffi + \/(gmgoj‘ - googz‘j)dﬂdﬂ} / 900

2% + dx® est la coordonnées temporelle de I'événement émission du signal, et z° + dz¥ est la
coordonnées temporelle de 1’événement réception du signal. « L’intervalle de temps » entre les
deux évenements s’écrit :

d$i S L\/(QOZ‘QOJ‘ — googi;)dxidzI

goo

Avec (231) p. 340 nous avons l'intervalle de temps propre :

dr = \/goo(dz% — dz°)/c
que l'on multiplie par ¢/2 pour avoir la distance spatiale :
dl = \/goo(da". — dz") /2
= ﬁ\/(go@gw — 90095 )dxidz
di? = gﬁ(gmgoj‘ - googij)d$id$j

goo
= i dx" dx? (233)
ou
i = 90igoj -
Y goo v

est la métrique tridimentionnelle de I’espace exprimée en fonction de celle quadridimentionnelle
de l'espace-temps. En général les g), dépendent de 2° de sorte que la métrique spatiale dépend
du temps. Dans ce cas on ne peut intégrer dl car sa valeur dépend de la ligne d univers choisie
entre les deux évenements. En relativité générale la notion de distance perd donc sa signification,
sauf lorsque les gy, ne dépendent pas du temps.



344 Gravitation relativiste

REMARQUE 60. Lorsque le champ de gravitation tend vers zéro, l’espace-temps devient celui pseudo-
euclidien de la relativité restreinte avec les go; nuls et goo = 1. Nous retrouvons alors

Yij = —9ij

Le signe négatif est di au choiz de la signature de la métrique.

La relation (51) p. 102
g)\l/gyu = 5;\

vraie lorsque les parametres A et p prennent les valeurs 0,1,2,3 est aussi vraie lorsque les
parametres ne prennent que les valeurs 1,2, 3 :

9" v = 0; & g%+ 9%, =0 (234)
Elle est également vraie lorsqu’au moins un parametre est nul
9" agr; +9%g0,; =0 j#0
< 3% g0+ 9%g0=1 i=35=0

{go”guj =8 {g%gkj +g%g0; = 6
=
ik 10 _ .
9"gko+ 9790 =0 1 #0

9" g0 = 55 9" gro + 9 go0 = 5é

ik ; ; 9% gro
9 g0+ 990 =0 &  ¢¥=-""
Joo
Reprenons (234) p. 344
9% g + 9% g0; = 5;-
ik
ik 9 gko i
9" grj — =—g0j = 9;
’ goo !
i grodoj i
g g (gkj - ]> = 5j
9oo
g f)/k‘] — Yy
—71; est donc Pinverse du tenseur g*. L’inverse de ;; étant v¥/, nous pouvons aussi écrire
ARi = _ gk

Le tenseur tridimentionnel —g**

p- 343.

Pour synchroniser deux horloges aux points A et B précédents, nous utilisons également
des signaux lumineux. L’instant 2° au point A est simultané a l'instant au point B milieu de
’aller-retour :

est le tenseur métrique contravariant de la métrique (233)

% (dx(l " dxi) 2 dJoo oo

1 { —QOZ‘GW +\/(90i90j - googz‘j)d$id$j n —QOid$i —\/(901‘903‘ - googij)d$id$j }
2

goidx’
goo

Ainsi, 'instant 2° au point A est simultané avec I'instant —go;dz’/goo au point B. Cette rela-
tion permet de synchroniser les horloges dans un volume infinitésimal autour du point B. En
procédant de proche en proche on peut synchroniser des horloges le long d'une ligne ouverte,
mais pas le long d’un contour fermé. En effet, apres avoir fait le tour du contour, on se trouve
avec une valeur de —go;dz’/goo différente de zéro. La synchronisation des horloges dans tout
I’espace est a fortiori impossible, a 'exception des référentiels dans lesquels Vi go; = 0. Cette
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impossibilité de synchroniser toutes les horloges dans tout ’espace n’est pas une propriété de
I'espace-temps, elle est liée au choix du référentiel. Dans tout champ de gravitation il est tou-
jours possible de choisir un référentiel tel que les quantités go; soient nulles, ce qui rend possible
la synchronisation de toutes les horloges.

En relativité restreinte le cours du temps est différent pour deux horloges animées d’un
mouvement relatif. En relativité générale s’ajoute le fait que le temps s’écoule différemment en
différents points de 'espace d'un référentiel donné. Si deux événements E; et E5 ont lieu en
un point A et sont simultanés avec respectivement les deux événements Ej et Ej en un point
B, 'intervalle de temps propre entre F; et E5 sera en général différent de I'intervalle de temps
propre entre E} et EY.

Puisque nous avons supposé dz® = daﬂ, la relation précédente s’écrit aussi

goo 0 0 i
7 (d$+ -+ dl’_) + gmda: =0
goodz® + goida’ =0
go,\d:c’\ =0
dl’o =0

La différentielle covariante dxg doit donc étre nulle.

26.7 LIEN POTENTIEL GRAVITATIONNEL ET TENSEUR ENERGIE-IMPULSION

Prenons le laplacien du potentiel gravitationnel ggg en champ faible et pour v < ¢ :

2
Ageo = A <1 + —f>
c
2
= 54
Avec I'équation de Poisson (154) p. 257 :
8mpG
Agoo = Cs

Or avec la définition (222) p. 326 du tenseur énergie-impulsion :
POO — p02

En coordonnées galiléennes réduites, avec la signature (+ — ——), P% = Py, :

Agoo = a Poo (235)

26.8 MOUVEMENT D’UNE PARTICULE DANS UN CHAMP DE GRAVITATION

Nous cherchons I’équation du mouvement d’une particule libre de masse m dans un champ
de gravitation. Nous reprenons le principe de moindre action en relativité restreinte (225) p. 328
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dans lequel la présence d'un champ de gravitation est prise en compte dans l'expression de la

métrique ds :
B
—mcecod / ds =0
A

B

5/ ds =0
A
B

/ dds =0
A

A partir de (228) p. 334 :

ds® = g, datdz”
5ds* = dgwdxtds” + g, 0dx"da” + g, dz"odx”
2dsdds = g, datdz” + 2g,, dx"ddz”
dzt dx¥ dzt ddx¥
dds = | = g, y— d
’ (2 I s qs I s ds) ’

g e (e N (e T
T 12%9m s Tds T ds \I s ds \ 7" "ds
1 dz* dx¥ d dz* d dzt
dds = — 00, —— —— | gw——]02"|d — g ——02" | d
/ s /[2 In ds ds ds<g“ ds)x] S+/d$<g“ ds :c)s
Le dernier membre est nul car dz”(A) = 0x*(B) =0 :
1 8gW o dxt dx¥  d dx# "
/6d _/[28:10‘7 ds ds_£<g’w%>5x]d$

_ / 1 9g,, dat da” _ Ogyo da* da* _ @ 0xds
- 2 917 ds ds  0x ds ds M ds?

9o dx™ dt B

1
or* ds ds 2
1
2

0guo dz* dz*  0g,, dz* dxt

(8:1:)‘ ds ds ox* ds ds )

<8gW dz¥ dzt N 0g,, dx* dx”)
orv ds ds ozrt ds ds

09 004 0¢ue\ dx* dz¥ Az
dds = A — — | d2%d
/ o= / l (8:10‘7 oxV OzH ) ds ds  mge |00
On utilise les symboles de Christoffel de premiere espece, relation (126) p. 225,

dxt dx¥ d?at
/5d5—/< T T — Guo T >5x”d5
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puis les symboles de Christoffel de deuxiéme espece, relation (117) p. 223 :

dz* dz¥ >z
/6d8 = _/ (go')\]‘—‘)\uy ds ds +gu0 ds? ) 0x’ds

dx* dov d?a)
= — | T + 0x°ds
/g)‘< W ds ds d52>
La variation de l'action étant nulle pour des variations arbitraires des coordonnées dx?, nous
retrouvons 'équation (163) p. 266 d’'une géodésique :

R dzt dx¥
YA=0,1,2,3 R =0
T ds? T ds ds

Nous pouvons obtenir ce résultat par un raisonnement beaucoup plus direct. En relativité
restreinte une particule est libre si sa quadriaccélération est nulle, relation (227) p. 329 :

du A
ds
En relativité générale le champ de gravitation courbe I’espace-temps, ce qui revient a prendre un
systeme de coordonnées curviligne. La dérivée ordinaire est remplacée par une dérivée absolue :

=0

D A
YA=0,1,2,3 i
ds
du* + FAWu“d:c” B
ds n
d?z> ., da*dx”
- — 236
ds? T ds ds 0 (236)

C’est I’équation du mouvement d’une particule libre dans un champ de gravitation.

26.9 LES EQUATIONS DU CHAMP DE GRAVITATION

26.9.1 Cas intérieur

Nous cherchons a établir une relation entre champ de gravitation et matiere qui généralise
les équations de Poisson (154) p. 257 et de Laplace. Ces équations différentielles déterminent
localement le potentiel newtonien dans les cas intérieur et extérieur a la distribution de ma-
tiere. Nous cherchons cette relation sous une forme covariante générale, c¢’est-a-dire tensorielle.
Commencons par ’équation du champ en dehors de la matiére (cas extérieur). Supposons que
le tenseur de courbure de Riemann-Christoffel (paragraphe 23.4.4 p. 278) soit nul

R,uu,)\o =0

Dans ce cas, on peut toujours effectuer un changement de coordonnées pour rendre constants
les potentiels de gravitation g, et nuls les symboles de Christoffel. Les géodésiques sont alors
des lignes droites dans ’espace-temps et dans 'espace. C’est 1’espace-temps plat pseudo-eucli-
dien de la relativité restreinte, sans courbure ni gravitation. Par exemple, dans notre systeme
solaire, a 'extérieur de la matiere du Soleil et des planetes, ces derniéres se déplaceraient en
ligne droite a vitesse constante. On rejete donc cette hypothese.
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Supposons que le tenseur de courbure de Ricci (paragrape 23.4.9 p. 289) soit nul.
R, =0 (237)

Cette hypothese est moins contraignante car on peut avoir R, , 7# 0 bien que le tenseur de
Ricci soit nul. Cette relation conduit a des équations aux dérivées partielles du second ordre
pour les potentiels de gravitation (autrement dit contenant les potentiels de gravitation ainsi
que leurs dérivées premieres et secondes), dans lesquelles les dérivées secondes interviennent
linéairement. En cela elle ressemble a I’équation de Laplace A¢ = 0 (relation (155) p. 258).
Nous conservons cette hypothese.

Cherchons maintenant les équations a l'intérieur de la matiere sous la forme d’une égalité
entre tenseurs de l'espace-temps,

V/L, v S;w = XQ;W
ou d’apres (235) p. 345 :
8rG
VM, v S,ul/ = 7 Q;w
Le tenseur (), est le tenseur énergie-impulsion total des distributions de matiére et d’énergie.
Il décrit en chaque point d’univers la distribution de matiere et d’énergie (cas intérieur). Dans
les régions vides de matiere et d’énergie (cas extérieur) il est identiquement nul et nous devons

retrouver (237) p. 348, donc S, = R,,. Le tenseur @), étant d’ordre deux, le tenseur S, est
aussi d’ordre deux.

Dans I’hypotheése d’un milieu continu avec interactions électromagnétiques nous avons
vlua 4 Q,ul/ = + M,uz/

ou P, est le tenseur énergie-impulsion du milieu continu (définition (222) p. 326) et M, est le
tenseur énergie-impulsion du champ électromagnétique. P, et M, étant symétriques, @), 'est
aussi. Par conséquent le tenseur que nous cherchons S, est aussi symétrique. La gravitation
n’étant pas modélisée par une force, les f* sont nulles et les équations (221) p. 326 deviennent :

Yu,v V,P" =0

La divergence du tenseur énergie-impulsion du milieu continu est nulle car il se conserve, ainsi
que celle de @, qui généralise P,

Yu,v V, Q" =0

Ils sont dits conservatifs. Cette étude valable en relativité restreinte est valable localement pour
I’espace-temps de la relativité générale en prenant une métrique pseudo-euclidienne osculatrice
a V. Par conséquent S, est aussi de divergence nulle :

Yu,v V,S" =0

S, est un tenseur purement géométrique ne dépendant que de la métrique, c’est-a-dire des
potentiels de gravitation et de leurs dérivées (par rapport aux coordonnées). Si on utilise le
tenseur métrique et uniquement ses dérivées premieres, alors aucun nouveau tenseur ne peut étre
construit. En effet, en chaque point on peut trouver un systéeme de coordonnées (géodésiques)
dans lequel les dérivées premieres du tenseur métrique sont nulles. Le tenseur cherché est alors
égale au tenseur métrique lui-méme, ou & son inverse, ou & €%/, /g (ou €9* est le tenseur
d’antisymétrie), etc. Cette égalité entre tenseur étant vraie dans un systeme de coordonnées,
elle est vraie dans tout systeme de coordonnées. Nous utilisons donc le tenseur métrique ainsi
que ses dérivées premieres et secondes. Le tenseur de courbure de Ricci dépend des potentiels
de gravitation et est symétrique d’ordre deux mais n’est pas de divergence nulle, en revanche
le tenseur d’Einstein (184) p. 296 est symétrique d’ordre deux, conservatif et dépendant des
potentiels de gravitation.
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Elie Cartan a montré que de fagon générale les tenseurs satisfaisant aux conditions précé-
dentes sont donnés par

Vi, S = a[Ru — 5 gu(R+ B)]

ou « et 3 sont des constantes, R, est le tenseur de courbure de Ricci, R est sa courbure
riemannienne scalaire. Nous obtenons :

Vv Ry — %g“,,(RA— B) = XQuw
Vu, v Ry, — %g“,,R + %gw)\ = XQuw

ou l'on supprime la constante a puisqu’il y a déja la constante y. La constante A = —%

est appelée constante cosmologique. Sauf dans certaines études cosmologiques tres spéciales,
on n’envisage en théorie relativiste de la gravitation que le cas A = 0. Nous avons alors les
équations du champ gravitationnel :

VY, v Ry, — %g,wR = —Qu (238)

26.9.2 Cas extérieur

Les équations du champ de gravitation libre, c¢’est-a-dire a 'extérieur des masses qui 1’en-
gendrent s’écrivent :

Vu,v Ry — 3 guR=0
En passant en composantes mixtes :
Vv,v ¢ R — 5 9" 9w R = X9 Quu
Ry — 30,k =xQ;
ou 'on utilise la notation 20 p. 195 des tenseurs symétriques. En contractant les indices v et v,
Vv, R, - LR =xQ.

Par définition de la courbure scalaire (23.4.5) p. 294, RY = R. De méme la contraction Q¥ = @
est appelée scalaire de Laue. D’apres la relation 52 p. 102, pour un espace a 4 dimensions,
0y =4, on a alors :
R—2R = xQ
R=—xQ

Cette derniere relation permet d’écrire les équations équivalentes aux équations (238) p. 349 :

rG

Vu,v R, = o (QW - %%VCQ)

Dans un espace vide @), = 0, nous retrouvons (237) p. 348 :

Vi, v R, =0 (239)

Comme nous l'avons déja mentionné, cela ne signifie pas que I'espace-temps vide de matiere et
d’énergie soit plat (il est déformé par de la matiere ou de I’énergie « plus loin »), car pour cela il
faudrait que le tenseur de courbure de Riemann-Christoffel soit nul, c’est-a-dire les conditions
plus restrictives R, »» = 0.
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26.10 PRINCIPE DE MOINDRE ACTION EN RELATIVITE GENERALE

26.10.1 Cas extérieur

Le principe de moindre action est la méthode historique utilisée par David Hilbert pour
établir les équations du champ de gravitation. Par analogie avec le principe de moindre action
qui donne les équations de la dynamique de Newton, nous supposons que les équations du
champ de gravitation a l'extérieur des masses et de I’énergie qui I’engendrent, dérivent (sont
issues) d'un principe de moindre action. Il s’agit de trouver 'action S, du champ de gravitation
comme fonction des potentiels de gravitation g,,, invariante par changement de coordonnées
pour assurer 'invariance des équations du champ de gravitation, puis de poser I’hypothése que
la variation de cette action est nulle lors d’une variation des potentiels de gravitation :

58, =0

Pour trouver I'expression de Sy, partons de 'invariance de I'hypervolume par changement de

coordonnées, (160) p. 263 :
V0gldQ = y/lg'| a¥

[ enflslan= [ gl

ou le lagrangien du champ de gravitation £, est un scalaire, donc un invariant. Le déterminant
g étant négatif d’apres (33) p.76, nous avons la forme de ’action cherchée :

S, = /{/Eg\/_—ng

ou K est une constante. Il s’agit a présent de trouver I’expression du lagrangien £,. Par ana-
logie avec 1I'équation de Laplace du potentiel du champ de gravitation dans le cas extérieur
A¢ = 0 (relation (155) p. 258), nous cherchons les équations du champ de gravitation sous
forme d’équations différentielles du second ordre par rapport aux potentiels de gravitation g,,,.
Autrement dit £, doit étre du premier ordre car on prend sa variation. Il n’existe pas de scalaire
formé a partir des g,, et de leurs dérivées premieres 0yg,, (ou des symboles de Christoffel).
Ces derniers peuvent toujours étre annulés en un point en prenant un systeme de coordonnées
localement géodésique en ce point. En revanche le scalaire de courbure riemannienne R, ainsi
que R+ 3 ot @ et 3 sont des constantes, contiennent les dérivées secondes des g,,, de maniére
linéaire, ce qui fait qu’elles disparaissent lors de la variation. Dans un premier temps on suppose
que le lagrangien est la courbure scalaire. Avec la définition de la courbure scalaire R 23.4.5
p- 294 :

Sy = n/\/—ngQ
55, = K / 5 (V=99" Ryy) d
%559 = /gWRWcF\/—g + V=9 Ruog" +/—gg"oR,,dS)

= / 9" R0/ —gdS) + / V=9 R, 69" dSY + / V=99""0R,,d
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— Calculons la premiére intégrale grace a la relation (57) p. 104 qui donne dg :

_5g
o/—g = —2
2=

-9

9" 09,
2y/~g g

Avec la relation (52) p. 102
glwg;w =1
0 (guyg;w) =0
gﬂllé‘guy — _guyagllu

nous avons

SV= = 5= g™
_ _V7I9v—Y )
2/~9

1 v
=-5V9 909"

/g“”RW(S\/—ng:/Réy/—ng

1

=73 / G B/ = 59" )

— Calculons la troisieme intégrale en nous plagant dans un systeme de coordonnées locale-
ment géodésiques. Le tenseur de courbure de Ricci, définition 23.4.4 p. 289 se simplifie.
Les symboles de Christoffel sont nuls, mais pas leur dérivée :

Vi,o Ry = O\, — 0,1, +T%,, T —T%,, T,
=\, — 0,1,
Vo 0Ru =6 (I, — 0,1%,,))
= 0\0T?,, — 9,61,
= D0, — D,0T?,,

car lorsque les symboles de Christoffel sont nuls, la dérivée covariante se réduit a
la dérivée partielle ordinaire. C’est une équation tensorielle, donc valable dans tous
systeme de coordonnées, pas seulement localement géodésique.

g"OR,, = g (DMSFAW - D,,(SF’\M)
= g D\0T*,, — ¢"'D,0T?,,
La dérivation covariante du tenseur métrique étant nulle :
9" 3Ry, = Dy (9"01%,,,) = D; (g"01?,,)
= Du (g, - o (g1,
= Dy (9"oT™,, — g"*oT",,)
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En remplacant et en utilisant le théoréme de la divergence sous forme tensorielle (153)
p- 255 :

/\/—g g"OR,,dQ = /\/—g D, (g“”él"/\w — g")‘él"”w) dQ)

— 95\/—9 (g“"(ﬂ—‘)‘w — g")‘(sl—ww) doy
=0
Cette intégrale est nulle car calculée sur 'hypersurface délimitant 1’hypervolume d’in-

tégration sur laquelle les variations du champ sont nulles conformément au principe de
moindre action.

Nous avons alors :
1 1

=08, = —5/gWR\/—gég“”dQ+/\/—gRWcig“”dQ

5%=H/Kaw—ngyﬁg@%m

Les variations dg"” étant arbitraires, on en déduit les équations du champ de gravitation dans
le cas extérieur :

R, — %g“,,R =0
Sw =0

Chaque composante du tenseur S, est nulle, ce qui donne 16 relations. Nous avons vu que
par symétrie des tenseurs R, et g,., le tenseur S est symétrique. Par conséquent, parmi les 16
composantes de ce tenseur, seules 10 sont distinctes et ne restent que 10 relations indépendantes
(par exemple la relation Spe = 0 est équivalente a la relation Syy = 0). De plus la relation (51)
p. 102 et la nullité de la divergence du tenseur d'Einstein (183) p. 296 donnent :

g)\“R,ul/ - %gAuguuR =0
R - 16 R=0
VA=0,...,3  Vy(R™-$8R) =0

Ces 4 relations lient les 10 composantes de S, restantes, il n’y a donc que 6 relations distinctes,
qui correspondent aux 6 composantes indépendantes du tenseur métrique.

26.10.2 Lagrangien du champ de gravitation

Nous allons voir que le lagrangien a une expression plus simple que la courbure scalaire.
Avec la définition de la courbure scalaire R 23.4.5 p. 294 puis celle du tenseur de courbure de
Ricci Ry, 23.4.4 p. 289 :

R =g¢""R,,
V=g R=1+/—gg" (GAPAW - &I/\AH + Fgw F)\,\g - Pg)\u F)\ug)
On integre par partie le premier et le deuxieme terme dans la parenthese :
V=g R =0, (\/—_9 QWTAW) — %00 (\/—_9 QW)
+1%,0, (\/——QQW) -0, (\/——QQMVFAAM)
+v=gg" (Féw FA,\g - Fg,\u FAug)
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Réorganisons les termes et intégrons :
/ V=g RdQ) = / 00 (V=99") = T%,0: (V=99") + V=g " (T%,, T = T%, T, ) d2
+ / o (V=99"T%,,) = 0, (V=g 9"T?,) dO

En utilisant le théoreme de la divergence sous forme tensorielle (153) p. 255, le dernier terme
s’écrit :

[on(v=a9) - 0, (VEae ) = [ o [vEa (9T, - g, do
= Vg (9T, - 9T, do

Sa variation est nulle car l'intégrale est évaluée sur I'hypersurface délimitant 1'hypervolume
d’intégration sur laquelle la variation du champ est nulle conformément au principe de moindre
action. Il reste

/ V=g Rd2 = / M0 (V=99") = T2,05 (V=99™) + V=g g™ (T, T = T%,, T, ) dQ
— Le premier terme sous l'intégrale s’écrit :
O (V=99") = 9”0, (V=9) + V=90.9"

v al/g v
=—g" SN +v=90,9"

Avec la relation (58) p. 104 donnant 9,g :
v\ _ _ v )\0' v
au (\/ _ggﬂ ) - g 2\/— 81/9)«7 + V- augu
v_V IV I 9v—9 i
—9" 97 0ugr0 + V=9 0ug"
2/~
= %QW vV g aug)\a + V= angV
=V ( gMVgAUanAJ + aug )

Avec la relation (51) p. 102 sur le symbole de Kronecker :

g = gy
= 9"9" 4o
09" = 0,9"9" gro + 909" 9r0 + 919" Ougr0
= 0,9"0% + 050,9" + 9"*9"7 0y
= 8,9" + 0,9" + 9" 9" D920
= —3" 9" 09

Donc

0, (V=99") =v=9 (39" 90,95 — 9" 9" 09:0)
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Avec la relation donnant les symboles de Christoffel de deuxiéme espece en fonction
du tenseur métrique (127) p. 225 :

I‘MOV = %gMA (aug)\a + aagu)\ - 8)\90—”)
gaurﬂay — gll)\ (% gau L Gro + %gau G — %gau 8)\901/)
= gHA (g(w v9ro — %gmj a)\gol/)
_ M oV 1 _pA v
=949 v9ro 59 g Adov
= 9" 0u9r0 — 39" 9 0920
Donc
8I/ (\/ —g gMV) =V _ggavruw
— Le deuxieme terme sous l'intégrale s’écrit :
o (V=99") =g"0x(V=9) + V=g 0rg"
—0\g
= g" + V=g g™
2V=9
=5 9"'V=9 9% 0nGgew + V=g hg"
=V=g (% 9" 9 ngew + 5A9W)

D’apres le théoreme de Ricci en composantes contravariantes (144) p. 242 et en appli-
quant la relation (142) p. 241 :

Dg" =0
hg" + g [Py + g~ ey =0
D’ou :
o (V=99") = V=9 (39" 0% 0nge — 9" T"er — 9" T",)
On utilise la forme particuliere des symboles de Christoffel, (128) p. 226 :
o (\/—_9 QW) =g (QW Fgg)\ - gué FV@\ - gyg FHgA)
L’intégrale devient :
/\/—_ngQ = / —F’\/\u\/——gg‘”’ I, — FAW\/__Q (QW Fgg/\ - 9“g Iwg,\ - gy5 Fug/\)
V=g 9" (T, T = T5, T, ) 2
Factorisons \/—g¢ et développons le reste :
[VEIRA = [ VG (—g T - g T, T g D 4 g, T,
+g" T8, T — g™ T8, T, ) dO
_ / V=g (mg T, + g T, TV + ST, T — g TS, T, ) dO2

= / V=4 (29ﬂ5 FAy,u FV&)\ - gol/ F)\)\,u F“Ul/ - gl“/ Fg)\,u FAV&) dQ
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Effectuons le changement d’indices 0 & p et v &= £ dans le deuxieme terme, et v — £ et £ — o
dans le troisiéme :

/ V=g RdQ) = / V=9 (20" T, T, — ¢ T, T, — 9" 17, T, ) dO
Tue = o e
/ V=g RdQ) = / V=99 2 (T, T = T, 17, ) = (17, Ty = T, 17, )| dO2
— / V=99 (T2, T = T, 17, ) dQ
Nous obtenons I'expression du lagrangien du champ de gravitation :

Ly=9 . (PAW PV@\ B F)\/\o Pauﬁ)

Ajoutons le terme nul I'*, | T

26.10.3 Constante cosmologique

Si a la place de R nous prenons la combinaison linéaire a R + 3 avec « et 5 des constantes,
nous avons :

Sg:/i/\/—_g(aR+5)dQ

Or nous devons retrouver

Sy = /{/\/—ngQ

lorsque la constante 3 est nulle, donc o = 1. Les équations s’écrivent alors :
Ry — %ng(R_'_B) =0
Ry = 5 9B — 5 9uwfB) =0
R — %guvR + Ag =0
ou A\ = —% B est appelée constante cosmologique. Si cette constante est non nulle, sa valeur

est tres faible et par conséquent n’intervient quasiment pas localement mais uniquement en
cosmologie, d’ott son nom.

26.10.4 Cas intérieur

Dans le cas intérieur, pour déterminer les équations du champ de gravitation dans la matiere
ou en présence de rayonnement électromagnétique, nous devons ajouter a ’action du champ de
gravitation S,, 'action pour la matiere et le champ électromagnétique S. (« e » pour énergie),
telle que :

5(Sy,+S.) =0
58, +6S. =0
55, =0

On suppose que 'action s’écrit

S, = /ﬁ'/ﬁe\/—ng
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ou le lagrangien L. est fonction du tenseur métrique et de ses dérivées premieres :

Ee = Ee(,q,ul/a a)\g,uz/>
= Lc(9",00g"")

La variation de action s’écrit

55, = K / 5(Lor/=F) dO

d(Ley/=9) 9(Ler/—g)
1 — uv pv
Lss. / B 09 T g gy © (090

(Lev=9) < ILev/=9) 55
:/ Ll dQ+/ NTICURLe

On integre par partie le second terme du membre de droite :

%65‘6:/ O(Lev=9g) "”dQJr/@[ (Lev/= 6‘”]d§2 /GA[ - ]g"”dQ
g NngH)

QW

:/ <'Cafy_5WdQ+/aAl 0 W)ég“”]dﬁ /aA[ 8\2_))] 4 dS)

On utilise le théoreme de la divergence sous forme tensorielle (153) p. 255 :

165, :/ 0lLev=) 5 “”dQ+§l§\/_ 5 09"~ /aA [ (L V_)l 59" d

_/ (caj/y—)(s wgoy /@l (L. \/—)1 o 8 (Drg)
dghv 9 (0rg)

L’intégrale sur 'hypersurface délimitant I’hypervolume d’intégration est nulle car les variations
du champ y sont nulles conformément au principe de moindre action.

5S, = ﬁ/{% — 0y [%H@wdﬂ

/ L /=g T,g"™ dQ)

ou l'on a posé le tenseur impulsion-énergie

a 0(Len/—9) I(Ler/~9)
T = agn O l 9 (Org) 1

Nous avons alors
0(Sg + Se) = “/ (Rw - %guvR - XT;W) V—g0g""dQ

Les variations dg"” étant arbitraires, on en déduit les équations du champ de gravitation dans
le cas intérieur :

Ry, — %guvR = XTyw
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26.11 CHAMP GRAVITATIONNEL A SYMETRIE SPHERIQUE

26.11.1 La métrique de Schwarzschild

Ce champ est créé par une distribution de matiere a symétrie centrale. Lorsque la den-
sité de matiere tend vers zéro nous devons retrouver une métrique euclidienne, qui s’écrit en
coordonnées sphérique

ds* = dt* — (dr® + r*d6” + r” sin®(0)d¢”)
= d? — dr* — 7 (d6® + sin*(0)de?)
Le ds? le plus général est donc
ds? = a(r,)cdt* — b(r, t)dr? — c(r, ) (d6? + sin®(0)d?) + d(r,t)drdt

ou les fonctions a, b et d sont sans dimension, et ¢ est homogene au carré d’une longueur.
Effectuons une transformation de coordonnées de la forme générale

r= fi(r',t) et t= folr' 1)

ou fi et fy sont des fonctions quelconques des nouvelles coordonnées 7’ et t'. Chaque fonction
permet une condition, et 'on se débarasse du terme croisé en posant

d(r', 1) =0
La deuxieme condition est
c(r',t') ="

qui conserve la symétrie centrale. Les deux fonctions inconnues restantes sont écrites sous une
forme exponentielle :

a(r',t") = e (rt) et b(r',t') = P )
Nous obtenons le ds? de la métrique de Schwarzschild
ds? = e“Pdt* — Pdr® — r? (d92 + sin2(9)d¢2)

ou les nouvelles coordonnées sont écrites sans les primes. Nous retrouvons I'expression du ten-
seur métrique de Schwarzschild, (55) p. 103 :

e* 0 0 0
0 —e* 0 0
G 0 0 —r? 0

0 0 0 —r%sin?()

Avec le tenseur métrique, calculons les symboles de Christoffel de seconde espece, relation (132)
p. 230, le point désignant la dérivation par rapport a ct et le prime celle par rapport a r :

Fln = %51
FOOO:%d lezéﬂ
0 — 1, Lo — 1, p0B [ =1/r [ =1/r
o 5(% 0= 2 *C 2, = —sin(@) cos(f) I3,, = cot(6)
Foll — %Beﬁ_a F122 — _7.‘675
I, = —rsin®(0)e™”
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Puis nous calculons les composantes covariantes du tenseur de Ricci, exercice 23.4.7 p. 291 :

Roo = ——5 + Ozﬁ 62 + (10/' + 10/2 0/6' + %o/) e
RIO = 7

Ruy = —fa" + 300’ + 16— jo” + (35 + 16° — 35d)
R22=—[1+§(o/—5)}6_5+1

On applique les équations du champ de gravitation dans le cas extérieur (239) p. 349 :

Yu, v R, =0

soit,
_%B‘I“idﬂ' ﬂ +(1o/'+10/2 O/ﬂ/+%a,)6a_ﬁ:0
i
—;a 45'0/+ 13— 10/2+(25+452 Aﬁd) el =0
1450 =8)]e?+1=0
1&//_"_10/2 O[/B/“I_%O/IO a/+6/20
B=0 B =8(r)
— o1 1 — 102 = = 1—Tﬂ/:6ﬁ
2 4 T 4 =
1+ —B)=¢" 1+7ra =¢é’
Cherchons les expressions de e® et de . On pose
y=e"’
y =-pe’
y+ry =e P —rge”
— (=)

La troisiéme relation s’écrit
(1—rp)e P =1
y+ry =1
y est de la forme y = Ar~!' + B :
A _1+B+r(rs/r ) =
B=1

donc A est homogene a r, une longueur. Revenons a la variable de départ :

y=Art+1
e P =Art4+1
Cherchons 'expression de e*
a+p4=0

a+ B =k(t)
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Comme « et 3, k est sans dimension.

604-‘,—5 — eF
e = efe P

Pour déterminer la constante x, remarquons que lorsque 1’on s’éloigne a l'infini de la distribution
de masse qui crée la champ de gravitation, la métrique doit redevenir euclidienne :

lee“zl

r—00 .

lim of — 1 = k=1 = e =e P et a=0
e T

Pour trouver I'expression de la constante A remarquons qu’a la limite des champs de gravitation
faibles, nous devons retrouver la relation (230) p. 337 :

2¢
2
2¢

c2

goo ~ 1+

A
—+1l=1+
r
2
A ¢

=T g
Le modele du potentiel du champ gravitationnel ¢ est donné par la relation (152) p. 250, M
étant la masse qui crée le champ. On pose
re = —A
_2GM

c2

(240)

le rayon de Schwarzschild de la masse M qui crée le champ de gravitation, de dimension une
longueur.

REMARQUE 61. Deux corps de masse m et M peuvent se libérer de leur attraction gravitationnelle
mutuelle si leur vitesse radiale relative en éloignement est suffisamment élevée. Dans le cadre de la
mécanique non relativiste, supposons m < M et supposons la conservation de l’énergie mécanique de
m :
E; =Ey
Eci+ Epi = Ecy + Epy

A mesure que m s’éloigne de M, son énergie cinétique se transforme en énergie potentielle jusqu’a ce
)
que sa vitesse soit nulle a l’infini. Prenons l'origine de l’énergie potentielle a l'infini :

Eci + Epi =0
mvl2 B GMm 0
2 ro
2GM
v =

r
Calculons le rayon maximum, appelé rayon de Schwarzschild, que doit faire le corps de masse M pour
que sa vitesse de libération associée soit égale ou supérieure a la vitesse limite c :

[2GM
C =
T's

_ 2GM

rs =

2
c
Le rayon de Schwarzschild est aussi appelé rayon du trou noir.
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Par conséquent
e =1—ryr et ef = (1—ryr)™"

La métrique de Schwarzschild s’écrit :

2 Ts\ 2.2 TS\ o a(g2, 2 2
ds? — <1——)c de® — <1——) dr? — 2 (d6? + sin®(6)d¢?)

r r
Le temps coordonnée t est mesuré loin de toute masse-énergie, donc loin de M, autrement dit
pour r > r,. Comme les distances radiales varient fortement dans le champ de gravitation, la
coordonnée radiale r n’est pas la distance physique au centre de la masse M, mais correspond
a la circonférence divisée par 2w d’une sphere de centre M, sur laquelle le champ de gravitation
est homogene. La métrique de Schwarzschild n’est pas définie en r» = 0, point de 'espace-temps
appelé singularité gravitationnelle. En revanche 'hypersurface » = ry n’est pas une singularité
gravitationnelle, c’est une singularité de coordonnées car un changement de coordonnées ap-
proprié permet de définir la métrique de Schwarzschild en r,. Cette hypersurface qui ne peut
étre traversée que dans un sens est appelée horizon des évenements.

Pour r > r, on vérifie que la métrique de Schwarzschild est asymptotique a la métrique de
Lorentz de la relativité restreinte en coordonnées sphériques :

ds* = 2dt* — dr* —r? (d92 + sin2(9)d¢2)

Les symboles de Christoffel de deuxieme espece s’écrivent :

Fln = %5,
{I‘O . Ty = %O‘,ea_ﬁ P2 =1/r [y =1/r
o2 ', =—re” I'?%,; = —sin(0) cos(f) I, = cot(6)
22 = 33 32

I, = —rsin®(0)e™”

26.11.2 Equation de la trajectoire d’un corps de faible masse

Le corps d’épreuve suit une géodésique de l'espace-temps courbé par une masse supposée
beaucoup plus grande que la sienne, d’équation (236) p. 347 :
d?z* dx* dx¥
VA=0,1,23 +I =0
ds? " ds ds

Notons par un point la dérivation par rapport a I'abscisse curviligne s.

(1) A = 0 donne I’équation paramétrique de la coordonnée temporelle 2° = ct :
i 410, i =0
i0 4+ 10, 2%3% 4+ 10, 4% + 19, i'a' =0
i g it =0
Or nous avons trouvé au paragraphe 26.11.1 précédent pour un corps a symétrie sphé-
rique :
{ea =(=nfr)t { (€)' = (L= ry/r)2(—=ry/r?)

e =1—ryr (eﬁ),:TS/TQ

{o/ea = (1—ry/r) %(~rs/r?) N {o/ = (—rg/r*)(1 —ry/r)" "
Bel =rg/r? B =r/r*(1l —ry/r)?
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Ad’t  ry (1 TS)_l cdt dr

ds? 272 r ds ds
rs\ 1 d re\ cdt
J — —[(1—— ) ——| =
( r> ds l( r>d3] 0
rs\ cdt
1 2) =2 = 241
( r) ds @ (241)

ol « est constante sur la trajectoire.
(2) A =1 donne I'équation paramétrique de la coordonnée radiale 7 :
BT, i =0

it 4+ Tl #%0 + Ty dtat 4+ Ty, 237 4+ Ty i%3° = 0

i+ 2ae P00 + L gatat — re P22 — rsin®(0)e P4 = 0
ﬁ+<1_z) cdt\* () (% 2
ds? r ds 2r2 r ds
r AW r do\”
YRR F W LA R ( _ _S) @) =
T( r) <ds> rsin(6) r (ds) 0

(3) A =2 donne I'équation paramétrique de la coordonnée angulaire 6 :

B2, i =0
i? + 212, a1 i + T2, %% = 0

20 2drd) do\”
-z + P sin(6) cos(0) <E> =0 (242)

(4) A = 3 donne I'équation paramétrique de la coordonnée angulaire ¢ :

i 412, i =0
i 4200 it d® + TP, %0 = 0

d*¢ 2 drdg db do
— + - ——L— +2cot(f) — - =
+ + CO()dsds

ds?  r dsds (243)

Prenons pour condition initiale § = 7/2, le point de départ est dans le plan xoy (voir la figure

7.4 p. 64). Prenons une vitesse initiale contenue dans le plan zoy, donc telle que df/ds = 0. La
relation (242) p. 361 donne comme équation paramétrique pour 6 :

o
ds?

0 =Cis+ Cy
do

-9
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Or nous avons pris comme condition initiale df/ds = 0, donc C; = 0 et § = Cy = 7/2. Le
mouvement reste dans le plan zoy. La relation (243) p. 361 donne :

2o 2drdg

ds? rdsds
1 d [ ,do
- - L1 =0
r2 ds (T ds)
do
2 = = 244
" ds b (244)
ou [ est une constante, qui est la constante de aires au facteur ¢ pres :
do
_ 2 7
f=r cdr
8 =

T est le temps propre du corps de faible masse. Avec les conditions initiales, la métrique de
Schwarzschild s’écrit :

ds* = (1 —ry/r)Edt* — (1 —r /r) " tdr? — r*d¢?
re\ ([ cdt 2 re\ L [ dr 2 do 2
1= (1) (7) -(1-%) (J) - (z)

Eliminons dt et ds & l'aide des relations (241) p. 361 et (244) p. 362 :

re\ L r\L(dr\? 32
1=(1-22 2 _ <1 — _3) - ) =
< 7’) @ r (ds) 72

50555 () w09

Le changement de variable,

u=1/r (245)
implique
dr_ d(u™)
dop — do
du
- _,—227

dr 2_ 4 [ du ?
() (&)
1 [(dr 2_ du’
() - (@)

Remplagons le rayon de Schwarzschild par son expression, (240) p. 359 :

1 2uGM o? du\’ 9 2uGM
#(1-22) -5 () (-5
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Dérivons par rapport a ¢ :

_2GM du d_ud2_u_ u% 1_2UGM +u22GMd—u
B2 dp T do de? d¢ c? 2 do
GM d*u 2uGM s GM
e ae e )T
d*u GM  3GMu?
ety R (246)
En posant
p=c"B*/(GM) (247)
nous obtenons I'équation différentielle de la trajectoire :
d*u 1 3GM
W +u = ]—) + 2 U (248)

En mécanique non relativiste, le probleme de Kepler conduit a I’équation différentielle d’une
ellipse

Pu
dg?

ot p = 162 /(GM) est le paramétre de V'ellipse et M est la masse du corps qui crée le champ.

REMARQUE 62. L’équation d’une ellipse en coordonnées polaire (r,¢) de centre l'un des foyers s’écrit :
P = P
1+ ecos(¢p — ¢o)

ot p est le parameétre et e est l’excentricité. Pour un cercle e = 0 et pour une ellipse 0 < e < 1. En
posant u = 1/r léquation s’écrit

u="+ cos(6 — b0)
p p

Cette équation est solution de l'équation différentielle :

du e .

B —ESIH@—%) N Pu 1
P~ L costo— ) "
ez~ p 0

En relativité générale il s'introduit le terme correctif 3GMgu?/c*. L’équation de la tra-
jectoire n’admet pas de solution périodique dans l'espace, lorsque ¢ varie de 27 I'inverse du
rayon vecteur u ne reprend pas les mémes valeurs. En conséquence, la trajectoire ne se referme
pas apres un tour. Nous savons aussi par les observations de Mercure que la solution n’est pas
périodique car sa trajectoire elliptique n’est pas fermée.

26.11.3 Avance du périhélie de Mercure

REMARQUE 63. Toutes les planétes du systéme solaire ont une avance de leur périhélie, point de leur
trajectoire le plus proche du Soleil. L’avance du périhélie de Mercure est plus importante, sa prozimité
avec le Soleil la place dans un champ de gravitation plus intense dans lequel les effets relativistes sont
plus marqués. Plus généralement, tous les astres et satellites en orbite ont une avance de leur périastre.
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F1G. 26.2 — Avance du périhélie

On vérifie que le terme quadratique correctif est petit devant u en faisant leur rapport :

3GM®U2 . 3GM®
c2u e

Prenons les valeurs numériques :
Masse du Soleil : Mg = 1,998 5 x 10°° kg
Constante gravitationnelle : G = 6,674 30 x 10~ m? /kg/s?
Vitesse limite : ¢ = 299 792 458 m/s
Demi-grand axe : ay = 57 909 083 x 10° m
Distance minimale : T in = 46 001 200 x 10 m
Distance maximale : 7 = 69 816 900 x 10> m
Excentricité : ey = 0,205 63
Période de révolution : Tié = 7442 203 s

3GMe 36,674 30 x 1071 x 1,998 5 x 10%
re2 57909 050 x 103 x 299 792 4582
=7,65x 1078

En premiere approximation I’équation différentielle du mouvement s’écrit sans le terme qua-
dratique et donne pour équation du mouvement l’ellipse de la mécanique non relativiste. Cette
solution est injectée dans I’équation différentielle du mouvement pour remplacer le terme qua-
dratique, elle devient alors :

d?u 1 3G M,
. tu=-+ p202® [1+ ecos(¢p— ¢p)]

3G M,

p

% i [1 4 2ecos(¢p — ¢o) + € cos? (¢ — gbo)}
1

p

3GMs  6GMg

P22 P22

ecos(¢ — ¢o)
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ou e? est d’autant plus petit devant e que I'orbite est proche d’'un cercle. On compare les deux
premiers termes en faisant leur rapport :

3GMg N 3GMp
pc? T2
~ 7,65 x 1078

Le deuxieme terme est donc négligeable devant le premier :

Pu 1 6GMg
102 +u= ’ + e e cos(¢p — ¢o)

On pose w=u—1/p:
d*w 6GMp

— tw

d¢? pc?

w

En posant la constante
~ 6GMg
pc?

a=1

nous avons 'équation différentielle
d*w 5
?& + aw= 0
qui a pour solution :
w = fcos[a(¢ — ¢o)]
1
u=_ + B cos[a(¢ — )]

On identifie § avec e/p pour retrouver le cas non relativiste, et I'on a
. p
1 + ecosla(p — ¢o)]
Le rayon vecteur reprend sa valeur lorsque
ap =21
¢ =271/

autrement dit, puisque o < 1, apres un tour complet. Le périhélie avance. La différence d’angle
avec un tour complet (¢ = 2m) vaut

d=27m/a—2m
6G M~ 2
— o (1— 2®> 1
pc
%67TGM®
pc?

Pour faire intervenir des grandeurs directement mesurables, on utilise la relation classique
suivante, qui lie le parametre de 'ellipse, son demi grand axe a et son excentricité e,

p=a(l-¢)

et la troisieme loi de Kepler

4Am%a?
= GMo



366 Gravitation relativiste

ou T est la période de révolution et m la masse qui crée le champ de gravitation. Avec ces
relations, I'avance du périhélie de Mercure devient

67 X 472(%

S =
¢ ay <1 — eé) Téc2
2473 a?

_ g

(1=) 7
24 x 3,141 5923 x (57 909 083 x 10)”
(1 — 0,205 632) 7 442 2032 x 299 792 4582
= 5,234 x 1077 rad

En secondes d’arc (1° = 3 600 ") pour un siecle :

5o — 5,234 x 1077 x 180 x 3600 x 100 x 365.2422
¢ ™ x 87.9693
= 44,8 " par siecle

26.12 DEVIATION DES RAYONS LUMINEUX

Cherchons la trajectoire d'un rayon lumineux lorsqu’il passe au voisinage immédiat du Soleil.
On suppose que la masse du photon est nulle et que ce dernier ce propage a la vitesse limite c.
Reprenons 'équation du mouvement (246) p. 363 :
d*u GM, 3GMu?
g TU= 5 (29 + 2®
do c?p c

La relation (244) p. 362 donne :

GMg  GMg (ds\’
232 2k do
Or, pour tout ce qui se propage a la vitesse limite s = 0 donc ds/d¢ = 0. L’équation devient :
d*u 3GMeou?
d¢? c?
Avec (245) p. 362 r =1/u :
2> = u? < u

Si I'on suppose le terme correctif négligeable devant u, ’équation approchée s’écrit

d2u GM@

d? 232
On résoud I’équation sans second membre :
d2

d¢?
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On cherche une solution de la forme uy = a + bcos(¢) :

dug .
T —bsin(¢)
d2U0
7 —bcos(¢)
d2U0
+u=a

d¢p?

Donc a = 0 et
beos(¢) = 1/rg
beos(m/2) = 1/7min
b=1/rmin
si bien que
g = co8(¢)/Tmin

Revenons a I’équation complete en cherchant une solution de la forme ug + u; avec vy < ug :

d? 3GM 2
(UQ+U1) +u0+ @(U0+U1)

d¢? = 2
dQUO d2u1 3GM® (U(Q) + 2UOU1 + U%)
d¢2+d¢2 +ug+u = 2
d2u1 Fouy = 3GM®U%
d¢? c?
_ 3GMg cos®(¢)
a CQT?nin
On cherche une solution de la forme a + bcos?(9) :
d
diqﬁl = —2bcos(¢) sin(¢)
2
C(llgg?l = —2b {— sin?(¢) + COSQ(QZ))}

= —2b {2 cos?(¢) — 1}

d2U1

+uy = —4bcos?(¢) + 2b+ a + bcos* ()

= 2b+ a — 3bcos*(¢)
= —3bcos*(¢)

ou l'on a posé a = —2b.
GMe

2 .
— % [2 — cosQ(qb)}
_ Lﬂf@ |1+ sin’(¢)]

2
CTinin

h= —

c2r
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D’ou la solution :

U = Uy + U

= sl0) y GMo 1y )]

2
Tmin C™T min

Pour calculer la déviation subie par le rayon lumineux, on consideére les deux asymptotes aux
deux branches infinies de la trajectoire hyperbolique du rayon. A I'infini le rayonnement « suit »
la premiere asymptote, apres avoir été dévié, a 'infini il « suit » la seconde asymptote. L’angle
0 de déviation est 'angle entre les deux asymptotes. Par symétrie du probléme, nous n’avons
besoin que de I'angle ¢4, que fait 'une des asymptotes avec 1'axe focale de I’hyperbole :

T 0
gbasy - 5 + 5
u tend vers zéro lorsque r tend vers l'infini :

cos(Pusy) | Mo
+ 2.2
T'min c°r

{1 + sinz(@sy): =0

man

2.2
Tmin Tmin

5
T ®©
COS<§+ 2> GZ\[ s -
+ ®[1+sin2(g+—§) —0

(s

—Sin | 5 GM 5 7

(2) + = 2® {lJrcos2 (TQ) =0
Tmin C T min 4
L’angle ) étant petit, on effectue un développement limité a I'ordre un des fonctions sinus et
cosinus au voisinage de zéro, sin(z) ~ x et cos(x) ~ 1 :

B o) 2GMo 0
2Xmin  CPr2,.

s AGMg

©~ Czrmin

r=+00

Fic. 26.3 — Trajectoire hyperbolique du rayon lumineux
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En prenant pour rp;, le rayon du Soleil rg) = 696 342 x 10° m :
4 x6,674 30 x 1071 x 1,988 5 x 10%°

o &
© 299 792 4582 x 696 342 x 103
~ 8,48 x 1079 rad
~ 1,757






Annexes

27.1 DIAGRAMMES D’ESPACE-TEMPS

27.1.1 Meécanique classique

En mécanique classique, a un changement de référentiel galiléen correspond un changement
d’origine du systeme de coordonnées spatiales. La coordonnée temporelle étant la méme dans
tous les référentiels, on ne la représente pas mais on représente deux des trois coordonnées
spatiales a un instant donné. On prend pour instant initial ¢g le moment ou les référentiels se
croisent (Fig. 27.1) :

/

Y,y

FiG. 27.1 — Référentiels confondus a ¢,

Habituellement on trouve la représentation suivante des référentiels a I'instant ¢; (Fig. 27.2),

FiGc. 27.2 — Référentiels a ¢;

ol les référentiels ont une vitesse constante d’éloignement v selon I’axe z, et ou la trajectoire
relative est en pointillés. La représentation du vecteur v attaché a R ou a R’ implique que 1'on
se situe dans l'autre référentiel (Fig. 27.3) :
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y Y
R 4
_v.,
s ",

Fi1Gg. 27.3 — Nous sommes dans R

Nous sommes dans R et nous observons le référentiel R’ s’éloigner de nous avec la vitesse v.
Pour faire le lien avec la représentation de Poincaré-Minkowsk de I’espace-temps de la relativité
restreinte, voici une représentation avec la coordonnée temporelle et une coordonnée spatiale.
A Dinstant ¢, ot les référentiels se croisent (Fig. 27.4) :

¢t

to x, 2!

Fic. 27.4 — Référentiels confondus a ¢,

A l'instant ¢; nous avons la représentation suivante, dans laquelle les observateurs se trouvent
au croisement des axes temporel et spatial (Fig. 27.5) :

¢ t

F1ac. 27.5 — Référentiels a t, = t]

Ici, la représentation de la trajectoire indique que 'on se situe dans R.

27.1.2 Relativité restreinte

En relativité restreinte, a un changement de référentiel dans l’espace-temps correspond
un changement d’origine du systeme de coordonnées spatiales, mais aussi un changement de
la coordonnée temporelle et de la coordonnée spatiale dans l'axe du mouvement. Le temps
et I'espace se « mélangent » lorsqu’on observe un référentiel autre que le sien propre. Dans
la représentation de Minkowski-Poincaré on ne s’intéresse plus au déplacement dans 1’espace
comme en mécanique classique, on représente les coordonnées (t,z) des référentiels a 'instant
to ou ils se croisent (Fig. 27.6) :
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R, R

33/

to T
FiG. 27.6 — Référentiels a ty vus de R
Nous sommes dans R et nous observons le référentiel R’ dont les axes de coordonnées

spatio-temporelles sont obliques. En représentant les coordonnées (¢, x) a l'instant ¢; on a la
figure 27.7,

Fic. 27.7 — Référentiels a t; vus de R

qui fait le lien avec la figure 27.5 de la mécanique classique.

27.2  ORTHONORMALISATION DE GRAM-SCHMIDT

DEMONSTRATION. Méthode d’orthonormalisation de Gram-Schmidt

Pour tout espace vectoriel pré-euclidien, la méthode d’orthonormalisation de Schmidt per-
met la construction effective d’une base orthonormée.

Soit (up,uy,...,u,) une base quelconque d'un espace vectoriel pré-euclidien FE,. Cher-
chons n vecteurs vy, vy, ..., v,, orthogonaux entre eux et linéairement indépendants pour for-
mer une base orthogonale. Pour le premier de ces vecteurs, nous posons :

Vi =Uup

Bien entendu, (v, us, ..., u,) forme une base de E,. Cherchons le deuxiéme vecteur vy sous la
forme de la combinaison linéaire suivante, ou A; est 'inconnue :

Vo = A\Vi + Uy
Ecrivons la relation d’orthogonalité entre vy et vy :
Vi1+Vgyg = 0
u; - (Aug +up) =0
)\1u1-u1+u1-u2:0

M= —

u; - U9
[y 2
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A1 est non nul car u; et uy sont supposés non orthogonaux. Le vecteur v, est non nul car
le systéme (vy,uy,...,u,) étant libre, v; et uy sont non nuls et linéairement indépendants.
(vy, Vo, ug,...,u,) est donc un systéme libre. Cherchons le troisiéme vecteur vs sous la forme :

V3 = [41V] + [2V2 U3

Les coefficients pu; et uo se calculent en écrivant d’une part les relations d’orthogonalité entre
vy et vy

vi-vy3 =0

U - (1vy + pave +u3) =0

uy - [ppag + pe (AMug +ug) +us] =0

faug - Uy + foAiuy - Uy + ey U +uy - uz =0

il || 4 g Jug]|? = oA Jw]|* 4+ ug - uz = 0
u; - us

M1 ==
[y |2

et d’autre part les relations d’orthogonalité entre vy et vy :
vy vy =0
(AMvy +ug) - (pvy + peve +uz) =0
A1pavy - Vi + Afiave - Vo + AV - Uz + e - Vi flalla - Ve +Up s uz = 0
AMPIVE - V1 + A pavy - Vo + AV - ug + g (Vo — Avy) - vy
+ig (Vo — A vy) - Vo + (Vo — Ajvy) - uz3 =0
[V - v+ pa|lvell? 4+ ve s ug = 0

p2||va? + V2 uy =0

Vo - Us

SN TAE
Nous avons déterminé le vecteur vs, orthogonal aux vecteurs v; et vy. Ce vecteur est non
nul, car le systéme (vq,vy, ug,...,u,) étant libre, vi, vo et ug sont non nuls et linéairement
indépendants. Le systéme (vi, vy, Vs, ..., u,) est donc libre. On construit ainsi de proche en
proche le systéme de vecteurs (vy, v, ..., Vv,) orthogonaux entre eux, dont aucun n’est nul, et

dont I’ensemble forme une base orthogonale de FE,,.
En divisant chacun de ces vecteurs par sa norme,

. Vi
Vi=1,...,n e =
[[vil
'ensemble des vecteurs (e, es, ..., €,) forme une base orthonormée de F,,. O

27.3 BASES NON HOLONOMIQUES

Considérons la base polaire normée. Ses vecteurs de base ont pour expression :

{e =€, {ef, = cos(f) e, +sin(h) e,
1 = :
ey =, € e, = —sin(f) e, + cos(f) e,

s

Existe-t-il un systeme de coordonnées (§,n) tel que (e;, ;) en soit une base naturelle ?

{eﬁ = € = {eﬁ =Teer tycey
€ = €y € =T €z T Uyey
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Nous avons alors :
xe = cos(d), ye = sin(6)
x, = —sin(f), Y, = cos(f)

Les dérivées partielles croisées donnent les relations suivantes :

0 0xr 0 0x dcos()  O(—sin(0))
on ¢ O On N on o€
009y 00y Jsin(f)  Ocos(0)
anoc  acon o %

Il est plus simple de passer par la base duale normée.

{e’3 =e’ . {e’3 = cos(f) e, +sin(h) e,
0

el = pe of = — sin(6) e, + cos(0) e,

Existe-t-il un systéme de coordonnées (£, n) tel que (e?,e”) en soit la base duale de la base

naturelle ? A A
=

0
€ =TNg€r +1yey

Nous avons alors :
€. = cos(f), €, =sin(0)
N = —sin(f), 1, = cos(f)

Les dérivées partielles croisées donnent les relations suivantes :

00§ 90 Jcos(f)  Osin(0)
(’3_y(’9_x N %8_3/ N dy Oz
d0n 0 0n O(—sin(#))  Ocos(0)
dydr  dxdy dy O

Réécrivons la derniére relation :
Jsin () N 0 cos(0)
dy ox

0 Y 0 x
-z — | ————1 =0
ay <'/U2+U2> + or (‘/U2+U2>

ce qui est impossible. Le systeme de coordonnées (£, n) n’existe donc pas.

27.4 COORDONNEES CURVILIGNES ORTHOGONALES

27.4.1 Coordonnées paraboliques (u,v)

27.4.1.1 Passage des coordonnées paraboliques auz rectangulaires (Fig. 27.8)

avec —oo<u<+oo, v=0

{x — (> —0?)/2

Y = uv
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27.4.1.2 Passage des coordonnées polaires aux paraboliques

{u = /2p cos (0/2)
v =+/2p sin (0/2)

F1a. 27.8 — Coordonnées paraboliques (u, v)

27.4.1.3 Vecteurs de la base naturelle en coordonnées paraboliques

Partant de I’expression du vecteur position :

OM = ze, + ye,
u? —v?
= 5 e, + uvey

nous trouvons l’expression des vecteurs de la base naturelle :

e, =0,M e, = ue; + ve,
e, = 0,M =

€, = —ve; + uey,
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27.4.1.4 Norme des vecteurs de la base naturelle en coordonnées paraboliques

el = Va7
lle]| = Vv? + u?

27.4.2 Coordonnées cylindrico-paraboliques (u,v, z)

27.4.2.1 Passage des coordonnées cylindrico-paraboliques aux rectangulaires

r = (u®—0v?)/2
Y = Uuv avec —oo<u<+4oo, v=20, —oc0o<z<+4+00
z2=2z

Elles sont identiques aux coordonnées paraboliques, avec en plus z = z et e, = e,.
27.4.3 Coordonnées paraboloidales (u,v, ¢)

27.4.3.1 Passage des coordonnées paraboloidales aux rectangulaires

r = uv cos(¢)
y=uvsin(¢) avec u>=0, v>=0, 0<¢<2r
z = (u* —v?)/2
On obtient les surfaces de coordonnées paraboloidales u = ¢**¢ et v = ¢ en faisant tourner
les paraboles de la figure 27.8 p. 376 autour de 'axe x, cet axe devenant I'axe z (axe de symétrie

de révolution). Le troisitme ensemble de surfaces de coordonnées, ¢ = ¢**, est formé de plans
coupant cet axe de révolution.

ste

27.4.3.2 Vecteurs de la base naturelle en coordonnées paraboloidales
Partant de I’expression du vecteur position :

OM = ze, + ye, + ze,

u? —v?
= uv cos(¢) e, + uvsin(p) e, + 5 e
nous trouvons l’expression des vecteurs de la base naturelle :
e, = 0,M e, = vcos(¢) e, + vsin(¢) e, + ue,
e, =0,M = e, = ucos(¢) e, + usin(¢) e, — ve,
ey = Oy M e, = —uvsin(¢) e, + uv cos(¢) e,

27.4.3.3 Norme des vecteurs de la base naturelle en coordonnées paraboloidales

Jeull = /o2 cos? g+ v2sin® 6 + w2 leull = Vo> +
leo|| = Vu2cos? ¢ + u?sin? g+ 0> = leol| = V@@ + 2

leo]l = /u2v?sin? ¢ + u2v? cos? ¢ leg|| = uv
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27.4.4 Coordonnées elliptiques (u,v)

27.4.4.1 Passage des coordonnées elliptiques auz rectangulaires (Fig. 27.9)

x = a cosh u cosv
. . avec u >0, 0<v<2r
y = asinhusinv

En élevant au carré, nous avons :

2

U
2
2 9 2 2 — = cos° v
u® = a“ cosh” w cos” v o2 coshZ u
2 2 .12 .9 = 2
v* = a” sinh” u sin“ v v .9
———5— =sin"v
a?sinh” u

d’ou :

u? v? ) .y
= COsS” v + s v

=1

+ -
a2cosh?u  a2sinh®u

qui est I’équation d’une ellipse lorsque le parametre u est constant, et :

2 2
U v )
— cosh?u — sinh? u

a2cos?v  a?sin?v

=1

qui est I’équation d’une hyperbole lorsque le parametre v est constant.
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v=2m/3 v=m/2 v=m/3

v="Tr/6 v=117/6

v=471/3 v=>57/3

v=3n1/2

Fic. 27.9 — Coordonnées elliptiques

27.4.4.2 Vecteurs de la base naturelle en coordonnées elliptiques

Partant de I’expression du vecteur position :

OM = ze, + ye,
= a cosh u cosve, + asinh usinve,
nous trouvons I’expression des vecteurs de la base naturelle :

{eu = 0,M {eu = asinh u cosve, + a cosh usinve,
=

e, = 0,M e, = —acosh usinve, + asinh ucosve,

27.4.4.3 Norme des vecteurs de la base naturelle en coordonnées elliptiques

leu]| = \/a2 sinh? u cos? v 4 a2 cosh® u sin® v

el = \/a2 cosh? usin® v + a2 sinh® u cos? v
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lle.|| = a\/sinh2 wcos? v + (1 + sinh? u) sin v llew|| = a\/sinh2 u + sin®v

|les|| = a\/(l + sinh? u) sin? v + sinh? u cos? v le,|| = a\/SmQ v+ sinh®u

27.4.5 Coordonnées cylindrico-elliptiques (u, v, 2)
27.4.5.1 Passage des coordonnées cylindrico-elliptiques auz rectangulaires

x = a cosh u cosv
y =asinhusinv avec u>0, 0<v<2m, —00<2z<+00
z2=2z

Elles sont identiques aux coordonnées elliptiques, avec en plus z = z et e, = e,.

27.4.6 Coordonnées de trace elliptique allongée (£, 7, ¢)

27.4.6.1 Passage des coordonnées de trace elliptique allongée aux rectangulaires

x = asinh & sinn cos(¢)
y = asinhsinnsin(¢) avec £€>0, 0<n<7w, 0<¢o<2n
2z = acosh & cosn

On obtient les surfaces de coordonnées elliptiques de trace allongée, & = c**¢ et n = ¢, en

faisant tourner les courbes de la figure 27.9 p. 379 autour de l'axe x, cet axe devenant l'axe z
(axe de symétrie de révolution). Le troisieme ensemble de surfaces de coordonnées, ¢ = ¢,
est formé de plans coupant cet axe de révolution.

27.4.6.2 Vecteurs de la base naturelle en coordonnées de trace elliptique allongée

Partant de I'expression du vecteur position :
OM = ze, + ye, + ze,
= asinh ¢ sinn cos(¢) e, + asinh  sinnsin(¢) e, + a cosh £ cosne,
nous trouvons ’expression des vecteurs de la base naturelle :
e = 0:M e¢ = acosh{sinn cos(¢) e, + acosh € sinnsin(¢p) e, + asinh € cos ne,
e, =0,M = e, = asinh £ cosn cos(¢) e, + asinh £ cosnsin(¢) e, — a cosh  sinne,
e, = 0,M e, = —asinh £sinnsin(¢) e, + asinh Esinncos(¢) e,

27.4.6.3 Norme des vecteurs de la base naturelle en coordonnées de trace elliptique allongée

lecl| = \/(12 cosh? € sin? 1) cos2¢ + a? cosh? € sin? nsin¢ + a2 sinh? € cos2 7

e, = \/a2 sinh? € cos? 1) cos2¢ + a? sinh? € cos? i sin®¢ 4 a2 cosh? € sin®n

les|l = \/a2 sinh? ¢ sin? i sin®¢ + a2 sinh? ¢ sin? 1) cos2¢
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lee|| = a\/cosh2 ¢ sin® 7 + sinh? € cos2 el = a\/(l + sinh? £) sin? 5 + sinh? € cos2 7

eyl = a\/sinh250052 n+ cosh?Esin®n = e, = a\/sinh2 £(1 — sin? ) + cosh?  sin®
|es|| = asinh{siny |es|| = asinh & siny

legl| = a\/sin2 n + sinh® ¢

eyl = a\/sinh2£+ sin?n
|leg|| = asinhsinny

27.4.7 Coordonnées de trace elliptique aplatie (£,7, ¢)

27.4.7.1 Passage des coordonnées de trace elliptique aplatie aux rectangulaires

x = acosh & cosn cos(¢)

y=uacosh&cosnsin(¢) avec £>0, —-7w/2<n<7n/2, 0<p<2n

z = asinhsiny
On obtient les surfaces de coordonnées elliptiques de trace aplatie, £ = ¢ et n = ¢, en
faisant tourner les courbes de la figure 27.9 p. 379 autour de I'axe y, cet axe devenant 'axe z
(axe de symétrie de révolution). Le troisieme ensemble de surfaces de coordonnées, ¢ = ¢,
est formé de plans coupant cet axe de révolution.

27.4.7.2 Vecteurs de la base naturelle en coordonnées de trace elliptique aplatie

Partant de I'expression du vecteur position :
OM = ze, + ye, + ze,
= acosh € cosn cos(¢) e, + acosh & cosnsin(¢) e, + asinh { sinne,
nous trouvons ’expression des vecteurs de la base naturelle :
e = 0:M e¢ = asinh £ cosn cos(¢) e, + asinh € cosnsin(¢) e, + a cosh € sin ne,
e, =0,M = e, = —acosh £sinncos(¢) e, — acoshsinnsin(¢) e, + asinh { cosne,
ey = 0, M e, = —acosh £ cosnsin(¢) e, + acosh € cosncos(¢) e,

27.4.7.83 Norme des vecteurs de la base naturelle en coordonnées de trace elliptique aplatie

el = \/a2 sinh? € cos? 1) cos? ¢ 4 a2 sinh? € cos? 7 sin® ¢ + a2 cosh? £ sin? 7

le,ll = \/a2 cosh? € sin? 1) cos2 ¢ 4 a2 cosh? € sin® 1 sin? ¢ + a? sinh? € cos?n

lesl| = \/@2 cosh? € cos? sin? ¢ + a2 cosh® € cos? 1) cos? ¢

lee|| = a\/sinh2 € cos?n + cosh? Esin® lee|| = a\/sinh2 £(1 — sin? n) + cosh® ¢ sin?

e, |l = a\/cosh2§sin2 n+sinh®€cos?ny = \llesl| = a\/(l + sinh? £) sin? 5 + sinh? € cos? 7

les|] = acosh§ cosn |ley|| = acosh & cosn
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llee|| = a\/sinh2 ¢ + sinh?n

lesl| = a\/sin2 1 4 sinh? ¢

|lee|| = acosh cosn

27.4.8 Coordonnées ellipsoidale (A, i, v)

27.4.8.1 Passage des coordonnées ellipsoidale auzr rectangulaires

Le passage des coordonnées ellipsoidales aux coordonnées rectangulaires s’obtient a partir
de I'équation d'un ellipsoide! de demi-axes a, b, ¢ respectivement suivant x, 7,  :

u?  v? w?

A partir de cette équation, nous écrivons les familles de surfaces orthogonales, qui constituent
ce systeme de coordonnées :

u? v? w?
=1 249
PR W R S (249a)
u? v? w?
=1 249b
a2—u+b2—,u+02—,u ( )
u? v? w?
=1 249
PR R (249¢)
avec :
A< <pu<b <v<a (250)

L’équation (249a), avec la condition (250), est ’équation d’un ellipsoide lorsque le parametre
A est constant.

L’équation (249b), avec la condition (250), est I’équation d’un hyperboloide & une nappe
lorsque le parametre p est constant.

L’équation (249c), avec la condition (250), est I’équation d’un hyperboloide & deux nappes
lorsque le parameétre v est constant.

En résolvant par rapport aux variables x,y, z, nous avons :

o _ (@2 = N)(a® — p)(a® —v)
(@~ P~ )
o (P =N — ) —v)
S (g ey (251)
Y @=NE =@ =)
@@ -

1. Voir Coniques.pdf
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Vérifions que 1'on retrouve, par exemple, ’équation (249a) a partir des équations (251) :

(@ —p—y) | Pop-v) | (E—p)E—v)
P S S B N P 3 (e B S [ (B S P Y P

_ @@= =) = (0P - =)@ =) | (@ = p)(E —v)(a® = 1)
(@ P~ )~ ) (@ )@~ )7~ )
(a* — pa® — va® + pv)(B? — ) — (b* — pb? — vb? + pv)(a® — 2)

(a* — b%a® — a?c® + b?c?) (b? — 2?)

(c* — puc® — ve® + pv)(a® — v?)
(a* — b%a? — a?c? + b2c?) (b — ¢?)
B a*b? — pa’b?® — va®b? + uvb?® — a*c? + pa*c? + vac® — pvc?

a2 — bAaZ — 2202 + bA? — Al + D2a2 + a2ch — b2t
—b*a? + pb*a® + vb*a® — pva® + b*c? — pb*c? — vb*c? + uvc?
aib? — braZ — 2202 1 A — aAe® + D2a2 + a2ch — b2t
cta® — ucta® — vcta® + uva® — cA? + pc?b? + vePb? — uvb?
A2 — a2 — a2¢202 + WA — aAe® + b2a2c + a2ch — DA
at? — bra? — a?c?V? + bic? — a'c® + b2a’c? + a*ct - VPt
a*t? — b*a? — a?b? + b*c? — atc® + b2a’c? + a?ct — b2t
=1

+

+

27.4.8.2 Norme des vecteurs de la base naturelle en coordonnées ellipsoidale

”e ”:1 (M_)‘)(V_)‘)

M (@ = N)(B2 = M) (2 = \)
He ”:_ (M—V)()\—,u)

2\ (@ = ) (8% = p)(e = p)
||e ||:_ ()\—V)(,LL—I/)

Y (a®> —v)(b® —v)(c® —v)

27.4.9 Coordonnées bipolaires (u,v)

27.4.9.1 Passage des coordonnées bipolaires auz rectangulaires (Fig. 27.10)

asinh v
x:—h
coshv — cosu
. avec 0<u<2m, —oco<wv<+00
asin u
y:

coshv — cosu

Le passage s’écrit aussi :
u? + (y — acotu)® = a’u
(z —acotv)® +v* = a’v

Les lignes de coordonnées u ou v constante sont des cercles non concentriques.
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x
Fic. 27.10 — Coordonnées bipolaires
27.4.9.2 Vecteurs de la base naturelle en coordonnées bipolaires
Partant de I'expression du vecteur position :
OM = ze, + ye,
asinh v asinu
= € ey
coshv — cosu coshv — cosu
nous trouvons ’expression des vecteurs de la base naturelle :
e, = 0,M
e, = 0,M
asinh vsinu a cos u(cosh v — cosu) — asin u(cosh v + sin )
e, = S e > ey
(cosh v — cosu) (coshv — cosu)
a cosh v(coshv — cosu) — asinh v(sinh v — cosu) asinusinh v
e, = > e, — 5 €y
(coshv — cosu) (coshv — cosu)

27.4.9.3 Norme des vecteurs de la base naturelle en coordonnées bipolaires
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27.4.10 Coordonnées cylindrico-bipolaires (u,v, z)
27.4.10.1 Passage des coordonnées cylindrico-bipolaires auz rectangulaires

u® + (y — acotu)® = a’u

(x —acotv)’*+0v? =a?v avec 0<u<2m, —00 <v<+400, —00< 2z < +00
z=12z

ou bien :
asinh v
rT =
coshv — cosu
asinu avec 0<u<2T, —00<v<+400, —00<z<+00
coshv — cosu

==z

Elles sont identiques aux coordonnées bipolaires, avec en plus z = z et e, = e,.
27.4.11 Coordonnées toroidales (u,v, ¢)

27.4.11.1 Passage des coordonnées toroidales auz cylindriques

asinu
P= "
coshv — cosu
z—ﬂ avec O0<u<2m, v=>20, 0<¢o<2m
coshv — cosu
¢=0¢

On obtient les surfaces de coordonnées toroidales en faisant tourner les courbes de la figure
27.10 p. 384 autour de l'axe y, cet axe devenant I'axe z (axe de symétrie de révolution). Les

surfaces de coordonnée u = c**¢, sont des spheéres, les surfaces de coordonnées v = ¢

tores. Le troisiéme ensemble de surfaces de coordonnées, ¢ = c*%¢
cet axe de révolution.

, sont des
, est formé de plans coupant
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