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1
La notion d’espace

1.1 Définitions

Disons de suite que l’on ne peut définir tous les termes, certaines notions primitives sont sans
définition. Par exemple certaines définitions sont circulaires, elles dépendent d’autres définitions
qui dépendent elles-mêmes de ce que l’on cherche à définir. La mise en place des premières
notions est souvent un procédé itératif, on doit en parler avant de les avoir définies.

On fonctionne par analogie avec notre perception de l’environnement, principalement la
feuille de papier ou le tableau noir, et la surface de la Terre.

Définition 1.1.1. Espace topologique
Un espace topologique est un ensemble de points dans lequel le voisinage de chaque point
est défini, grâce auquel on définit les concepts de continuité, de limite et de connexité.
C’est donc un espace dont les éléments sont des points, muni d’une structure appelée
topologie, qui définit la notion de voisinage d’un point.

C’est l’espace le plus général dans lequel on puisse faire des mathématiques.

Les systèmes de coordonnées ont probablement pour origine les premières cartes de naviga-
tion indiquant les parallèles et les méridiens.

Définition 1.1.2. Dimension d’un espace topologique
La dimension d’un espace topologique est le nombre minimal de coordonnées nécessaires
pour spécifier un point de cet espace.

Le point et la droite sont des objets mathématiques primitifs, sans définition. On les imagine
plongés dans le plan, alors que celui-ci n’est pas défini. Pour repérer un point sur une droite dont
on a fixé l’origine, il ne faut qu’une seule coordonnée. On peut en utiliser deux si on la plonge
dans un plan, mais une seule est nécessaire. Nous pouvons dire que c’est un espace topologique
de dimension 1, constitué d’une succession infinie de points, sans extrémités et sans courbure.
Néanmoins, la courbure n’étant pas définie, cette définition ne fait que repousser le problème à
une autre définition.
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Une courbe est un espace topologique de dimension 1, constitué d’une succession infinie de
points, sans extrémités. Elle généralise la notion de droite, celle-ci étant une courbe particulière.
Pour repérer un point sur une courbe seule est nécessaire l’abscisse curviligne.

Un plan est un espace topologique de dimension 2, d’extension infinie et sans courbure.
C’est un objet mathématique primitif. Le plan est l’analogue en deux dimensions à la droite.
Une surface est un espace topologique de dimension 2. Elle généralise le plan, celui-ci étant une
surface particulière.

1.2 Géodésiques d’un espace

Les géodésiques sont la généralisation des droites aux espaces courbes de dimension quel-
conque. Ce sont les courbes de courbure minimale, elles possèdent la même courbure locale (au
voisinage immédiat de chacun de leur point) que l’espace lui-même. Sur un plan leur courbure
est nulle, ce sont des droites. On réserve le terme « droite » aux espaces plats, sans courbure
intrinsèque. Un arc de géodésique est aussi une géodésique. Les arcs de courbes qui minimisent
la distance entre deux points, appelées orthodromies, sont des géodésiques mais la réciproque
est fausse. Sur une sphère les grands cercles et les arcs de grands cercles sont des géodésiques.
Prenons deux points sur un grand cercle. S’ils ne sont pas antipodaux ils définissent un petit
arc et un grand arc de grand cercle, qui sont tous les deux des géodésiques. Pour se représenter
une géodésique sur une surface quelconque on peut imaginer un ruban pas trop large que l’on
colle au mieux (avec un minimum de pliures) sur la surface.

Si l’on sait tracer des géodésiques et mesurer des angles (rapport de deux longueurs), une
surface est plane ssi la somme des angles de tout triangle tracé à l’aide de géodésiques sur cette
surface vaut π. On peut également utiliser la somme des angles d’un carré qui vaut 2π, ou l’aire
de toute figure géométrique fermée, celle d’un disque de rayon r vaut πr2, celle d’un carré de
côté r vaut r2, etc.

1.3 Plongement d’un espace

Bien qu’ayant une existence propre, les droites, les courbes, les plans et les surfaces sont
habituellement représentés dans un espace de dimension supérieure. Les courbes sont représen-
tées dans le plan ou dans l’espace (à 3 dimensions), les plans et les surfaces dans l’espace. S’il
aide à se faire une image mentale, ce plongement n’a aucune nécessité. Les espaces topologiques
ont une existence propre sans plongement dans un espace de dimension supérieure, sans quoi
ce dernier devrait à son tour être plongé dans un espace de dimension plus grande, et ainsi de
suite.

1.4 Courbure

Il est important de distinguer la courbure intrinséque et la courbure extrinsèque. Le cylindre
et le cône sont des espaces topologiques plats, ils peuvent être déroulés pour en faire un plan et
ont même topologie que le plan. Ils ont une courbure extrinsèque mais n’ont pas de courbure
intrinsèque (qui leur est propre). En restant à la surface d’un cylindre ou d’un cône rien ne
permet de mettre en évidence une quelconque courbure locale. La somme des angles d’un
triangle tracé sur un cylindre ou un cône vaut π. En revanche, la courbure globale apparait
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lorsque en avançant perpendiculairement à la génératrice du cylindre l’on revient sur nos pas.
Dans les cas du cylindre et du cône la courbure globale est liée à leur seule courbure extrinsèque.
Seule la courbure intrinsèque est utile en géométrie, la courbure extrinsèque est de moindre
importance, elle est liée au plongement de la surface dans un espace de dimension supérieure.

1.4.1 Courbure positive

La sphère est un espace topologique courbe, sa courbure intrinsèque fait que l’on ne peut
la déplier sans déformations pour en faire un plan. Sa courbure constante positive est mise en
évidence en mesurant la somme des angles d’un triangle sphérique, triangle dont les côtés sont
des arcs de grands cercles, elle est comprise entre π et 3π. De même, l’aire du triangle sphérique
est supérieure à celle d’un triangle plat. Dans le cas de la sphère la courbure globale est liée à
la courbure intrinsèque.

1.4.2 Courbure négative

La selle de cheval a aussi une courbure intrinsèque, négative et non constante, elle tend
vers zéro à mesure que l’on s’éloigne du siège. A noter qu’une surface de coubure négative
constante ne peut être réalisée dans l’espace ordinaire à trois dimensions. La somme des angles
d’un triangle hyperbolique, triangle dont les côtés sont des géodésiques, est inférieure à π, et
l’aire du triangle hyperbolique est inférieure à celle d’un triangle plat.





2
Notation indicielle

2.1 Convention de sommation

En notation indicielle les coordonnées x, y, z, sont notées x1, x2, x3. Cette notation permet
d’adopter la convention de sommation suivante :

Notation 1. Toutes les fois que dans un monôme (expression de la forme axn) figure le même
indice en haut et en bas, nous devons sommer tous les monômes obtenus en donnant à cet indice
toutes les valeurs possibles.

Exemple 2.1.1. La différentielle totale de la fonction f(x, y, z) exprimée dans le système
de coordonnée (x, y, z), s’écrit sous forme indicielle avec la convention de sommation :

df =
∂f

∂x
dx +

∂f

∂y
dy +

∂f

∂z
dz

=
∂f

∂x1
dx1 +

∂f

∂x2
dx2 +

∂f

∂x
dx3

=
∂f

∂xi
dxi

où l’indice latin i varie de 1 à 3.

Notation 2. Lorsqu’aucune confusion n’est possible sur les coordonnées employées, la dérivée
partielle première par rapport à la ie variable d’une fonction f quelconque est aussi notée

∂f

∂xi
≡ ∂if

ou bien simplement avec une virgule et un indice inférieur :

∂f

∂xi
≡ f,i

Un indice en haut d’une lettre au numérateur est équivalent à un indice en bas d’une lettre au déno-
minateur. La dérivée partielle seconde est notée :

∂2f

∂xi∂xj
≡ ∂ijf

≡ f,ij
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Pour un système de coordonnées primé, nous mettrons le prime sur l’indice,

∂f

∂xi′
≡ ∂i′f

≡ f,i′

bien qu’il ne s’agisse pas de l’indice i′ mais de la i ème coordonnée x′. Cette notation permet au symbole
∂i′ d’indiquer une dérivation partielle par rapport à la i ème coordonnée de la base primée.

Exemple 2.1.2. La différentielle totale de la fonction g(t′, x′, y′, z′) exprimée dans le
référentiel (t′, x′, y′, z′), s’écrit sous forme indicielle avec la convention de sommation :

dg =
∂g

∂t
dt′ +

∂g

∂x′ dx′ +
∂g

∂y′ dy′ +
∂g

∂z′ dz′

=
∂g

∂x′0 dx′0 +
∂g

∂x′1 dx′1 +
∂g

∂x′2 dx′2 +
∂g

∂x′ dx′3

= ∂µ′g dxµ′

= g,µ′dxµ′

où l’indice grec µ varie de 0 à 3.

2.2 Quelques identités

En notation indicielle la matrice colonne [u] est notée ui, la matrice carrée [a] est notée aij.

Remarque 1. Parler de la matrice ui est un abus de langage pour parler de la matrice [u] dont les
composantes sont les ui, de même pour la matrice aij .

∀j = 1, 2, 3 aiju
j , ai1u1 + ai2u2 + ai3u

3

où le symbole , signifie « par définition », dans le cas présent par définition de la notation
employée.

(1) Lorsque la matrice [aij ] est non symétrique (aij 6= aji), nous avons

aiju
ivj ≡ aijv

jui et aiju
ivj ≡ ajiu

jvi

où ≡ est le symbole d’équivalence, et les inégalités :

aiju
ivj 6= aiju

jvi et aiju
ivj 6= ajiu

ivj (1)

Par exemple

∀i, j = 1, 2





aiju
ivj , a11u1v1 + a12u1v2 + a21u2v1 + a22u2v2

aiju
jvi , a11u1v1 + a12u2v1 + a21u1v2 + a22u2v2

À partir des inégalités (1) on déduit :

(aij + aji)uivj 6= 2aiju
ivj



Notation indicielle 7

(2) En posant zj = uj + vj :

aij(uj + vj) ≡ aiju
j + aijv

j

aij(zj) = aiju
j + aijv

j

(3) Avec uiuj ≡ ujui : 



(aij + aji)uiuj ≡ 2aiju
iuj

(aij − aji)uiuj ≡ 0

2.3 Symbole de Kronecker

Définition 2.3.1. Symbole de Kronecker δij

Il est défini par : {
δij = 1 pour i = j, donc δii = 1

δij = 0 pour i 6= j

Il permet d’utiliser la convention de sommation sur les indices répétés.

Exemple 2.3.1.

ds2 =
(
dx1

)2
+
(
dx2

)2
+ · · · + (dxn)2

= δijdxidxj i, j = 1, . . . , n

Les indices du symbole de Kronecker sont en bas pour respecter la convention de sommation.
C’est aussi un opérateur de substitution d’indice :

Exemple 2.3.2. Soit (xi) un système de coordonnées :

∀i xi = 0 × x1 + 0 × x2 + · · · + 1 × xi + · · · + 0 × xn

= δijx
j

Exemple 2.3.3. Soit (xi) un système de coordonnées :




∀i = j
∂xi

∂xj
=

∂xi

∂xi
= 1

∀i 6= j
∂xi

∂xj
= 0 car xi et xj sont indépendants

⇒ ∀i, j
∂xi

∂xj
= δij

Exemple 2.3.4. Soient (xi) et (yj) deux systèmes de coordonnées. Les n fonctions

∀i = 1, . . . , n xi = xi
(
y1, y2, . . . , yn

)
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sont supposées au moins de classe C2 : les dérivées partielles secondes existent et sont
continues, donc a fortiori les dérivées partielles premières. Elles sont aussi supposées
indépendantes de sorte que l’on puisse résoudre les n équations en fonction des xi,

∀j = 1, . . . , n yj = yj
(
x1, x2, . . . , xn

)

qui sont alors aussi de classe C2. D’une part :

∀i dxi =
∂xi

∂yk
dyk

=
∂xi

∂yk

∂yk

∂xj
dxj (2)

D’autre part, avec l’exemple précédent ou en différentiant le résultat de l’exemple 2.3.2 :

∀i dxi = δijdxj

Avec les deux égalités précédentes :

∀i, j
∂xi

∂yk

∂yk

∂xj
= δij (3)

Notez que si l’on pose i = j la somme sur k disparait dans (2), et (3) donne bien δii = 1.

2.4 Symbole d’antisymétrie

Définition 2.4.1. Symbole d’antisymétrie
Le symbole d’antisymétrie εij ou εij ou εj

i est défini par :




εij = 0 pour i = j = 1, 2

εij = +1 pour i = 1 et j = 2

εij = −1 pour i = 2 et j = 1

Le symbole est bien antisymétrique :

εij = −εji

Exemple 2.4.1. Grâce au symbole d’antisymétrie, le déterminant d’une matrice s’écrit :
∣∣∣∣∣
a1

1 a2
1

a1
2 a2

2

∣∣∣∣∣ = a1
1a2

2 − a1
2a2

1

= εija1
i a2

j

On généralise ce symbole à un nombre quelconque d’indice, par exemple 3 :




εijk = 0 si deux indices ont même valeur

εijk = +1 si les indices sont dans l’ordre 1,2,3 ou si le nombre de permutations est pair

εijk = −1 si le nombre de permutations est impair
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Exemple 2.4.2.

ε112 = ε133 = ε212 = · · · = 0

ε123 = ε312 = ε231 = · · · = 1

ε132 = ε321 = ε213 = · · · = −1

On vérifie que pour trois indices on a :

εijk = 1
2
(i − j)(j − k)(k − i)





3
Vecteurs

Historiquement, les vecteurs modélisèrent d’abord des notions issues de la mécanique clas-
sique, principalement celles de force et de vitesse.

3.1 Représentation géométrique

Notation 3. Les vecteurs sont notés par des lettres droites en caractère gras, par exemple f pour
la force, ou par des lettres surmontées d’une flèche ~f .

Dans l’espace physique, représenté par l’espace à trois dimensions de la géométrie classique,
les vecteurs forces sont représentés par une flèche ayant une longueur proportionnelle à l’inten-
sité (ou magnitude) de la force, une direction et un sens qui sont celui de la force, et ayant pour
origine le point d’application de la force.

3.1.1 Lois de composition géométriques

En accord avec la notion physique de force qu’ils modélisent, on définit sur les vecteurs les
deux opérations suivantes, appelées lois de composition :

(1) L’addition de deux vecteurs ayant même origine donne un vecteur

u

v u + v

Fig. 3.1 – Addition des vecteurs u et v

C’est la règle du parallélogramme pour la composition des forces ayant même point
d’application. De même que la somme de deux forces est une force, la somme de deux
vecteurs est un vecteur. Pour additionner deux forces nous devons les rapporter à la
même origine. De même, nous n’additionnerons que des vecteurs ayant même origine
et la théorie des espaces vectoriels sera construite sous cette hypothèse.
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Exemple 3.1.1. Imaginons un cube homogène vu de dessus sur lequel on exerce
deux forces perpendiculaires aux faces :

En négligeant les frottements, sous l’action de ces deux forces le cube se déplace
en translation. Pour sommer ces deux forces en une unique force nous les trans-
latons pour qu’elles aient même origine. Pour que le cube ait un mouvement de
translation sans rotation, la force résultante doit passer par le centre de gravité
du cube. On en déduit le point d’application de cette force.

Nous parlons de vecteur lié (à un point) lorsque le point d’application du vecteur
est spécifié, de vecteur libre lorsque ce point n’est pas spécifié.

(2) La multiplication d’un vecteur par un nombre réel donne un vecteur

u
α u

Fig. 3.2 – Multiplication du vecteur u par le nombre réel α

Le vecteur obtenu est homothétique au vecteur de départ, il a même direction, il
est de même sens si α > 0 et de sens contraire si α < 0, et sa longueur est multipliée
par |α|. De même qu’une force dont l’intensié varie reste une force, la multiplication
d’un vecteur par un réel est un vecteur.

Ces deux lois peuvent s’appliquer en une seule fois :

Définition 3.1.1. Soient α et β deux nombres réels, le vecteur w tel que

w = αu + βv

est appelé combinaison linéaire des vecteurs u et v. α et β sont les coefficients de la
combinaison linéaire.
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Notons que la vitesse est aussi un vecteur, et que la combinaison linéaire de deux forces
donne toujours une force et jamais une vitesse. Il faudra donc toujours préciser à quel ensemble
de vecteurs, c’est-à-dire à quel espace vectoriel appartient le vecteur dont on parle.

Les objets mathématiques qui modélisent la physique doivent être des objets géométriques,
c’est-à-dire indépendants du système de coordonnées dans lequel on les exprime. Lorsqu’une
propriété physique est définie en un point par un seul nombre indépendant du système de
coordonnées, nous parlerons de scalaire, par exemple la température et la masse volumique
sont des scalaires. Si en chaque point d’un espace on associe une propriété alors on parle de
champ, par exemple la température est un champ de scalaires. Lorsque dans un espace de
dimension 3 une propriété physique est définie en un point par un ensemble de trois nombres
indépendant du système de coordonnées, nous parlerons de vecteur, et de champ de vecteur si
on définit un vecteur en chaque point de cet espace. Par exemple le champ de vecteurs vitesse
du vent. Lorsqu’une propriété physique est définie en un point par un ensemble de plus de trois
nombres indépendant du système de coordonnées, nous parlerons de tenseur, et de champ de
tenseur si on définit un tenseur en chaque point de cet espace..

3.1.2 Propriétés des lois de composition

Dans ce qui suit nous notons ⊕ l’addition vectorielle pour la distinguer de l’addition des
réels, et ⊙ la multiplication d’un vecteur par un réel pour la distinguer de la multiplication des
réels.

Supposons que nous ayons un ensemble d’éléments sur lesquels on puisse appliquer deux
lois de composition. Ces éléments sont-ils des vecteurs ? Pour répondre il faut savoir si les deux
lois sont identiques à celles que nous avons définies. Elles le seront si elles vérifient les mêmes
propriétés, c’est-à-dire :

(1) Addition de vecteurs.

(a) Commutativité :

u ⊕ v = v ⊕ u

(b) Associativité :

u ⊕ (v ⊕ w) = u ⊕ v ⊕ w

(c) Existence d’un élément neutre appelé vecteur nul et noté 0, tel que :

u ⊕ 0 = u

(d) Pour tout vecteur u il existe le vecteur opposé ū, tel que :

u ⊕ (ū) = 0

L’existence d’un opposé nécessite donc l’existence d’un élément neutre. De plus on
définit la soustraction vectorielle comme étant l’addition vectorielle avec l’opposé :

u ⊖ v = u ⊕ (v̄)

On montre plus loin que ū = (−1) ⊙ u.

(2) Multiplication par un réel. ∀(α, β) ∈ R2,

(a) Associativité :

α ⊙ (β ⊙ u) = (α × β) ⊙ u

Il s’agit ici d’un abus de langage, il n’y a pas associativité puisque le signe ⊙ du
membre de gauche de l’égalité est le signe opératoire de la multiplication d’un
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vecteur par un réel, alors que le signe × du membre de droite est celui de la
multiplication dans R.

(b) Distributivité par rapport à l’addition des réels :

(α + β) ⊙ u = (α ⊙ u) ⊕ (β ⊙ u)

Il s’agit ici aussi d’un abus de langage, il n’y a pas distributivité puisque le signe
+ du membre de gauche est le signe opératoire de l’addition dans R, alors que le
signe ⊕ du membre de droite est celui de l’addition vectorielle.

(c) Distributivité par rapport à l’addition des vecteurs :

α ⊙ (u ⊕ v) = (α ⊙ u) ⊕ (α ⊙ v)

(d) Existence d’un élément neutre, le réel 1, tel que :

1 ⊙ u = u

3.1.3 Quelques propriétés

Soient u un vecteur et k un réel :

(1) 0 ⊙ u = 0

Démonstration.

(0 + 0) ⊙ u = 0 ⊙ u

0 ⊙ u + 0 ⊙ u = 0 ⊙ u + 0

0 ⊙ u = 0

�

(2) k ⊙ 0 = 0

Démonstration.

k ⊙ (0 ⊕ 0) = k ⊙ 0

k ⊙ 0 ⊕ k ⊙ 0 = k ⊙ 0 ⊕ 0

k ⊙ 0 = 0

�

(3) ū = (−1) ⊙ u

Démonstration.

0 = 0 ⊙ u

k ⊙ 0 = (k − k) ⊙ u

k ⊙ (u ⊕ ū) = [k + (−k)] ⊙ u

k ⊙ u ⊕ k ⊙ ū = k ⊙ u ⊕ (−k) ⊙ u

k ⊙ ū = (−k) ⊙ u

1 ⊙ ū = (−1) ⊙ u

ū = (−1) ⊙ u

�

(4) Si k ⊙ u = 0 alors k = 0 ou u = 0
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Démonstration. Supposons k = 0 :

0 ⊙ u = 0

Supposons k 6= 0 :

k ⊙ u = 0

k−1 ⊙ (k ⊙ u) = k−1 ⊙ 0

(k−1k) ⊙ u = 0

u = 0

�

3.1.4 Définitions mathématiques

Définition 3.1.2. Espaces vectoriels, vecteurs
Soit K un corps commutatif (le corps des réels R ou le corps des complexes C), dont les
éléments sont appelés scalaires. Considérons un ensemble non vide E d’éléments notés
u, v, w, . . . Supposons qu’il existe entre les éléments de E une loi de composition interne
(une application de E × E dans E ), notée ⊕, et une loi de composition externe à gauche
sur E de domaine K (une application de K × E dans E ), notée ⊙, telles que :

(1) À deux éléments u et v de E , la loi ⊕ fasse correspondre un élément w de E ,
noté u⊕v. En outre, la loi ⊕ possède les propriétés (1)(a), (1)(b), (1)(c) et (1)(d)
que nous venons de voir.

(2) À un scalaire α ∈ K et à un élément u de E , la loi ⊙ fasse correspondre un
élément de E , noté α ⊙ u. En outre, pour β ∈ K, la loi ⊙ possède les propriétés
(2)(a), (2)(b), (2)(c) et (2)(d) que nous venons de voir.

Les éléments u, v, w, . . . sont appelés des vecteurs. La loi ⊕ est appelée addition vec-
torielle, et la loi ⊙ multiplication par un scalaire. (E , ⊕, ⊙) noté E, est appelé espace
vectoriel sur le corps K, ou K-espace vectoriel. E est le support de l’espace vectoriel et les
lois de composition constituent une structure pour E .

Les quatre premiers axiomes se résument en disant que (E , ⊕) est un groupe abélien (ou
commutatif) par rapport à l’addition vectorielle. Les quatre axiomes suivants définissent « l’ac-
tion » du corps K sur l’ensemble E .

Pour simplifier l’écriture, l’addition vectorielle ⊕ est souvent notée + par analogie avec
l’addition des scalaires. De même, la multiplication par un scalaire ⊙ est souvent notée ×,
ou encore on pourra omettre le symbole, par analogie avec la multiplication des scalaires. Par
convention, la loi ⊙ est prioritaire sur la loi ⊕.

Si la seconde loi est définie pour tout nombre réel α, nous dirons que l’ensemble E muni des
deux lois ⊕ et ⊙ est un espace vectoriel sur l’ensemble des nombres réels, ou R-espace vectoriel,
ou encore espace vectoriel réel. Si la seconde loi est définie pour tout nombre complexe α, nous
dirons que l’ensemble E muni des deux lois ⊕ et ⊙ est un espace vectoriel sur l’ensemble des
nombres complexes, ou C-espace vectoriel, ou encore espace vectoriel complexe.

Dans ce qui suit nous nous limiterons aux espaces vectoriels sur l’ensemble des nombres
réels.



16 Vecteurs

3.2 Représentation algébrique

Pour effectuer des calculs sur les vecteurs, par exemple en trois dimensions, on dote l’espace
ponctuel d’un système de coordonnées (O, x, y, z), c’est-à-dire d’un point origine O et, dans
le cadre de la physique classique, d’un système de coordonnées habituellement rectangulaire
(x, y, z), comme définis au paragraphe 7 p. 55.

À l’aide des points de cet espace ponctuel, on peut construire des vecteurs de la façon
suivante. À chaque point A = (xA, yA, zA) de l’espace ponctuel on associe le vecteur a = OA,
et à chaque vecteur a on associe le point A tel que OA = a. Ainsi en généralisant à n
dimensions, il existe une bijection ϕ entre l’espace ponctuel En et l’espace vectoriel En, ils sont
« équipotents » :

ϕ : a ∈ En 7→ A = ϕ(a) ∈ En

0 ∈ En 7→ O = ϕ(0) ∈ En

Définition 3.2.1. Espace ponctuel
Soit E un ensemble d’éléments appelés points et notés A, B, C, . . . Supposons qu’à tout
couple (A, B) de points de E pris dans cet ordre, on fasse correspondre un vecteur, noté
AB, la correspondance suivant les trois axiomes :

(1) AB = −BA

(2) AB = AC + CB

(3) ∀O ∈ E , ∀u ∈ En, ∃! M ∈ E , tel que OM = u

Nous dirons que l’ensemble E constitue un espace ponctuel à n dimensions, noté En.
L’espace vectoriel En est appelé espace associé à En.

L’ensemble des points correspondant aux valeurs des n coordonnées dans un certain do-
maine, constitue le support d’un espace ponctuel à n dimensions. Pour obtenir un espace ponc-
tuel, il faut structurer cet ensemble en ajoutant la correspondance que nous venons d’énoncer.

Si les axes de coordonnées portent la même unité on parle d’espace métrique car on peut
y définir une distance ou métrique. Dans le cas contraire on parle d’espace affine. Par exemple
en thermodynamique l’espace de Clapeyron (P, V ) est un espace affine car on ne peut y définir
une distance.

Par abus de langage nous dirons que A est l’origine du vecteur AB, et B son extrémité. Les
coordonnées des points A et B définissent le vecteur AB. Dans un espace à trois dimensions,
ce vecteur est associé à un ensemble de six nombres réels ordonnés (xA, yA, zA, xB, yB, zB). Nous
dirons que ce vecteur est lié à son point origine A. Cependant, il n’est pas utile de conserver le
point origine dans la définition des vecteurs, les vecteurs seront des fonctions des coordonnées
du point origine. Les vecteurs que nous utilisons sont libres, ils n’ont pas de point d’application
spécifié.

En utilisant les axiomes 1 et 2 :

AB = AO + OB

= OB − OA

Dans un espace à trois dimensions, on associe au vecteur AB les trois nombres réels ordonnés
(xB − xA, yB − yA, zB − zA), qui sont les coordonnées du point à son extrémité.
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Les vecteurs ont une existence propre indépendante du système de coordonnées. En effet, ils
modélisent la réalité alors que le choix d’un système de coordonnées est toujours arbitraire. Les
coordonnées du point à l’extrémité d’un vecteur dépendent du système de coordonnées choisi
et ont par conséquent le même arbitraire. Par exemple, une force exercée ne dépend pas du
système de coordonnées utilisé pour définir le vecteur qui modélise cette force.

Exemple 3.2.1. Vecteur force f dans le système de coordonnées (O, x, y, z) :

y

f

z

x

xf

yf

zf

O

Fig. 3.3 – Coordonnées du vecteur force f

Dans le système de coordonnées (O, x, y, z), le point à l’extrémité du vecteur f a pour
coordonnées (xf , yf , zf ). Par abus de langage on parle des coordonnées d’un vecteur pour parler
des coordonnées du point à son extrémité.

Notation 4. Nous utiliserons la notation indicielle pour les axes et pour les coordonnées :

x2

f

x3

x1
f

x1

x2
f

x3
f

O

Fig. 3.4 – Notation indicielle

Dans le système de coordonnées (O, x1, x2, x3), le point à l’extrémité du vecteur f a pour coordon-
nées (x1

f , x2
f , x3

f ).

3.2.1 Base vectorielle

Nous sommes passés par les coordonnées d’un point pour traiter de vecteurs mais nous
pouvons nous abstraire momentanément de la notion de point. En effet, à chaque système de
coordonnées, qu’il soit rectiligne ou curviligne, orthogonal ou non, nous pouvons associer au
plus deux bases vectorielles :

— En plaçant un vecteur de base tangent à chaque ligne de coordonnées
— En plaçant un vecteur de base perpendiculaire à chaque hypersurface de coordonnées

Ces deux bases sont dites réciproques (voir le paragraphe 13.5 p. 115). Nous appellerons « base
tangente » la première de ces bases, et « base réciproque » la base perpendiculaire aux hy-
persurfaces de coordonnées. Tous les vecteurs peuvent s’écrire d’une manière unique comme
combinaison linéaire des vecteurs de l’une de ces deux bases.
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Exemple 3.2.2. Soient i, j, k les vecteurs de base unitaires (d’intensité un newton) deux
à deux orthogonaux de l’espace vectoriel des forces de la physique classique non relativiste.
Le vecteur force f s’écrit sous la forme d’une combinaison linéaire de ces trois vecteurs
force i, j, k :

f = f 1i + f 2j + f 3k

Les vecteurs i, j, k forment la base orthonormée (i, j, k) dite base canonique, signifiant ici
« la plus simple ». Toute autre base sera définie par rapport à la base canonique.

f

i j

k

f1i

f2j

f3k

Fig. 3.5 – La force f comme combinaison linéaire des vecteurs force i, j, k

Elle préexiste donc, souvent de façon implicite, à toute autre base. Une fois posée, nous
pouvons nous abstraire du système de coordonnées (rectangulaires). Nous dirons que le
vecteur force f se décompose dans la base unitaire (i, j, k) de l’espace des forces, et que
les nombres f 1, f 2 et f 3 sont les composantes du vecteur force f dans cette base.

Exemple 3.2.3. En coordonnées polaires les lignes de coordonnée ρ = cste sont des cercles
centrés sur l’origine. Les lignes de coordonnée θ = cste sont des demi-droites issues de
l’origine.

x

y

θ = 30◦

θ = 60◦

θ = −30◦

θ = −60◦

ρ = 3

ρ=2

ρ=1

Fig. 3.6 – Lignes de coordonnées polaires

Les vecteurs unitaires de la base polaire sont construits tangentiellement aux lignes de
coordonnées polaires.
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x

y

O i

j M
ρ b

eθ

eρ

θ

+

Fig. 3.7 – Vecteurs unitaires de la base polaire

Définition 3.2.2. Composantes d’un vecteur
Tout vecteur se décompose de façon unique dans une base, sous la forme d’une combi-
naison linéaire des vecteurs de base. Les coefficients de cette combinaison linéaire sont
appelés les composantes du vecteur dans cette base.

Remarque 2. On trouve parfois le terme de « coordonnées » d’un vecteur dans une base à la place de
« composantes ». Nous ferons la distinction et parlerons de coordonnées pour un point dans un système
de coordonnées.

Remarque 3. Les vecteurs forces, positions, vitesses, accélérations, champs électriques, etc. appar-
tiennent à des espaces vectoriels différents, munis chacun d’une base vectorielle. En physique nous rame-
nons tous ces vecteurs dans le même espace vectoriel, avec une unique base. Ce faisant, nous procédons
à l’assimilation d’espaces isomorphes à l’un d’entre eux.

Notation 5. En notation indicielle les vecteurs de base sont notés avec un indice en bas :

f = f1
e1 + f2

e2 + f3
e3

=
3∑

i=1

f i
ei

Il faut s’assurer que les vecteurs que l’on utilise pour former une base sont linéairement
indépendants, c’est-à-dire tels que l’on ne puisse pas exprimer un vecteur en fonction des autres
car il serait redondant.

Définition 3.2.3. Famille de vecteurs linéairement indépendants d’ordre p
Soient {u1, u2, . . . , up} une famille de p vecteurs non nuls d’un espace vectoriel E. Ces
vecteurs forment un système linéairement indépendant d’ordre p, ou encore une famille
libre d’ordre p, s’il est impossible de trouver p nombres λ1, λ2, . . . , λp non tous nuls, tels
que :

λ1u1 + λ2u2 + · · · + λpup = 0 (4)

Une famille de vecteurs qui n’est pas libre est dite liée.
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Remarque 4. Interprétation géométrique :
Utilisons la représentation intuitive des vecteurs par des flèches. Un ensemble de vecteurs est linéaire-
ment indépendant s’il n’est pas possible de construire une figure fermée avec deux ou plusieurs de ces
vecteurs, même en ajustant leurs longueurs. Aucun vecteur de cet ensemble ne peut alors être exprimé
comme combinaison linéaire des autres car chacun définit une nouvelle dimension.

Exemple 3.2.4. Montrons que les vecteurs u1(a, 0, 0), u2(b, c, 0), u3(0, 0, d) sont linéaire-
ment indépendants :

λ1u1 + λ2u2 + λ3u3 = 0

λ1 (a, 0, 0) + λ2 (b, c, 0) + λ3 (0, 0, d) = (0, 0, 0)

(λ1a + λ2b, λ2c, λ3d) = (0, 0, 0)

La seule solution est λ1 = λ2 = λ3 = 0 par conséquent les vecteurs sont linéairement
indépendants.

Il faut également s’assurer que la famille de vecteur que l’on a choisi pour former une base
de l’espace vectoriel permet bien de générer tous les vecteurs de cet espace. Nous dirons que
cette famille est génératrice, et que chaque vecteur de l’espace vectoriel se décompose sur les
vecteurs de cette famille, ou encore que tout vecteur est une combinaison linéaire des vecteurs
de cette famille.

Définition 3.2.4. Famille génératrice
Soient {u1, u2, . . . , up} une famille de p vecteurs non nuls d’un espace vectoriel E. Ces
vecteurs forment une famille génératrice ssi

∀v ∈ E, ∃λ1, λ2, . . . , λp ∈ R / v = λ1u1 + λ2u2 + · · · + λpup

Nous pouvons maintenant donner une définition précise de la notion de base :

Définition 3.2.5. Base d’un espace vectoriel
On appelle base d’un espace vectoriel E, une famille libre et génératrice de E.

Une définition alternative est possible. Dans un espace vectoriel le nombre maximal de vec-
teurs linéairement indépendants (c’est-à-dire l’ordre maximal d’après la définition 3.2.3 p. 19)
est appelé dimension de cet espace. Par exemple pour une droite n = 1, pour un plan n = 2,
pour un volume n = 3.

Définition 3.2.6. Dimension d’un espace vectoriel
L’ordre maximal d’un espace vectoriel est appelé dimension de cet espace vectoriel.

Notation 6. Un espace vectoriel de dimension n, donc d’ordre maximal n, est noté En. E1 est
une droite vectorielle, E2 est un plan vectoriel.
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Définition 3.2.7. Base d’un espace vectoriel
On appelle base d’un espace vectoriel, tout système libre de vecteurs d’ordre maximal.

Notation 7. Soit un espace vectoriel En, sa base canonique est notée (e1, e2, . . . , en) ou simple-
ment (ei).

La décomposition d’un vecteur dans une base est unique. En effet, soient (e1, e2, e3) une
base de E3 et u un vecteur de E3. La base étant par définition génératrice de E3 :

u = u1e1 + u2e2 + u3e3

Supposons l’existence d’une autre décomposition

u = u1e1 + u2e2 + u3e3

alors par soustraction :
(
u1 − u1

)
e1 +

(
u2 − u2

)
e2 +

(
u3 − u3

)
e3 = 0

La base étant libre par définition :

u1 = u1, u2 = u2, u3 = u3

La décomposition est donc unique.

Il n’existe pas de base globale lorsque le système de coordonnées est curviligne. Il est alors
naturel d’utiliser les vecteurs tangents aux lignes de coordonnées pour définir une base locale
en chaque point.

3.2.2 Base et repère naturels

Définition 3.2.8. Base naturelle - Repère naturel
Soit (x1, x2, . . . , xn) un système de coordonnées quelconques, curvilignes ou rectilignes. En
un point M , les vecteurs tangents aux lignes de coordonnées définissent une base locale :

∀i = 1, . . . , n ei ,
∂OM

∂xi

(ei) est la base naturelle du système de coordonnées (xi) au point M , et (M, ei) est le
repère naturel au point M .

En coordonnées curvilignes les ei forment un champ de vecteurs fonction de la position de
la base. En général les vecteurs de la base naturelle ne sont pas de norme unité et n’ont pas la
même dimension physique.

Exemple 3.2.5. Exprimons les vecteurs de la base naturelle polaire (eρ, eθ) en fonction
des vecteurs de la base rectangulaire (ex, ey) :





eρ =

(
∂OM

∂ρ

)

θ

eθ =

(
∂OM

∂θ

)

ρ

⇒





eρ =
∂OM

∂x

∂x

∂ρ
+

∂OM

∂y

∂y

∂ρ

eθ =
∂OM

∂x

∂x

∂θ
+

∂OM

∂y

∂y

∂θ
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⇒





eρ =
∂x

∂ρ
ex +

∂y

∂ρ
ey

eθ =
∂x

∂θ
ex +

∂y

∂θ
ey

⇒
{

eρ = cos(θ) ex + sin(θ) ey

eθ = −ρ sin(θ) ex + ρ cos(θ) ey
(5)

ρ ayant la dimension d’une longueur, les vecteurs eρ et eθ n’ont pas la même dimension.
Il s’en suit que les composantes des vecteurs physiques exprimées dans la base naturelle
ne sont pas des composantes physiques. Par exemple, dans la base naturelle polaire les
composantes du vecteur vitesse ont pour dimensions m/s et s.
Sous forme matricielle, en utilisant la notation 2 p. 5 pour la dérivation partielle :

(
eρ

eθ

)
=

[
x,ρ y,ρ

x,θ y,θ

](
ex

ey

)

=

[
cos(θ) sin(θ)

−ρ sin(θ) ρ cos(θ)

](
ex

ey

)

Exprimons les vecteurs de la base rectangulaire en fonction de ceux de la base naturelle
polaire : 




ex =

(
∂OM

∂x

)

y

ey =

(
∂OM

∂y

)

x

⇒





ex =
∂OM

∂ρ

∂ρ

∂x
+

∂OM

∂θ

∂θ

∂x

ey =
∂OM

∂ρ

∂ρ

∂y
+

∂OM

∂θ

∂θ

∂y

⇒





ex =
∂ρ

∂x
eρ +

∂θ

∂x
eθ

ey =
∂ρ

∂y
eρ +

∂θ

∂y
eθ

⇒





ex = cos(θ) eρ − sin(θ)
ρ

eθ

ey = sin(θ) eρ +
cos(θ)

ρ
eθ

Sous forme matricielle :
(

ex

ey

)
=

[
ρ,x θ,x

ρ,y θ,y

](
eρ

eθ

)

=


cos(θ) − sin(θ)

ρ

sin(θ) cos(θ)
ρ



(

eρ

eθ

)

Norme des vecteurs de la base naturelle polaire :




‖eρ‖ =
√

cos2(θ) + sin2(θ)

‖eθ‖ =
√

ρ2 sin2(θ) + ρ2 cos2(θ)
⇒

{‖eρ‖ = 1

‖eθ‖ = ρ

La base naturelle polaire n’est pas normée. En revanche elle est orthogonale :

eρ · eθ = (cos(θ) ex + sin(θ) ey) · (−ρ sin(θ) ex + ρ cos(θ) ey)

= − cos(θ)ρ sin(θ) + sin(θ)ρ cos(θ)

= 0
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Exemple 3.2.6. Vecteurs de la base naturelle en coordonnées cylindriques. Par analogie
aux coordonnées polaires :





eρ = cos(φ) ex + sin(φ) ey

eφ = −ρ sin(φ) ex + ρ cos(φ) ey

ez = ez




eρ

eφ

ez


 =




cos(φ) sin(φ) 0
−ρ sin(φ) ρ cos(φ) 0

0 0 1







ex

ey

ez




La norme des vecteurs de la base naturelle en coordonnées cylindriques s’écrit




‖eρ‖ = 1

‖eφ‖ = ρ

‖ez‖ = 1

(6)

Exemple 3.2.7. Vecteurs de la base naturelle en coordonnées sphériques. À partir de
l’expression du vecteur position,

OM = xex + yey + zez

= r sin(θ) cos(φ) ex + r sin(θ) sin(φ) ey + r cos(θ) ez

nous trouvons l’expression des vecteurs de la base naturelle :




er = ∂rM

eθ = ∂θM

eφ = ∂φM

⇒





er = sin(θ) cos(φ) ex + sin(θ) sin(φ) ey + cos(θ) ez

eθ = r cos(θ) cos(φ) ex + r cos(θ) sin(φ) ey − r sin(θ) ez

eφ = −r sin(θ) sin(φ) ex + r sin(θ) cos(φ) ey

(7)




er

eθ

eφ


 =




sin(θ) cos(φ) sin(θ) sin(φ) cos(θ)
r cos(θ) cos(φ) r cos(θ) sin(φ) −r sin(θ)

−r sin(θ) sin(φ) r sin(θ) cos(φ) 0







ex

ey

ez




La norme des vecteurs de la base naturelle en coordonnées sphériques s’écrit




‖er‖ =
√

sin2(θ) cos2 φ + sin2(θ) sin2 φ + cos2(θ)

‖eθ‖ =
√

r2 cos2(θ) cos2 φ + r2 cos2(θ) sin2 φ + r2 sin2(θ)

‖eφ‖ =
√

r2 sin2(θ) sin2 φ + r2 sin2(θ) cos2 φ

⇒





‖er‖ =
√

sin2(θ) + cos2(θ)

‖eθ‖ =
√

r2 cos2(θ) + r2 sin2(θ)

‖eφ‖ =
√

r2 sin2(θ)

⇒





‖er‖ = 1

‖eθ‖ = r

‖eφ‖ = |r sin(θ)|
(8)

Exemple 3.2.8. Les coordonnées galiléennes normales constituent un système de coordon-
nées rectangulaires pour l’espace de Minkowski, dont la base n’est pas normée. On obtient
dans V4 une base orthonormée si l’on substitue aux coordonnées galiléennes t, x, y, z les
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coordonnées galiléennes réduites :

x0 = ct, x1 = x, x2 = y, x3 = z (9)

Sauf précision contraire, on se placera toujours dans la base naturelle du système de coor-
données.

En annexe 27.3 p. 374, on montre l’existence de bases non holonomiques qui ne peuvent
être la base naturelle d’aucun système de coordonnées.

3.2.3 Lois de compositions algébriques

On définit l’addition vectorielle des composantes et la multiplication des composantes d’un
vecteur par un réel de sorte que l’on retrouve les résultats de la représentation géométrique.

(1) L’addition vectorielle consiste à additionner les composantes respectives des vecteurs :

u ⊕ v =
(
u1, u2, u3

)
⊕
(
v1, v2, v3

)

=
(
u1 + v1, u2 + v2, u3 + v3

)

=
(
w1, w2, w3

)

= w

(2) La multiplication d’un vecteur par un réel α consiste à multiplier chaque composante
par ce réel :

α ⊙ u = α ⊙
(
u1, u2, u3

)

=
(
αu1, αu2, αu3

)

=
(
v1, v2, v3

)

= v

3.2.4 Propriétés des lois de composition

(1) Addition vectorielle. ∀u, v, w,

(a) Commutativité :

u ⊕ v =
(
u1, u2, u3

)
⊕
(
v1, v2, v3

)

=
(
u1 + v1, u2 + v2, u3 + v3

)

=
(
v1 + u1, v2 + u2, v3 + u3

)

=
(
v1, v2, v3

)
⊕
(
u1, u2, u3

)

= v ⊕ u
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(b) Associativité :

u ⊕ (v ⊕ w) =
(
u1, u2, u3

)
⊕
[(

v1, v2, v3
)

⊕
(
w1, w2, w3

)]

=
(
u1, u2, u3

)
⊕
(
v1 + w1, v2 + w2, v3 + w3

)

=
(
u1 + v1 + w1, u2 + v2 + w2, u3 + v3 + w3

)

=
(
u1 + v1, u2 + v2, u3 + v3

)
⊕
(
w1, w2, w3

)

=
[(

u1, u2, u3
)

⊕
(
v1, v2, v3

)]
⊕
(
w1, w2, w3

)

= (u ⊕ v) ⊕ w

= u ⊕ v ⊕ w

(c) Existence d’un élément neutre appelé vecteur nul et noté 0, tel que :

u ⊕ 0 =
(
u1, u2, u3

)
⊕ (0, 0, 0)

=
(
u1 + 0, u2 + 0, u3 + 0

)

=
(
u1, u2, u3

)

= u

(d) Pour tout vecteur u il existe le vecteur opposé −u, tel que :

u ⊕ (−u) =
(
u1, u2, u3

)
⊕
(
−u1, −u2, −u3

)

=
(
u1 − u1, u2 − u2, u3 − u3

)

= (0, 0, 0)

= 0

De plus on définit la soustraction vectorielle comme étant l’addition vectorielle
avec l’opposé :

u ⊖ v = u ⊕ (−v)

(2) Multiplication par un réel. ∀(α, β) ∈ R2,

(a) Associativité :

α ⊙ (β ⊙ u) = α ⊙
[
β ⊙

(
u1, u2, u3

)]

= α ⊙
(
βu1, βu2, βu3

)

=
(
αβu1, αβu2, αβu3

)

= (α × β) ⊙
(
u1, u2, u3

)

= (α × β) ⊙ u
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(b) Distributivité par rapport à l’addition des réels :

(α + β) ⊙ u = (α + β) ⊙
(
u1, u2, u3

)

=
(
(α + β)u1, (α + β)u2, (α + β)u3

)

=
(
αu1 + βu1, αu2 + βu2, αu3 + βu3

)

=
(
αu1, αu2, αu3

)
⊕
(
βu1, βu2, βu3

)

=
[
α ⊙

(
u1, u2, u3

)]
⊕
[
β ⊙

(
u1, u2, u3

)]

= (α ⊙ u) ⊕ (β ⊙ u)

(c) Distributivité par rapport à l’addition des vecteurs :

α ⊙ (u ⊕ v) = α ⊙
[(

u1, u2, u3
)

⊕
(
v1, v2, v3

)]

= α ⊙
(
u1 + v1, u2 + v2, u3 + v3

)

=
[
α
(
u1 + v1

)
, α
(
u2 + v2

)
, α
(
u3 + v3

)]

=
(
αu1 + αv1, αu2 + αv2, αu3 + αv3

)

=
(
αu1, αu2, αu3

)
⊕
(
αv1, αv2, αv3

)

=
[
α ⊙

(
u1, u2, u3

)]
⊕
[
α ⊙

(
v1, v2, v3

)]

= (α ⊙ u) ⊕ (α ⊙ v)

(d) Existence d’un élément neutre, le réel 1, tel que :

1 ⊙ u = 1 ⊙
(
u1, u2, u3

)

=
(
1u1, 1u2, 1u3

)

=
(
u1, u2, u3

)

= u

3.2.5 Composantes d’un vecteur

Pour introduire les vecteurs nous nous sommes servi d’objets géométriques représentés par
une flèche, mais tous les vecteurs ne sont pas représentables par une flèche. Par exemple les
matrices carrées d’ordre deux à coefficients dans R ou C sont des vecteurs. En revanche, tout
vecteur peut s’exprimer comme une liste ordonnée de nombres qui sont ses composantes dans
une base.

D’après le paragraphe 3.2.1 p. 17, à partir d’un système de coordonnées rectilignes obliques,
nous pouvons construire deux bases réciproques. Prenons l’une de ces deux bases, un vecteur
peut y être projeté de deux façons : parallèlement ou perpendiculairement aux vecteurs de base.

— En projetant parallèlement on obtient les composantes contravariantes du vecteur

— En projetant perpendiculairement on obtient les composantes covariantes du vecteur

Remarque 5. Les composantes contravariantes dans une base sont égales aux composantes cova-
riantes dans la base réciproque.
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Remarque 6. Dans les bases orthonormées, les composantes contravariantes et covariantes sont
confondues.

Se donner une base et se donner des composantes (contravariantes ou covariantes) est équivalent
à se donner un vecteur. Réciproquement, dans une base donnée tout vecteur peut se décomposer
en composantes contravariantes ou en composantes covariantes. Un vecteur est donc la donnée
d’une base et, de composantes contravariantes ou covariantes. Dans une base donnée, nous
avons l’équivalence :

(u1, u2, u3) ≡ (u1, u2, u3)

Lorsque l’on décrit un vecteur en composantes covariantes on parle de covecteur ou vecteur
covariant (voir paragraphe 11.5 p. 93). Ceci est un abus de langage, il n’existe qu’une seule
sorte de vecteur, que l’on peut exprimer de deux façons différentes dans une base donnée.

Exemple 3.2.9. Soit (x1, x2) un système de coordonnées rectilignes obliques dans lequel
le point M a pour coordonnées (x1

M , x2
M).

M

O

x1
M = 3

x2
M = 2

Fig. 3.8 – Système de coordonnées cartésiennes

À ce système de coordonnées nous associons le repère (O, e1, e2) tel que la base (e1, e2)
soit normée et les vecteurs de base pris le long des droites de coordonnées.

M

u

e1

e2

O u1

u2

x2

x1

Fig. 3.9 – Composantes contravariantes du vecteur u

Dans cette base, le vecteur u = OM a pour composantes contravariantes u1 et u2 :

u = u1e1 + u2e2

La base étant normée, u1 = x1
M et u2 = x2

M .
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Définition 3.2.9. Composantes contravariantes
Soit (e1, e2, . . . , en) une base d’un espace vectoriel En. On appelle composantes contrava-
riantes du vecteur u dans cette base, les nombres u1, u2, . . . , un tels que :

u = u1e1 + u2e2 + · · · + unen

=
n∑

i=1

uiei

En appliquant la convention de sommation le vecteur u s’écrit en composantes contrava-
riantes,

u = uiei

où l’indice i varie de 1 à n.
Les indices de sommation sont dits muets, nous pouvons les remplacer par d’autres lettres,

par exemple :

uiei = ujej

Les autres indices sont dits libres ou réels.

Les composantes contravariantes sont représentées au moyen d’un indice supérieur. La
décomposition d’un vecteur en composantes contravariantes est unique dans chaque base et
les composantes contravariantes (u1, u2, . . . , un) représentent un unique vecteur dans la base
(e1, e2, . . . , en).

Les vecteurs ont une existence propre, il sont indépendants de la base dans laquelle on
les exprime : leur norme, direction et sens ne varient pas par changement de base. Ils sont
invariants par changement de base, seules leurs composantes changent. Pour assurer cette
invariance, lorsqu’on les écrit sous la forme d’une combinaison linéaire des vecteurs de base,
leurs composantes contravariantes (les coefficients) doivent se transformer de façon « contraire »
aux vecteurs de base.

Exemple 3.2.10. Dans la base orthonormée (ex, ey, ez), soit u un vecteur de composantes
(x, y, z). Déterminons ses composantes contravariantes (u1, u2, u3) dans la base (e1, e2, e3)
avec e1(a, 0, 0), e2(b, c, 0), e3(0, 0, d).

xex + yey + zez = u1e1 + u2e2 + u3e3

= u1aex + u2 (bex + cey) + u3dez

=
(
u1a + u2b

)
ex + u2cey + u3dez

si bien que : 



u1a + u2b = x

u2c = y

u3d = z

⇒





u2 = y/c

u3 = z/d

u1 = (x − by/c) /a

Exemple 3.2.11. Soit un point M de coordonnées (6, 2). Les unités du système de co-
ordonnées sont choisies arbitrairement. On considère la base orthogonale non normée
(e1, e2) telle que ‖e1‖ = 2 et ‖e2‖ = 1.
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M(6, 2)

e1

e2

6

2

O

Fig. 3.10 – Coordonnées et composantes contravariantes

Dans cette base, nous avons :

OM = 3e1 + 2e2

Les coordonnées (6, 2) du point M et les composantes contravariantes (3, 2) du vecteur
OM dans la base (e1, e2) sont différentes. En coordonnées rectangulaires les vecteurs de
base seront toujours normés, et nous choisirons les unités du système de coordonnées de
sorte que les coordonnées et les composantes contravariantes soient confondues.

Remarque 7. Lorsque le système de coordonnées est curviligne, par exemple polaire, les vecteurs
de base sont pris tangents aux lignes de coordonnées (ou sinon perpendiculaires aux hypersurfaces de
coordonnées). On ne peut pas définir de base globale puisque les vecteurs tournent, mais on peut définir
une base locale en chaque point.
Dans ce qui suit toute base vectorielle est liée à un système de coordonnées. Un changement de système
de coordonnées implique un changement de base. Un changement de base est dû soit à un changement de
système de coordonnées en un point donné, soit à un changement d’origine de cette base dans ce même
système de coordonnées. En physique le choix d’un système de coordonnées est nécessaire et les équations
de la physique doivent être indépendantes de ce choix.

Avec la définition 3.2.8 p. 21 de la base naturelle, le vecteur différentielle de OM s’écrit :

dOM =
∑

i

∂OM

∂xi
dxi

dOM =
∑

i

dxiei (10)

Les dxi sont donc les composantes contravariantes du vecteur différentiel dOM dans le repère
naturel ayant pour origine M et pour coordonnées (xi).
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4.1 Système d’équations linéaires

Une équation linéaire à coefficients réels ou complexes est une expression de la forme :

A1u
1 + A2u2 + · · · + Anun = a

où les Ai et a appartiennent à R ou C, et où les ui sont n inconnues.

Soit le système de m équations linéaires à n inconnues suivant :




A11u1 + A12u2 + · · · + A1nun = a1

A21u1 + A22u2 + · · · + A2nun = a2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Am1u1 + Am2u2 + · · · + Amnun = am

(11)

Il est inutile de réécrire les inconnues pour chaque ligne. Simplifions l’écriture de ce système en
définissant le nouvel opérateur de multiplication matricielle ⊠ :




A11 A12 · · · A1n

A21 A22 · · · A2n
...

... · · · ...
Am1 Am2 · · · Amn



⊠




u1

u2

...
un




=




a1

a2
...

am




(12)

Le tableau de scalaires [Aij] est appelé matrice A.
L’écriture des inconnues ui en colonne plutôt qu’en ligne est justifiée au paragraphe 4.3

p. 33. Les propriétés des matrices découlent naturellement de cette notation et des propriétés
des systèmes d’équations linéaires.

Notation 8. Notation ligne-colonne
Par convention le premier indice d’un élément de matrice Aij est son numéro de ligne, le second

est son numéro de colonne.

Définition 4.1.1. Dimension d’une matrice
La dimension ou taille d’une matrice est son nombre de lignes et de colonnes.

La matrice [Aij]mn est de dimension m × n ou (m, n).
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4.2 Addition matricielle

Nous ne considérons que les systèmes ayant autant d’équations que d’inconnues, m = n, qui
donnent alors des matrices carrées et qui admettent une solution unique ou aucune solution.

Définition 4.2.1. Ordre d’une matrice
Une matrice est d’ordre n si elle est de dimension n × n.

Le raisonnement sur des matrices d’ordre deux est facilement généralisable aux matrices
d’ordre supérieur à deux. Soient les deux systèmes d’équations linéaires





A11u
1 + A12u2 = a1

A21u
1 + A22u2 = a2

et





B11u
1 + B12u

2 = b1

B21u
1 + B22u

2 = b2

Ces systèmes s’écrivent en notation matricielle
[
A11 A12

A21 A22

]
⊠

(
u1

u2

)
=

(
a1

a2

)
et

[
B11 B12

B21 B22

]
⊠

(
u1

u2

)
=

(
b1

b2

)

Additionnons ligne à ligne les deux systèmes de départ :




(A11 + B11)u1 + (A12 + B12)u2 = a1 + b1

(A21 + B21)u1 + (A22 + B22)u2 = a2 + b2

Sous forme matricielle nous obtenons :
[
A11 + B11 A12 + B12

A21 + B21 A22 + B22

]
⊠

(
u1

u2

)
=

(
a1 + b1

a2 + b2

)

En définissant le nouvel opérateur d’addition matricielle ⊞ nous avons
[
A11 A12

A21 A22

]
⊞

[
B11 B12

B21 B22

]
=

[
A11 + B11 A12 + B12

A21 + B21 A22 + B22

]

ainsi que :
(

a1

a2

)
⊞

(
b1

b2

)
=

(
a1 + b1

a2 + b2

)

On définit de même la soustraction matricielle par :
[
A11 A12

A21 A22

]
⊟

[
B11 B12

B21 B22

]
=

[
A11 − B11 A12 − B12

A21 − B21 A22 − B22

]

L’addition et la soustraction de deux matrices de dimensions différentes ne sont pas définies.

Propriétés de l’addition matricielle

Soient A, B, C trois matrices :

(1) Associativité :

A ⊞ (B ⊞ C) = (A ⊞ B) ⊞ C

(2) Existence d’un élément neutre appelé matrice nulle, notée 0, dont tous les éléments
sont nuls et telle que :

A ⊞ 0 = A
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(3) Pour toute matrice A il existe une matrice opposée notée Ā telle que :

A ⊞ Ā = 0

L’existence d’une matrice opposée nécessite donc l’existence d’une matrice nulle. De
plus on montre que la soustraction matricielle est l’addition matricielle avec la matrice
opposée :

A ⊞ B̄ = A ⊟ B

(4) Commutativité :

A ⊞ B = B ⊞ A

L’addition matricielle est habituellement notée + et la soustraction − par analogie avec les
scalaires.

4.3 Multiplication matricielle

4.3.1 Multiplication d’une matrice par un scalaire

Reprenons le système d’équations linéaires (11) p. 31. Nous pouvons multiplier chaque
équation par le scalaire α. Le produit matriciel de la matrice A par le scalaire α sera noté :

α ⊠ [Aij]mn =




αA11 αA12 · · · αA1n

αA21 αA22 · · · αA2n
...

... · · · ...
αAm1 αAm2 · · · αAmn




Le scalaire α est une matrice a un seul élément.

Propriétés de la multiplication d’une matrice par un scalaire

∀(α, β) ∈ R2,

(1) Associativité :

α ⊠ (β ⊠ A) = (α × β) ⊠ A

Il s’agit ici d’un abus de langage, il n’y a pas associativité puisque le signe ⊠ du membre
de gauche de l’égalité est le signe opératoire de la multiplication d’une matrice par un
réel, alors que le signe × du membre de droite est celui de la multiplication dans R.

(2) Distributivité par rapport à l’addition des réels :

(α + β) ⊠ A = (α ⊠ A) ⊞ (β ⊠ A)

Il s’agit ici aussi d’un abus de langage, il n’y a pas distributivité puisque le signe + du
membre de gauche est le signe opératoire de l’addition dans R, alors que le signe ⊞ du
membre de droite est celui de l’addition matricielle.

(3) Distributivité à gauche et à droite par rapport à l’addition des matrices :

α ⊠ (A ⊞ B) = (A ⊞ B) ⊠ α = (α ⊠ A) ⊞ (α ⊠ B)

(4) Existence d’un élément neutre, le réel 1, tel que :

1 ⊠ A = A
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(5) Commutativité :

α ⊠ A = A ⊠ α

4.3.2 Multiplication de deux matrices

Soient les deux systèmes d’équations suivants :




A11u1 + A12u2 = a1

A21u1 + A22u2 = a2

et





B11v1 + B12v2 = u1

B21v1 + B22v2 = u2

Injectons le second dans le premier :




A11(B11v1 + B12v
2) + A12(B21v1 + B22v

2) = a1

A21(B11v1 + B12v
2) + A22(B21v1 + B22v

2) = a2





(A11B11 + A12B21)v1 + (A11B12 + A12B22)v2 = a1

(A21B11 + A21B21)v1 + (A21B12 + A22B22)v2 = a2

Sous forme matricielle :
[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A21B21 A21B12 + A22B22

]
⊠

(
v1

v2

)
=

(
a1

a2

)

Or nous avons aussi
[
A11 A12

A21 A22

]
⊠

(
u1

u2

)
=

(
a1

a2

)
et

[
B11 B12

B21 B22

]
⊠

(
v1

v2

)
=

(
u1

u2

)

En injectant la seconde relation dans la première :
[
A11 A12

A21 A22

]
⊠

{[
B11 B12

B21 B22

]
⊠

(
v1

v2

)}
=

(
a1

a2

)

En effectuant le calcul on constate l’associativité du produit matriciel et l’on a donc :
[
A11 A12

A21 A22

]
⊠

[
B11 B12

B21 B22

]
=

[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]

On constate que chaque élément de la matrice produit est la multiplication d’une ligne de A
par une colonne de B. Par conséquent la condition nécessaire et suffisante pour multiplier deux
matrices dans l’ordre AB est que le nombre de colonnes de A soit égal au nombre de lignes de
B. Les matrices sont alors dites compatibles. On justifie ainsi l’écriture en colonne des inconnues
(12) p. 31.

Notation 9. La multiplication matricielle est souvent posée comme suit :
[
B11 B12

B21 B22

]

[
A11 A12

A21 A22

] [
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]
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Propriétés de la multiplication matricielle

(1) Associativité :

A ⊠ (B ⊠ C) = (A ⊠ B) ⊠ C

(2) Distributivité à gauche et à droite par rapport à l’addition matricielle :

A ⊠ (B ⊞ C) = (B ⊞ C) ⊠ A = A ⊠ B ⊞ A ⊠ C

(3) En général non commutativité :

A ⊠ B 6= B ⊠ A

La multiplication matricielle est souvent notée × ou encore on pourra omettre le symbole, par
analogie avec la multiplication des scalaires.

4.4 Matrice colonne et matrice ligne

Nous noterons les matrices colonnes et les matrices lignes avec des parenthèses plutôt qu’avec
des crochets. Pour une base donnée, un ensemble ordonné de nombre est un vecteur. Par
conséquent, pour une base donnée, les matrices colonnes et les matrices lignes sont des vecteurs.
Les éléments de ces matrices sont les composantes covariantes ou contravariantes d’un vecteur.
Les inconnues u1, u2 forment un vecteur. Nous avons les deux possibilités suivantes :

— On pré-multiplie A par une matrice ligne

(
u1 u2

) [A11 A12

A21 A22

]
=
(
A11u1 + A21u2 A12u1 + A22u2

)

Le couple u1, u2 forme une matrice ligne et le résultat est aussi une matrice ligne.

— On post-multiplie A par une matrice colonne
[
A11 A12

A21 A22

](
u1

u2

)
=

(
A11u1 + A12u2

A21u1 + A22u2

)

Le couple u1, u2 forme une matrice colonne et le résultat est aussi une matrice colonne.

Toute matrice carrée peut prendre en entrée un vecteur et donner en sortie un autre vecteur,
autrement dit peut transformer un vecteur en un autre vecteur.

Remarque 8. La notation 9 p. 34 adoptée pour la multiplication matricielle implique que les deux
écritures suivantes [

A11 A12

A21 A22

] (
u1 u2

)
et

(
u1

u2

)[
A11 A12

A21 A22

]

n’ont pas de sens car les matrices ne sont pas compatibles.

Nous n’obtenons pas le même système d’équations linéaires selon que l’on pré-multiplie ou
que l’on post-multiplie.
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4.5 Matrice transposée

Définition 4.5.1. Matrice transposée
Soit Aij un élément de la matrice A. La matrice B est la transposée de A ssi :

∀i, j Bij = Aji

Notation 10. La transposée de A est notée AT .

Si A est une matrice m × n alors AT est une matrice n × m. Par conséquent la transposée
d’une matrice colonne donne une matrice ligne et réciproquement.

Propriétés de la transposition matricielle

Soit k un scalaire :

(A + B)T = AT + BT

(AT )T = A

(kA)T = kAT

(AB)T = BT AT

Si AT = A alors A est symétrique, si AT = −A alors A est antisymétrique.

Exemple 4.5.1. Nous avons :
(

A11u1 + A12u2

A21u1 + A22u2

)T

=
(
A11u1 + A12u

2 A21u1 + A22u2
)

{[
A11 A12

A21 A22

](
u1

u2

)}T

=
(
u1 u2

) [A11 A21

A12 A22

]

=

(
u1

u2

)T [
A11 A12

A21 A22

]T

Nous retrouvons la propriété (AB)T = BT AT .

4.6 Notation indicielle des matrices

L’addition matricielle est notée :

∀i, j Cij = Aij + Bij

Pour la multiplication matricielle nous utilisons la convention de notation ligne-colonne pour
les éléments des matrices. Elle est alors notée :

∀i, j Cij =
∑

k

AikBkj

=
∑

k

BkjAik
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Remarque 9. Pour la multiplication matricielle, soit le dernier indice de la première matrice est
égal au premier indice de la seconde matrice, soit le premier indice de la première matrice est égal au
dernier indice de la seconde matrice.

Nous avons les équivalences suivantes

Aiju
j = ai ⇔





A11u1 + A12u2 = a1

A21u1 + A22u2 = a2

⇔
[
A11 A12

A21 A22

](
u1

u2

)
=

(
A11u1 + A12u2

A21u1 + A22u2

)
⇔ Au = a

De même

Ajiu
j = bi ⇔





A11u1 + A21u2 = b1

A12u1 + A22u2 = b2

⇔
[
A11 A21

A12 A22

](
u1

u2

)
=

(
A11u1 + A21u2

A12u1 + A22u2

)
⇔ AT u = b

Les matrices Aij et Aji sont transposées l’une de l’autre. Grâce à la notation indicielle, démon-
trons une propriété de la transposition matricielle.

Théorème 4.6.1. Soient A = [A]mn et B = [B]np alors :

(AB)T = BT AT

Démonstration.

(AB)T =

(∑

k

AikBkj

)T

= [Cij]Tmp = [Cji]pm

En posant 



BT = D = [Dij]pn

AT = E = [Eij ]nm

⇒
{

Dij = Bji

Eij = Aji

on a :

BT AT = DE =
∑

k

(DikEkj) =
∑

k

(BkiAjk) =
∑

k

(AjkBki) = [Cji]pm

�

4.7 Matrice identité

Définition 4.7.1. Matrice identité
La matrice identité ou matrice unité, notée I, est une matrice carrée d’ordre n, telle que
pour toute matrice carrée A du même ordre n :

AI = IA = A

En notation indicielle :

I = [δij]nn
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4.8 Inverse d’une matrice carrée

Définition 4.8.1. Inverse d’une matrice
Une matrice carrée A est inversible s’il existe une matrice carrée B de même ordre, appelée
inverse de A, telle que :

AB = BA = I

En notation indicielle :
∑

k

AikBkj =
∑

k

BikAkj = δij

Notation 11. La matrice inverse de A est notée A−1.

L’inversion matricielle a les propriétés suivantes. Soit k un scalaire non nul :

(A−1)−1 = A

(kA)−1 = k−1A−1

(AB)−1 = B−1A−1

La matrice inverse est unique.

Démonstration. Supposons B 6= C telles que :
{

AB = BA = I

AC = CA = I

B = BI = B(AC) = (BA)C = IC = C

�

Soient A = [A]mn et B = [B]np alors :

(AB)−1 = B−1A−1

Démonstration. Par associativité du produit matriciel :

(AB)
(
B−1A−1

)
= A

(
BB−1

)
A−1 = AIA−1 = AA−1 = I

De même :
(
B−1A−1

)
(AB) = B−1

(
A−1A

)
B = B−1IB = B−1B = I

�

Si A est inversible alors AT est inversible et les opérations de transposition et d’inversion

commutent : (A−1)T =
(
AT
)−1
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Démonstration.

AA−1 = I
(
AA−1

)T
= IT

(
A−1

)T
AT = I

[(
A−1

)T
AT
] (

AT
)−1

= I
(
AT
)−1

(
A−1

)T
[
AT

(
AT
)−1

]
=
(
AT
)−1

(
A−1

)T
=
(
AT
)−1

Si A−1 existe alors on peut prendre sa transposée et (A−1)T existe, donc
(
AT
)−1

existe. �

4.9 Déterminant d’une matrice carrée

Soit le système d’équations :
{

A11x1 + A12x2 = a1 L1

A21x1 + A22x2 = a2 L2

On résout par substitution :




A11x1 + A12x2 = a1 L1

A11x1 +
A11A22

A21

x2 =
A11

A21

a2 L2 × A11

A21





(
A12 − A11A22

A21

)
x2 = a1 − A11

A21
a2 L1 − L2

x1 =
a2

A21
− A22

A21
x2 L2





(A12A21 − A11A22) x2 = A21a1 − A11a2 L1 × A21

x1 =
a2

A21

− A22

A21

A21a1 − A11a2

A12A21 − A11A22




x2 =
A21a1 − A11a2

A12A21 − A11A22

x1 =
A12a2 − A22a1

A12A21 − A11A22

L’expression A11A22 − A21A12, appelée déterminant, doit être non nulle pour que le système
soit soluble. On le note :

det(A) =

∣∣∣∣∣
A11 A12

A21 A22

∣∣∣∣∣
= A11A22 − A21A12

On remarque que l’on a alors :

x1 =

∣∣∣∣∣
a1 A12

a2 A22

∣∣∣∣∣ /
∣∣∣∣∣
A11 A12

A21 A22

∣∣∣∣∣
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Pour trouver l’expression du déterminant d’une matrice 3 × 3 nous définissons d’abord un
mineur d’une matrice.

Définition 4.9.1. Mineur d’une matrice
Le mineurij(A) est le déterminant obtenu à partir de la matrice A en supprimant la ie

ligne et la je colonne.

Exemple 4.9.1. Soit la matrice

A




A11 A12 A13

A21 A22 A23

A31 A32 A33




Le mineur23(A) est le déterminant suivant :
∣∣∣∣∣
A11 A12

A31 A32

∣∣∣∣∣ = A11A32 − A31A12

Nous définissons à présent un cofacteur d’une matrice.

Définition 4.9.2. Cofacteur d’une matrice

Cij(A) , (−1)i+jmineurij(A)

Exemple 4.9.2. En reprenant l’exemple précédent

C23(A) = (−1)5mineur23(A)

= A31A12 − A11A32

En notation indicielle, le déterminant de la matrice A s’écrit :

det(A) =
∑

i

Aij Cij(A)

=
∑

j

Aij Cij(A)

(13)

Le déterminant de la matrice 3×3 peut s’écrire de 6 façons, correspondant au choix d’une ligne
parmi trois ou d’une colonne parmi trois :

det(A) = A11 C11 + A12 C12 + A13 C13

= A21 C21 + A22 C22 + A23 C23

= A31 C31 + A32 C32 + A23 C33

= A11 C11 + A21 C21 + A31 C31

= A12 C12 + A22 C22 + A32 C32

= A13 C13 + A23 C23 + A33 C33
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Exemple 4.9.3. En reprenant l’exemple précédent
∣∣∣∣∣∣∣

A11 A12 A13

A21 A22 A23

A31 A32 A33

∣∣∣∣∣∣∣
= A11

∣∣∣∣∣
A22 A23

A32 A33

∣∣∣∣∣− A12

∣∣∣∣∣
A21 A23

A31 A33

∣∣∣∣∣+ A13

∣∣∣∣∣
A21 A22

A31 A32

∣∣∣∣∣

La différentielle du déterminant n’est pas le déterminant de la différentielle de la matrice.
La différentielle de (13) p. 40 donne :

d det(A) =
∑

j

(dAij Cij(A) + Aij dCij(A))

=
∑

j

dAij Cij(A) +
∑

j

Aij dCij(A)

Pour une matrice 3 × 3 :

d det(A) = dA11C11 + dA12C12 + dA13C13 + A11dC11 + A12dC12 + A13dC13

= dA11C11 + dA12C12 + dA13C13

+ A11d(A22A33 − A32A23) + A12d(A23A31 − A21A33) + A13d(A21A32 − A31A22)

= dA11C11 + dA12C12 + dA13C13

+ dA21(A12A33 − A13A32) + dA22(A11A33 − A13A31) + dA23(A11A32 − A12A31)

+ dA31(A12A23 − A13A22) + dA32(A11A23 − A13A21) + dA33(A11A22 − A12A21)

= dA11C11 + dA12C12 + dA13C13

+ dA21C21 + dA22C22 + dA23C23

+ dA31C31 + dA32C32 + dA33C33

En notation indicielle et en généralisant :

d det(A) =
∑

i

∑

j

Cij(A)dAij (14)





5
Formes quadratiques

Les carrés des éléments de longueur, par exemple dans le plan s2 = x2 + y2, sont des formes
quadratiques, dont nous allons donner la définition.

Définition 5.0.1. Monôme
Un monôme est un produit de puissances de variables, d’exposants entiers non négatifs,
multiplié par un coefficient réel ou complexe.

Exemple 5.0.1. 5x7y est un monôme à deux variables x, y, de coefficient 5.

Définition 5.0.2. Degré d’un monôme
Le degré d’un monôme est la somme des exposants de ses variables.

Exemple 5.0.2. Le monôme 5x6y2 est de degré 8.

Définition 5.0.3. Polynôme
Un polynôme est une somme dont chaque terme est un monôme.

Exemple 5.0.3. 5x6y2z3 − 2y4 + 3 est un polynôme.

Définition 5.0.4. Degré d’un polynôme
Le degré d’un polynôme est le degré le plus élevé de ses termes.
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Exemple 5.0.4. deg(5x6y2z3 − 2y4 + 3) = 11.

Définition 5.0.5. Polynôme homogène ou forme algébrique
Un polynôme est homogène de degré r si chacun de ses termes et de degré r.

Exemple 5.0.5. Le polynôme 4x5z2 + 3x3y4 − xy3z3 est homogène de degré 7.

Définition 5.0.6. Forme
On appelle forme tout polynôme homogène.

Définition 5.0.7. Forme linéaire
On appelle forme linéaire tout polynôme homogène de degré 1 par rapport à ses n variables
u1, u2, . . . , un :

f = a1u
1 + a2u

2 + · · · + anun

Exemple 5.0.6. f(x, y, z) est une forme linéaire :

f(x, y, z) = ax + by + cz

Définition 5.0.8. Forme quadratique
On appelle forme quadratique tout polynôme homogène de degré deux par rapport à ses n
variables u1, u2, . . . , un :

Q = a11u1u1 + a12u1u2 + . . . + a1nu1un + a21u2u1 + a22u
2u2 + · · · + a2nu2un

+ · · · + an1u
nu1 + an2u

nu2 + · · · + annunun

Nous ne considèrerons que les formes quadratiques sur le corps des réels, c’est-à-dire telles
que leurs coefficients aij ∈ R. Les formes quadratiques ne doivent pas être confondues avec les
équations du second degré, celles-ci n’ont qu’une seule variable et les termes sont de degré deux
ou moins.
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Exemple 5.0.7. Forme quadratique

unaire Q(x) = ax2

binaire Q(x, y) = ax2 + bxy + cy2

ternaire Q(x, y, z) = ax2 + bxy + cxz + dy2 + eyz + fz2

Définition 5.0.9. Forme quadratique définie
Si le vecteur nul 0 est le seul vecteur tel que Q(0) = 0 alors Q est définie ou anisotrope.
Les signes de Q sont tous positifs ou tous négatifs.

Définition 5.0.10. Forme quadratique indéfinie
S’il existe un vecteur non nul v tel que Q(v) = 0 alors Q est indéfinie, et Q et v sont
isotropes. Q a à la fois des signes positifs et des signes négatifs.

La métrique de l’espace de Minkowski est une forme quadratique indéfinie.

Définition 5.0.11. Forme quadratique positive
Si pour tout vecteur u le scalaire Q(u) est positif ou nul, alors Q est positive :

∀u ∈ E, Q(u) > 0

Définition 5.0.12. Forme quadratique négative
Si pour tout vecteur u le scalaire Q(u) est négatif ou nul, alors Q est négative :

∀u ∈ E, Q(u) 6 0

Définition 5.0.13. Forme quadratique définie positive
La forme quadratique est définie positive si on a :

u = 0 : Q(0) = 0

∀u 6= 0 : Q(u) > 0

La métrique de l’espace de la physique classique non relativiste est définie positive.

Définition 5.0.14. Forme quadratique définie négative
La forme quadratique est définie négative si on a :

u = 0 : Q(0) = 0

∀u 6= 0 : Q(u) < 0



46 Formes quadratiques

Exemple 5.0.8. Montrons que la forme différentielle quadratique,

Q = dx2 + 3dxdy + 4dy2 + dz2

est définie positive.

Q = dx2 + 3dxdy + 9
4
dy2 + 7

4
dy2 + dz2

=
(
dx + 3

2
dy
)2

+ 7
4
dy2 + dz2

Tous les termes sont des carrés de coefficients positifs, donc Q est positive et n’est nulle
que lorsque dx = dy = dz = 0, par conséquent elle est définie positive.

Exemple 5.0.9. La forme quadratique,

Q
(
x1, x2, x3

)
= 8

(
x1
)2

+
(
x2
)2 − 6x1x3 +

(
x3
)2

n’est pas définie positive. En effet,

Q (1, 0, 3) = −1

5.1 Matrice symétrique associée

ax2 + bxy + cy2 =
(
x y

) [ax + by/2
bx/2 + cy

]

=
(
x y

) [ a b/2
b/2 c

](
x
y

)

= uT Au

ax2 + bxy + cxz + dy2 + eyz + fz2 =
(
x y z

)



a b/2 c/2
b/2 d e/2
c/2 e/2 f







x
y
z




= uT Au

Toute forme quadratique peut s’écrire sous forme matricielle,

Q =
(
u1 u2 · · · un

)



a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann







u1

u2

...
un




= uT Au
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et sous forme indicielle avec la convention de sommation :

Q =
(
u1 u2 · · · un

)




a1ju
j

a2ju
j

...
anju

j




= ui
(
aiju

j
)

= aiju
iuj

uT Au = aiju
iuj (15)

L’égalité uiuj = ujui permet d’écrire :

Q = a11u1u1 + 1
2
(a12 + a21)u1u2 + · · · + 1

2
(a1n + an1)u1un

+ 1
2
(a12 + a21)u2u1 + · · · + 1

2
(a2n + an2)u2un + . . .

+ 1
2
(a1n + an1)unu1 + · · · + annunun

Posons B = 1
2
(A + AT ) soit :

b11 = a11, b12 = b21 = 1
2
(a12 + a21), etc.

Nous avons :

Q = b11u1u1 + b12u1u2 + · · · + b1nu1un

+ b12u2u1 + · · · + b2nu2un + . . .

+ b1nunu1 + · · · + bnnunun

La matrice est maintenant symétrique

∀i, j bij = bji

et :

Q =
(
u1 u2 · · · un

)



b11 b12 · · · b1n

b12 b22 · · · b2n

· · · · · · · · · · · ·
b1n b2n · · · bnn







u1

u2

...
un




Plus généralement, tout polynôme P des 2n variables u1, u2, · · · , un et v1, v2, · · · , vn,

P = a11u1v1+a12u
1v2+ · · · +a1nu1vn+a21u

2v1+ · · · +a2nu2vn+ · · · +an1u
nv1+ · · · +annunvn

peut s’écrire sous forme matricielle,

P =
(
u1 u2 · · · un

)



a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann







v1

v2

...
vn




=
(
v1 v2 · · · vn

)



a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann







u1

u2

...
un




= uT Av

= vT Au
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et sous forme indicielle avec la convention de sommation :

P =
(
u1 u2 · · · un

)




a1jv
j

a2jv
j

...
anjv

j




= ui
(
aijv

j
)

= aiju
ivj

uT Av = aiju
ivj (16)

5.2 Réduction de Gauss

Par changement de variables, toute forme quadratique réelle (de coefficients réels) peut
s’écrire comme combinaison linéaire de carrés de formes linéaires :

Q = λ1x̃
2
1 + λ2x̃2

2 + · · · + λnx̃2
n

où les coefficients λi valent +1 ou −1, et la matrice symétrique associée est diagonale.

Exemple 5.2.1. Soit une forme quadratique binaire :

Q(x, y) = ax2 + bxy + cy2

= a

(
x2 +

b

a
xy +

b2

4a2
y2 − b2

4a2
y2

)
+ cy2

= a

(
x +

b

2a
y

)2

+

(
c − b2

4a

)
y2





x̃ =
√

|a|[x + by/(2a)]

ỹ =
√

|c − b2/(4a)|y
⇒ Q(x̃, ỹ) = λ1x̃2 + λ2ỹ

2

Exemple 5.2.2. Soit une forme quadratique ternaire :

Q(x, y, z) = xy + yz + xz

= x(y + z) + yz

= (x + z)(y + z) − z2

(x + z)(y + z) est de la forme (a − b)(a + b) avec :
{

a = x + z

b = y + z
⇒

{
2a = x + y + 2z

2b = y − x

Q(x, y, z) = 1
2
[(x + y + 2z) + (y − x)] × 1

2
[(x + y + 2z) − (y − x)] − z2

= 1
4

(x + y + 2z)2 − 1
4
(y − x)2 − z2
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5.3 Loi d’inertie de Sylvester

La loi d’inertie de Sylvester stipule que le nombre p de coefficients +1 et le nombre q
de coefficients −1 sont des invariants de la forme quadratique réelle. Ils ne dépendent pas du
changement de variables. Les nombres p et q sont appelés indices d’inertie, (p, q) est la signature
de la forme quadratique, p + q est son rang. Une forme définie positive a pour signature (p, 0),
une forme définie négative a pour signature (0, q).





6
Applications linéaires

6.1 Définitions

Définition 6.1.1. Application
Une application est une relation entre deux ensembles pour laquelle chaque élément de
l’ensemble de départ possède une image et une seule dans l’ensemble d’arrivée.

Définition 6.1.2. Application linéaire
Une application linéaire (ou transformation linéaire ou opérateur linéaire) est une appli-
cation d’un espace vectoriel dans un autre espace vectoriel (ou le même), qui conserve
l’addition vectorielle et la multiplication par un scalaire. Elle prend en entrée un vecteur
et donne en sortie un vecteur.
Soient E et F deux espaces vectoriels sur le même corps R, et soit f une application de
E dans F :

f : E → F

x 7→ f(x) = v

f est linéaire si elle est :

(1) Additive : ∀u, v ∈ E × E, f(u ⊕ v) = f(u) ⊕ f(v)

(2) Homogène de degré un : ∀u ∈ E, ∀λ ∈ K, f(λ ⊙ u) = λ ⊙ f(u)

Les deux conditions de linéarité peuvent être remplacées par la seule condition suivante :

∀u, v ∈ E × E, ∀λ ∈ R, f(λ ⊙ u ⊕ v) = λ ⊙ f(u) ⊕ f(v)

Nous dirons que f préserve les opérations de combinaison linéaire car peu importe que f soit
appliquée avant ou après l’addition vectorielle ou la multiplication par un scalaire.
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Remarque 10. Dans (2) posons λ = 0. En utilisant les propriétés 3.1.3 p. 14 :

f(0 ⊙ u) = 0 ⊙ f(u)

f(0) = 0

Si f est linéaire alors f(0) = 0.
f(0) = 0 est donc une condition nécessaire pour que f soit linéaire.

Nous n’avons besoin que de transformer les vecteurs de base. En effet, la transformation
linéaire d’un vecteur u quelconque s’écrit :

f(u) = f
(
u1e1 + u2e2 + · · · + unen

)

= u1f(e1) + u2f(e2) + · · · + unf(en)

6.1.1 Exemples

Exemple 6.1.1. Soit α un scalaire. L’homothétie vectorielle de rapport α :

h : E → E

x 7→ α ⊙ x

est une application linéaire. En effet :

h(x) = α ⊙ x

h(x ⊕ y) = α ⊙ (x ⊕ y)

= (α ⊙ x) ⊕ (α ⊙ y)

= h(x) ⊕ h(y)

et,

h(λ ⊙ x) = α ⊙ (λ ⊙ x)

= αλ ⊙ x

= λ ⊙ (α ⊙ x)

= λ ⊙ h(x)

Exemple 6.1.2. Soit D(R,R) l’espace vectoriel des fonctions dérivable de R dans R, et
soit F(R,R) l’espace vectoriel des fonctions de R dans R. L’application dérivation,

d : D(R,R) → F(R,R)

f 7→ f ′

qui à toute fonction f associe sa dérivée f ′, est linéaire. En effet, la dérivée de la somme
de deux fonctions est la somme de leur dérivée,

d(f + g) = df + dg

et la dérviée d’une fonction multipliée par une constante est égale à cette constante fois
la dérivée de cette fonction :

d(λf) = λ df
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6.2 Transformations actives et passives

Tout système d’équations linéaires,




a11 u1 + a12 u2 = v1

a21 u1 + a22 u2 = v2

est une application linéaire de chaque vecteur u(u1, u2) vers son vecteur image v(v1, v2) qui
peut s’écrire sous forme matricielle

(
a11 a12

a21 a22

)(
u1

u2

)
=

(
v1

v2

)

Elle s’écrit aussi sous forme indicielle :

∀j aiju
i = vj

On vérifie que l’on a bien les propriétés d’additivité et d’homogénéité de degré un,

A(u1 + u2) = A(u1) + A(u2) et A(λu) = λA(u)

qui caractérisent les applications linéaires. L’application étant bijective :

det A 6= 0

Les transformations linéaires peuvent être interprétées de deux façons. Pour donner une repré-
sentation graphique à l’action d’une matrice sur un vecteur, nous supposerons que les inconnues
sont les composantes contravariantes d’un vecteur, c’est-à-dire les coordonnées des points aux
extrémités des vecteurs :

(1) Transformation ponctuelle linéaire
(v1, v2) sont les coordonnées du point Q image du point P (u1, u2) dans le même

système de coordonnées.

Exemple 6.2.1. Le système d’équations suivant,




v1 = 1
2

u1 − 4u2

v2 = 1
3

u1 + u2

transforme le vecteur P (2, 1) en son image Q(−3, 5/3).

On parle alors de l’aspect alibi 1 de la transformation, ou bien d’une transformation
active. La plupart du temps on supposera que l’on effectue cette transformation.

+

+

P

Q

Fig. 6.1 – Le point P passe en Q

1. du latin « ailleurs ».
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(2) Changement de système de coordonnées
(v1, v2) sont les coordonnées du même point P dans un nouveau système de coor-

données. On parle alors de l’aspect alias de la transformation, ou bien d’une transfor-
mation passive. Les deux systèmes de coordonnées sont reliés par la relation v = Au.
Pour trouver dans l’ancien système de coordonnées, les coordonnées du vecteur de base
(1, 0) de ce nouveau système, on résoud le système d’équations suivant :





1 = 1
2

u1 − 4 u2

0 = 1
3

u1 + u2
⇒





1 =
(

1
2

+ 4
3

)
u1

u2 = −1
3

u1
⇒





u1 = 6
11

u2 = − 2
11

Pour trouver le vecteur de base de coordonnées (0, 1) on résoud le système :




0 = 1
2

u1 − 4u2

1 = 1
3

u1 + u2
⇒





u1 = 8u2

1 =
(

8
3

+ 1
)

u2
⇒





u1 = 24
11

u2 = 3
11

+ P

Fig. 6.2 – Nouveau système de coordonnées

En appliquant une transformation linéaire à un système de coordonnées rectangulaire, on
obtient un système de coordonnées dont les lignes de coordonnées sont rectilignes et obliques
(Fig.6.2).

6.3 Transformation affine

Lorsque l’on combine une transformation linéaire et une translation on obtient une trans-
formation affine,

v = Au + b

où b est un vecteur constant. En posant u = 0, nous voyons que l’origine du nouveau repère
se trouve à l’extrémité du vecteur b.

6.4 Transformation orthogonale

Une matrice carrée A est orthogonale ssi :

AAT = AT A = I ⇔ AT = A−1

Le déterminant d’une matrice orthogonale est de carré unité. S’il vaut +1 la matrice est dite
directe. Par exemple les matrices identité et les matrices rotation d’un angle θ autour d’un axe
∆ quelconque sont des matrices directes. Si le déterminant vaut −1 la matrice est dite indirecte.
Une transformation est orthogonale ssi sa matrice est orthogonale.
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Espace euclidien

7.1 Histoire de la géométrie euclidienne

Vers 300 av. J.-C., le mathématicien grec Euclide d’Alexandrie rédige un traité de mathé-
matique constitué de 13 livres, intitulé « Éléments de géométrie », dans lequel, entre autres, il
axiomatise la géométrie du plan. Il fonde ainsi ce qui à partir du 17e siècle sera appelée géomé-
trie pure ou géométrie synthétique, c’est-à-dire la géométrie sans l’utilisation d’un système de
coordonnées. Son système axiomatique est un ensemble de

— notions primitives, qui sont des objets mathématiques tels que les points, les lignes
ou les plans, qui n’ont pas de propriétés intrinsèques et dont les définitions importent
peu, si ce n’est pour se faire une représentation mentale. En revanche leurs relations
mutuelles sont d’importance pour la théorie

— 5 axiomes (et 5 notions communes qui sont aussi des axiomes) qui sont des proposi-
tions concernant les notions primitives, ces propositions étant supposées vraies et non
démontrables dans le système en question. Ce sont des abstractions issues du monde
physique. Le 5e axiome est appelé axiome des parallèles et énonce que « Pour une
droite donnée et un point n’appartenant pas à cette droite, il n’existe qu’une seule
droite passant par ce point et qui ne coupe pas la droite donnée ».

— postulats (ou conjectures) qui sont des propositions démontrables ou non dans le sys-
tème axiomatique, c’est-à-dire qui sont soit des théorèmes du système, soit des indéci-
dables du système.

— définitions
— propositions démontrées, ou théorèmes

En 1899, dans « Grundlagen der Geometrie », le mathématicien allemand David Hilbert
donne une formulation rigoureuse et moderne de la géométrie euclidienne, il montre qu’il faut
en fait 20 axiomes pour la géométrie d’Euclide, les axiomes manquants étant contenus implici-
tement dans les définitions et figures des « Éléments ».

On attend d’un système axiomatique qu’il soit consistant, on dit aussi cohérent. Il l’est s’il
est impossible d’y démontrer une proposition et son contraire, autrement dit si le système ne se
contredit pas. Dès lors qu’un système contient une contradiction (ou incohérence) logique, tout
peut y être démontré, et ce système perd toute utilité. On souhaite également qu’un système
axiomatique soit complet, ce qui signifie que pour toute proposition P énonçable et compré-
hensible dans le système, l’on puisse démontrer P ou non-P, c’est-à-dire, si ses axiomes nous
permettent d’engendrer toutes les vérités logiques (tautologies) exprimables dans ce sytème.
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Un indécidable d’un système axiomatique S est un énoncé formulable dans S mais dont S
ne peut démontrer s’il est vrai ou faux (du type « Je mens », ou « Cette phrase est fausse »).
S est donc complet s’il ne contient pas d’indécidable. Lorsque l’on découvre un indécidable I
dans un système axiomatique S, on peut l’ajouter aux axiomes de ce système et créer ainsi un
nouveau système axiomatique S’ dans lequel I n’est plus un indécidable.

Vers 1824, les mathématiciens Carl Friedrich Gauss, János Bolyai et Nikolai Ivanovich Loba-
chevsky développent la géométrie hyperbolique dans laquelle le 5e axiome d’Euclide est remplacé
par « Pour une droite donnée et un point n’appartenant pas à cette droite, il existe plus d’une
droite passant par ce point et qui ne coupe pas la droite donnée ». En 1868, Eugenio Beltrami
montre que la consistance de la géométries euclidienne implique la consistance de la géométrie
hyperbolique, et réciproquement. Si la géométrie euclidienne est consistante alors la géomé-
trie hyperbolique l’est aussi. Par conséquent l’axiome des parallèles est indépendant des autres
axiomes, il n’est donc pas nécessaire pour former un système axiomatique, en le supprimant on
crée la géométrie absolue. Dans cette géométrie, l’axiome des parallèles peut être énoncé mais
ne peut être démontré, c’est un indécidable. La géométrie absolue est donc incomplète.

En 1931, Kurt Gödel démontre les deux théorèmes qui portent son nom. Le premier théorème
de Gödel énonce que tout système formel (dont les systèmes axiomatiques) effectif (dont le
nombre d’axiomes est fini) assez puissant (dans lequel on puisse faire de l’arithmétique) est
soit inconsistant donc inintéressant puisque tout y est vrai et faux à la fois, soit incomplet,
donc contient au moins un indécidable. Ils ne peuvent être à la fois consistants et complets.
Le second théorème de Gödel énonce que la consistance d’un système formel fait partie de ses
indécidables, autrement dit un système consistant ne peut savoir qu’il l’est (un homme saint
d’esprit ne peut savoir qu’il l’est, mais il peut le poser comme axiome, ce que fera également
un fou). Gödel a donc universalisé l’incomplétude déjà connue pour la géométrie absolue.

Si donc on ajoute un indécidable comme axiome à un système S pour en faire un système
S’, il existera au moins un autre indécidable I’ dans S’, qui est aussi un indécidable de S.

En 1637 René Descartes introduit le système de coordonnées rectilignes et montre que les
problèmes de géométrie peuvent se résoudre par l’algèbre, fondant ainsi la géométrie analytique.
Si on identifie un point à une paire de nombre réels ordonnés (x1, x2), et la distance entre deux
points (x1, x2) et (y1, y2) par

√
(x1 − y1)2 + (x2 − y2)2, alors tous les axiomes d’Euclide peuvent

être démontrés, ils deviennent des théorèmes de la théorie des nombes réels. En 1870 Félix
Klein fait de même et construit une geométrie analytique pour la géométrie hyperbolique. Ce
n’est qu’en 1957 qu’Emil Artin démontrera que les approches synthétique et analytique sont
équivalentes. L’étape suivant consiste à remplacer les points par des vecteurs (chapitre 3 p. 11)
et à introduire un produit scalaire (chapitre 11 p. 87) pour avoir une distance. Nous formons
alors les espaces vectoriels (chapitre 16 p. 133) qui permettent de définir l’espace euclidien sans
passer par les axiomes d’Euclide.

7.2 Géométrie dans l’espace

On généralise le plan à un espace à trois dimensions, plat, sans courbure. On passe ainsi
de la géométrie plane à la géométrie dans l’espace. Cet espace n’a pas d’existence propre, il
est purement mathématique. Il permet de faire toute la physique classique (non relativiste),
c’est le modèle le plus simple de l’espace physique. Pour mesurer sa courbure il ne s’agit plus
de tracer un triangle, car on peut toujours se placer dans un plan de cet espace. Un espace de
dimension trois est plat ssi le volume d’une sphère de rayon r vaut 4

3
πr3, le volume d’un cube

de côté r vaut r3, etc. On généralise à des espaces de dimension supérieure à trois grâce aux
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hypersphères, aux hypercubes... Ces espaces plats sont appelés espaces euclidiens ou espaces
affines euclidiens (nous verrons que les espaces pseudo-euclidiens sont aussi des espaces plats).
Pour chaque dimension il n’existe qu’un seul espace euclidien car tous les espaces euclidiens de
même dimension sont équivalents (isomorphes).

Définition 7.2.1. Isomorphisme
Un isomorphisme entre deux ensembles structurés est une application bijective qui préserve
la structure, et dont la réciproque préserve aussi la structure.

En physique, les notions de distance et d’angle sont nécessaires pour situer deux points
l’un par rapport à l’autre. Le produit scalaire dote l’espace topologique d’une métrique (une
distance) et d’une mesure des angles.

Définition 7.2.2. Espace métrique
Soit E un ensemble non vide d’éléments appelés points et notés A, B, C, . . . Soit d une
distance sur E,

d : E × E → R+

vérifiant les trois propriétés suivantes :

(1) Symétrie : d(A, B) = d(B, A)

(2) Séparation : d(A, B) = 0 ⇔ A = B

(3) Inégalité triangulaire : d(A, B) 6 d(A, C) + d(C, B)

Nous dirons que le couple (E, d) constitue un espace métrique.

7.3 Systèmes de coordonnées

Définition 7.3.1. Coordonnées
Les n valeurs ordonnées (p1, p2, . . . , pn) noté simplement (pi), permettant de repérer un
point P sont appelées les coordonnées de ce point.

Réciproquement, un point P est l’ensemble des n valeurs ordonnées (p1, p2, . . . , pn).

Définition 7.3.2. Système de coordonnées
Un ensemble de n variables (x1, x2, . . . , xn) est un système de coordonnées d’un espace
topologique à n dimensions, si chaque ensemble de valeurs pris par ces variables détermine
de façon unique un point de cet espace, et si chaque point de cet espace topologique est
déterminé par un ensemble unique de valeurs de ces variables.

Si cette bijection entre chaque point de l’espace topologique et les valeurs des coordonnées
n’est pas réalisée, le système de coordonnées est dit dégénéré. Il est non dégénéré s’il
assigne un unique ensemble de coordonnées à chaque point et réciproquement, de sorte
qu’il existe une bijection entre les deux.
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Deux droites sécantes définissent un plan et peuvent servir de système de coordonnées pour
ce plan. Ce système de coordonnées rectilignes est appelé système de coordonnées cartésiennes.

Remarque 11. Pour des raisons historiques, partout ailleurs dans le monde le système de coordonnées
cartésiennes désigne un système de coordonnées rectilignes et orthogonales.

Les coordonnées sont obtenues par projection des points selon des droites parallèles aux
droites de coordonnées. De ce fait, le système de coordonnées cartésiennes en deux dimensions
ne peut exister que dans le plan. En revanche le plan admet aussi des systèmes de coordonnées
curvilignes. Lorsque les deux droites sécantes sont normales, le système est appelé système de
coordonnées rectangulaires ou système de coordonnées cartésiennes normales. Un système de
coordonnées a donc deux caractéristiques, il peut être curviligne ou rectiligne, orthogonal ou
non orthogonal.

Imaginons trois droites non coplanaires sécantes en un point, elles forment un système
de coordonnées cartésiennes d’un espace à trois dimensions nécessairement plat, c’est-à-dire
euclidien ou pseudo-euclidien. L’ensemble Rn des n-uplets de nombres réels (un n-uplet est
une liste ordonnée de n objets) muni du produit scalaire euclidien est un espace euclidien de
dimension n. Les n-uplets de réels ne sont en fait que les coordonnées cartésiennes des points
de l’espace euclidien.

Définition 7.3.3. Hyperplans
Les hyperplans sont des espaces topologiques sans courbure, de dimension n − 1 plongés
dans un espace topologique de dimension n.

Définition 7.3.4. Hypersurfaces
Les hypersurfaces sont des espaces topologiques de dimension n−1 plongés dans un espace
topologique de dimension n.

Définition 7.3.5. Courbe paramétrique
Dans un espace topologique à n dimensions de système de coordonnées (xi), une courbe
paramétrique de paramètre λ est l’ensemble des points tels que chaque coordonnée est une
fonction de λ :

∀i = 1, . . . , n, xi = xi(λ)

En physique les paramètres habituels sont le temps ou l’abscisse curviligne (la distance
parcourue le long de la courbe à partir d’un point de la courbe pris pour origine).
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Définition 7.3.6. Ligne de coordonnée
Dans un système de coordonnées (xi), une ligne de coordonnée est le lieu des points pour
lesquels seule la coordonnée xj varie. Soient λ un paramètre et ci des constantes :

xj = xj(λ)

∀i 6= j, xi = ci

En un point d’un espace topologique de dimension n se croisent n lignes de coordonnée.

Exemple 7.3.1. Courbe en coordonnées sphériques sur une sphère de rayon a

C (λ) :





r = a

θ = λ

φ = φ(λ)

Définition 7.3.7. Hypersurface de coordonnée
Une hypersurface de coordonnée est l’ensemble des points dont une des coordonnées reste
constante :

xj = cste

Dans un espace topologique de dimension 2, les hypersurfaces de coordonnée sont simple-
ment les lignes de coordonnée. Par exemple l’hypersurface de coordonnée x1 = c1 se confond
avec la ligne de coordonnée x2.

Dans un espace topologique de dimension 3, les hypersurfaces de coordonnée sont les surfaces
de coordonnée, elles se coupent deux à deux suivant les lignes de coordonnée.

7.4 Métrique de l’espace euclidien

Coordonnées rectangulaires ou cartésiennes normales

Dans ce système de coordonnées les lignes de coordonnées sont des droites qui se coupent à
angle droit. Ces systèmes de coordonnées ne sont possibles que dans les espaces plats, c’est-à-
dire euclidiens ou pseudo-euclidiens.

Dans le plan, en coordonnées rectangulaires (x, y) le carré de la longueur, appelée métrique,
est donné par le théorème de Pythagore :

s2 = x2 + y2

C’est la forme quadratique associée au plan en coordonnées rectangulaires :

Q(x, y) = x2 + y2

Elle a pour signature (2, 0) et pour rang 2. D’après la définition 5.0.13 p. 45, elle est définie
positive. La loi d’inertie de Sylvester nous dit qu’elle sera définie positive quel que soit le système
de coordonnées employé. La métrique s’écrit :

s2 = gxxx2 + gyyy2
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Les coefficients de la métrique, gxx = 1 et gyy = 1, sont les composantes du tenseur métrique
du plan en coordonnées rectangulaires. En notation matricielle puis en notation indicielle avec
la convention de sommation sur les indices répétés :

s2 =
(
x y

) [1 0
0 1

](
x
y

)

= δijx
ixj

où δij est le symbole de Kronecker. Un tenseur métrique dont toutes les composantes sont
constantes n’est possible que dans les espaces plats (euclidiens et pseudo-euclidiens).

On généralise à l’espace, en coordonnées rectangulaires (x, y, z) la métrique est donnée par
la double application du théorème de Pythagore, d’abord dans un plan puis dans l’espace :

s2 =
(√

x2 + y2

)2

+ z2

= x2 + y2 + z2

= gxxx2 + gyyy2 + gzzz
2

=
(
x y z

)


1 0 0
0 1 0
0 0 1







x
y
z




= δijx
ixj

gxx, gyy, gzz sont les composantes du tenseur métrique de l’espace euclidien en coordonnées
rectangulaires. La forme quadratique associée à l’espace euclidien en coordonnées rectangulaires

Q(x, y, z) = x2 + y2 + z2

a pour signature (3, 0) et pour rang 3. La signature est souvent donnée sous forme explicite
(+ + +). Elle est définie positive.

Pour pouvoir l’intégrer le long d’une courbe, la métrique est donnée sous forme différentielle :

ds2 = dx2 + dy2 + dz2 (17)

ds2 est le carré de l’élément de longueur (élémentaire dans le sens de infinitésimal).

Remarque 12. L’opérateur carré est prioritaire sur celui de différentiation, par exemple

dx2/dx = 2x

dx2 = 2xdx

dx2 est donc un infiniment petit du premier ordre. En toute rigueur il faudrait écrire

(ds)2 = (dx)2 + (dy)2 + (dz)2

pour le carré de la distance infinitésimale qui est un infiniment petit du deuxième ordre. Néanmoins nous
supprimons les parenthèses pour alléger la notation, la confusion étant peu probable.

Coordonnées cartésiennes

Dans ce système de coordonnées aussi appelées coordonnées affines, ou rectilignes obliques,
les lignes de coordonnées sont des droites. Nous verrons que ces systèmes de coordonnées
peuvent toujours se ramener par changement de variables à un système de coordonnées rectan-
gulaire. Les coordonnées cartésiennes ne sont donc possibles que dans les espaces plats.
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M

O x′

y′

x

y

α

Fig. 7.1 – Coordonnées cartésiennes (x′, y′)

Transformation des coordonnées cartésiennes en rectangulaires

T :

{
x = x′ + y′ cos(α)

y = y′ sin(α)

Transformation des coordonnées rectangulaires en cartésiennes

T̄ :





x′ = x − y′ cos(α)

y′ =
y

sin(α)
⇒





x′ = x − y

tan α

y′ =
y

sin(α)
En coordonnées cartésiennes la métrique du plan s’écrit :

ds2 = dx2 + dy2

=

(
∂x

∂x′ dx′ +
∂x

∂y′ dy′
)2

+

(
∂y

∂x′ dx′ +
∂y

∂y′ dy′
)2

= (dx′ + cos(α)dy′)2 + (sin(α)dy′)2

= dx′2 + 2 cos(α)dx′dy′ + cos2 αdy′2 + sin2 αdy′2

= dx′2 + 2 cos(α)dx′dy′ + dy′2 (18)

En coordonnées cartésiennes (et cartésiennes normales), la métrique est une somme à coefficients
constants, ici 1 puis 2 cos(α) et à nouveau 1. Une conséquence de la réduction de Gauss est que la
métrique en coordonnées cartésiennes peut toujours se ramener à une métrique en coordonnées
rectangulaires.

Sous forme différentielle, la métrique s’écrit :

ds2 = gx′x′dx′2 + 2gx′y′dx′dy′ + gy′y′dy′2

gx′x′, gx′y′ , gy′y′ sont les composantes (constantes) du tenseur métrique du plan en coordonnées
cartésiennes.

Coordonnées curvilignes

Dans ce système de coordonnées qui peut être orthogonal ou oblique, les lignes de coor-
données ne sont pas des droites. Au moins un coefficient de la métrique (une composante du
tenseur métrique) est fonction des coordonnées.
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Coordonnées orthogonales

Dans ce système de coordonnées qui peut être rectiligne ou curviligne, les lignes de coor-
données se coupent à angle droit. La métrique ne contient que des carrés, elle n’a pas de terme
croisé (ou rectangle), du type xy.

Coordonnées obliques

Dans ce système de coordonnées qui peut être rectiligne ou curviligne, les lignes de coor-
données ne se coupent pas à angle droit. La métrique contient au moins un terme croisé.

Coordonnées polaires

C’est l’archétype des systèmes de coordonnées curvilignes orthogonales du plan. En faisant
varier la distance radiale à l’origine ρ et l’angle θ on parcourt l’ensemble des points du plan. Les
coordonnées polaires (ρ, θ) forment donc un système de coordonnées pour le plan. Contrairement
aux coordonnées rectilignes, elles sont applicables ailleurs que dans le plan, par exemple à la
surface d’une sphère. Pour le mettre en place dans le plan, il faut se donner les mêmes éléments
que pour le système de coordonnées rectangulaire en deux dimensions, c’est-à-dire deux points
du plan et une unité de longueur. Il n’est pas nécessaire de se donner une unité d’angle car le
tour et ses fractions sont des unités naturelles, en revanche il faut se donner une orientation
(un sens de parcours positif pour les angles).

x

y

O

Mρ b

θ

+

Fig. 7.2 – Coordonnées polaires (ρ, θ)

C’est un système de coordonnées curvilignes orthogonales car les cercles coupent leurs rayons
à angle droit. Il est dégénéré à l’origine des coordonnées, en ce point l’angle θ est indéterminé,
cependant la dégénéréscence est facilement levée en passant aux coordonnées rectangulaires.

Transformation des coordonnées polaires en rectangulaires

T :

{
x (ρ, θ) = ρ cos(θ)

y (ρ, θ) = ρ sin(θ)
ρ > 0 et 0 6 θ < 2π (19)

Transformation des coordonnées rectangulaires en polaires
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T̄ :





ρ (x, y) =
√

x2 + y2

θ (x, y) = atan2(y, x)
avec atan2(y, x) =





arctan(y/x) si x > 0

arctan(y/x) + π si x < 0 et y > 0

arctan(y/x) − π si x < 0 et y < 0

+ π/2 si x = 0 et y > 0

− π/2 si x = 0 et y < 0

indéfinie si x = 0 et y = 0

En coordonnées polaires la métrique du plan s’écrit :

ds2 = dx2 + dy2 (20)

=

(
∂x

∂ρ
dρ +

∂x

∂θ
dθ

)2

+

(
∂y

∂ρ
dρ +

∂y

∂θ
dθ

)2

= (cos(θ)dρ − ρ sin(θ)dθ)2 + (sin(θ)dρ + ρ cos(θ)dθ)2

= cos2(θ)dρ2 + ρ2 sin2(θ)dθ2 − 2ρ cos(θ) sin(θ)dρdθ

+ sin2(θ)dρ2 + ρ2 cos2(θ)dθ2 + 2ρ cos(θ) sin(θ)dρdθ

= dρ2 + ρ2dθ2 (21)

= gρρdρ2 + gθθdθ2

où gρρ = 1 et gθθ = ρ2 sont les composantes du tenseur métrique du plan en coordonnées
polaires. La composante gθθ est fonction de la coordonnée ρ. La transformation de coordonnées
(19) permet de retrouver un tenseur métrique avec des composantes constantes. Lorsque les
composantes sont fonction des coordonnées, la métrique ne peut être donnée que sous forme
différentielle car elle varie d’un point à l’autre.

Coordonnées cylindriques

Elles sont identiques aux coordonnées polaires, avec la coordonnée supplémentaire z. C’est
un système de coordonnées curvilignes orthogonales pour l’espace à trois dimensions. Lorsqu’on
l’utilise en deux dimensions pour une surface cylindrique en fixant ρ, le centre du système de
coordonnées n’appartient pas au cylindre. Pour que le centre du système de coordonnées soit
sur la surface cylindrique, on peut la dérouler pour en faire un plan, et utiliser les coordonnées
rectangulaires ou polaires à sa surface. Les lignes de coordonnées sont alors des droites du plan,
mais aussi des courbes dans l’espace à trois dimensions dans lequel est plongé le cylindre.

φ
y

x

z

ρ

M

z

Fig. 7.3 – Coordonnées cylindriques (ρ, φ, z)
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Transformation des coordonnées cylindriques en rectangulaires

T :





x = ρ cos(φ)

y = ρ sin(φ)

z = z′
ρ > 0, 0 6 φ < 2π, −∞ < z′ < +∞

Transformation des coordonnées rectangulaires en cylindriques

T̄ :





ρ =
√

x2 + y2

φ = atan2(y, x)

z′ = z

La surface de coordonnée ρ = cste est le cylindre d’axe z.
La surface de coordonnée φ = cste est le demi-plan limité par l’axe z.
La surface de coordonnée z′ = cste est le plan parallèle au plan (x, y).

En coordonnées cylindriques la métrique s’écrit :

ds2 = dx2 + dy2 + dz2

=

(
∂x

∂ρ
dρ +

∂x

∂φ
dφ +

∂x

∂z′ dz′
)2

+

(
∂y

∂ρ
dρ +

∂y

∂φ
dφ +

∂y

∂z′ dz′
)2

+

(
∂z

∂ρ
dρ +

∂z

∂φ
dφ +

∂z

∂z′ dz′
)2

= (cos(φ)dρ − ρ sin(φ)dφ)2 + (sin(φ)dρ + ρ cos(φ)dφ)2 + dz′2

= dρ2 + ρ2dφ2 + dz2

Coordonnées sphériques

C’est aussi un système de coordonnées curvilignes orthogonales pour l’espace à trois dimen-
sions. Lorsqu’on l’utilise en deux dimensions pour une sphère en fixant le rayon, le centre du
système de coordonnées n’appartient pas à la sphère.

φ

y

x

M

z

r

θ

z

Fig. 7.4 – Coordonnées sphériques (r, θ, φ)

Transformation des coordonnées sphériques en rectangulaires

T :





x = r sin(θ) cos(φ)

y = r sin(θ) sin(φ)

z = r cos(θ)

r > 0, 0 6 θ < π, 0 6 φ < 2π
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Transformation des coordonnées rectangulaires en sphériques

T̄ :





r =
√

x2 + y2 + z2

θ = atan2
(√

x2 + y2, z
)

φ = atan2 (y, x)

Pour trouver l’expression de la métrique en coordonnées sphériques, partons de son expres-
sion en coordonnées rectangulaires :

ds2 = dx2 + dy2 + dz2

En différentiant la transformation T :




dx = ∂rx dr + ∂θx dθ + ∂φx dφ

dy = ∂ry dr + ∂θy dθ + ∂φy dφ

dz = ∂rz dr + ∂θz dθ + ∂φz dφ

⇒





dx = sin θ cos φ dr + r cos θ cos φ dθ − r sin θ sin φ dφ

dy = sin θ sin φ dr + r cos θ sin φ dθ + r sin θ cos φ dφ

dz = cos θ dr − r sin θ dθ

La somme des carrés donne l’expression cherchée :

ds2 = dr2 + r2dθ2 + r2 sin2(θ) dφ2 (22)

Transformation des coordonnées sphériques en cylindriques, et cylindriques en sphériques





ρ = r sin(θ)

z = r cos(θ)

φ = φ





r =
√

ρ2 + z2

θ = atan2 (ρ, z)

φ = φ

Dans un système de coordonnées générales, la métrique de l’espace euclidien en trois dimen-
sions s’écrit :

ds2 = g11(dx1)2 + 2g12dx1dx2 + 2g13dx1dx3 + g22(dx2)2 + 2g23dx2dx3 + g33(dx3)2

= gijdxidxj

On les appelle métrique euclidienne et tenseur métrique euclidien.

7.5 Longueur d’un arc de courbe

Dans l’espace euclidien, supposons que la trajectoire d’un point M de coordonnées cur-
vilignes (xi) soit donnée en fonction d’un paramètre λ (habituellement le temps ou l’abscisse
curviligne), xi = xi(λ), variant sur un intervalle (λ0, λ1). La longueur Γ de l’arc de courbe décrit
par M est alors donnée par l’intégrale de la métrique définie positive :

Γ =
ˆ s1

s0

ds

=
ˆ s1

s0

√
gijdxidxj (23)

En faisant apparaitre le paramètre λ :

Γ =
ˆ λ1

λ0

√

gij
dxi

dλ

dxj

dλ
dλ
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La longueur de l’arc de courbe est indépendante du choix du paramètre. En effet, soit un
nouveau paramètre fonction de l’ancien :

µ = φ(λ)

dµ =
∂φ(λ)

∂λ
dλ

∀i
dxi

dλ
=

dxi

dµ

∂φ(λ)
∂λ

On a alors :

Γ =
ˆ λ1

λ0

√√√√gij
dxi

dµ

dxj

dµ

[
∂φ(λ)

∂λ

]2

dλ

=
ˆ λ1

λ0

√
gij

dxi

dµ

dxj

dµ

∂φ(λ)
∂λ

dλ

=
ˆ φ(λ1)

φ(λ0)

√
gij

dxi

dµ

dxj

dµ
dµ

En coordonnées rectangulaires :

Γ =
ˆ s1

s0

√
dx2 + dy2 + dz2

Il nous faut les fonctions x, y, z qui définissent la courbe. Les coordonnées peuvent être fonction
les unes des autres, cependant nous prenons le cas plus général des équations paramétriques.

Exemple 7.5.1. La fonction y = sin(x2 + 1) peut être paramétrée de plusieurs façons :
{

x = t

y = sin(t2 + 1)
ou

{
x = t2

y = sin(x + 1)
ou

{
x = t2 + 1

y = sin(x)

Sans perte de généralité, nous supposons que les coordonnées sont fonction du même pa-
ramètre t. La courbe a pour équations paramétriques xi = xi(t). Pour t variant de t0 à t1, sa
longueur s’écrit :

Γ =
ˆ t1

t0

ds(t)

=
ˆ t1

t0

√
dx2(t) + dy2(t) + dz2(t)

=
ˆ t1

t0

√√√√
(

∂x

∂t
dt

)2

+

(
∂y

∂t
dt

)2

+

(
∂z

∂t
dt

)2

=
ˆ t1

t0

√√√√
(

∂x

∂t

)2

+

(
∂y

∂t

)2

+

(
∂z

∂t

)2

dt

Dans les espaces euclidiens, nous pouvons passer librement d’un paramètre quelconque à une
paramétrisation par l’abscisse curviligne. Elle a pour expression en fonction du paramètre t

s(t) =
ˆ t

t0

√

gij
dxi

dτ

dxj

dτ
dτ
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et la courbe a pour longueur

Γ = s(t1)

Le passage d’un paramètre à l’autre s’effectue grâce à la relation :

ds

dt
=

√

gij
dxi

dt

dxj

dt

Exemple 7.5.2. Soit la courbe paramétrique :
{

x = 3t − 1

y = 4t + 2
⇒

{
ẋ = 3

ẏ = 4

où le point désigne la dérivation par rapport à t.

s(t) =
ˆ t

0

√
32 + 42dτ

= 5t

Avec cette relation nous pouvons paramétrer la courbe avec l’abscisse curviligne :




x =
3s

5
− 1

y =
4s

5
+ 2

En coordonnées cartésiennes, supposons que les coordonnées x et y soient fonction du pa-
ramètre t. La relation (18) p. 61 donne la longueur d’une courbe C : x = x(t); y = y(t) :

Γ =
ˆ t1

t0

ds(t)

=
ˆ t1

t0

√
dx2(t) + 2 cos(α)dx(t)dy(t) + dy2(t)

=
ˆ t1

t0

√√√√
(

∂x

∂t

)2

+ 2 cos(α)
∂x

∂t

∂y

∂t
+

(
∂y

∂t

)2

dt

En coordonnées polaires, supposons que les coordonnées ρ et θ soient fonction du paramètre
t. La longueur d’une courbe C : ρ = ρ(t); θ = θ(t) s’écrit :

Γ =
ˆ t1

t0

ds(t)

=
ˆ t1

t0

√
dρ2(t) + ρ2dθ2(t)

=
ˆ t1

t0

√√√√
(

∂ρ

∂t

)2

+ ρ2

(
∂θ

∂t

)2

dt
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7.6 Courbure d’une courbe

En coordonnées rectangulaires d’un espace euclidien, la courbure d’une courbe C : xi = xi(t)
est le taux de variation de la tangente à cette courbe en fonction de la distance (abscisse
curviligne) :

κ(s) =

√

δij
d2xi

ds2

d2xj

ds2
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8.1 La sphère

La sphère est l’archétype de l’espace non-euclidien de dimension 2. Elle est paramétrisable
par les deux angles θ et φ, ce dernier angle étant dégénéré aux pôles. Bien entendu la sphère
n’a pas de pôles, le problème est uniquement dû au système de coordonnées utilisé. Au mieux
il existe un système de coordonnées n’ayant qu’un seul pôle. Par conséquent il n’existe pas de
système de coordonnées qui couvre la sphère sans dégénéréscence, l’atlas d’une sphère comprend
au minimum deux cartes.

Sur une sphère de rayon r, utilisons les coordonnées sphériques (r, θ, φ) avec r constant. La
métrique s’écrit :

ds2 = r2dθ2 + r2 sin2(θ) dφ2

Ici gθθ = r2 avec r constant, gθφ = 0 et gφφ = r2 sin2(θ) est fonction de la coordonnée θ. Il
n’existe pas de système de coordonnées global à la surface de la sphère pour lequel gij = δij , la
courbure de la sphère est intrinsèque, contrairement à celle du cylindre. Localement en chaque
point on peut définir un espace tangent de même dimension que la sphère, un plan, pour lequel
gij = δij. La sphère est un espace non-euclidien, dit sphérique.

Remarque 13. Sur un cylindre de rayon ρ, utilisons les coordonnées cylindrique (ρ, φ, z) avec ρ
constant. La métrique s’écrit :

ds2 = ρ2dφ2 + dz2

Les coefficients de la métrique sont bien des constantes, sa signature est (++). La courbure du cylindre
est extrinsèque.

Passons en coordonnées polaires sphériques (ρ, φ) à la surface de la sphère. On pose ρ = θr
le déplacement à la surface de la sphère (ρ = πr d’un pôle à l’autre) :

ρ = θr

dρ = rdθ

dρ2 = r2dθ2
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En coordonnées polaires sphériques, la métrique de la sphère s’écrit :

ds2 = dρ2 + r2 sin2(ρ/r) dφ2 (24)

= gρρdρ2 + gφφdφ2

où gρρ = 1 et gφφ = r2 sin2(ρ/r) sont les composantes du tenseur métrique de la sphère en
coordonnées polaires sphériques. Elles sont différentes des composantes du tenseur métrique
du plan en coordonnées polaires. ((21) p. 63). La métrique (et le tenseur métrique) détermine
la courbure intrinsèque d’un espace, mais dépend du système de coordonnées employé. Nous
chercherons une fonction du tenseur métrique (et de ses dérivées) qui donne la courbure de
l’espace mais qui ne dépende pas du système de coordonnées. Nous verrons également les
conditions pour qu’une matrice soit effectivement un tenseur métrique.

8.2 Métrique d’une surface

Soit une surface non plane plongée dans un espace euclidien de dimension 3. C’est un
exemple général d’espace non-euclidien de dimension 2. En coordonnées cartésiennes (xi), une
surface est l’ensemble des point P de coordonnées (x1, x2, x3) satisfaisant la relation

f(x1, x2, x3) = 0

Sous certaines conditions que l’on suppose réalisées, on peut réécrire cette relation sous la forme

x3 = g(x1, x2) (25)

qui montre le caractère bidimentionnel de la surface. Les coordonnées x1 et x2 varient librement
dans le plan x3 = 0 et la fonction g donne la valeur de x3. La situation est donc asymétrique et
de plus la fonction f ne permet pas de représenter toutes les surfaces, par exemple les surfaces
fermées. Par analogie avec (25) on introduit deux paramètres u1 et u2 qui varient dans un
domaine ∆ du plan (u1, u2). Les trois fonctions

∀i = 1, 2, 3 xi = xi(u1, u2)

sont un sous-ensemble bidimentionnel de points dans l’espace euclidien de dimension 3 en coor-
données cartésiennes (xi). Les fonctions xi(u1, u2) sont supposées suffisamment différentiables
dans le domaine de définition ∆. La situation est à nouveau symétrique. C’est la représentation
d’une surface en paramètres de Gauss. On peut concevoir u1 et u2 comme des coordonnées de
surface, de la surface. Le choix des paramètres de Gauss est sans limites, nous pouvons changer
de paramètres en posant les deux relations inversibles suivantes :

∀j = 1, 2 vj = vj(u1, u2)

v1 et v2 sont aussi des coordonnées pour la surface. Supposons donc que l’on ait

∀i = 1, 2, 3 xi = xi(u1, u2)

cela nous place de fait sur la surface. La métrique de la surface peut toujours s’écrire localement
en coordonnées cartésiennes normales grâce au théorème de Pythagore en trois dimensions :

ds2(u1, u2) = (dx1)2(u1, u2) + d(x2)2(u1, u2) + d(x3)2(u1, u2)

=
3∑

i=1

(dxi)2(u1, u2)

Elle contient toute l’information concerant la courbure intrinsèque de la surface, autrement
dit toute l’information dont on a besoin concernant la surface. Nous n’avons pas besoin de
plonger la surface dans un espace de dimension supérieur pour étudier sa courbure intrinsèque.
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Comme l’on reste au niveau local, nous pouvons considérer le plan tangent à la surface en ce
point. En choisissant correctement l’orientation du système de coordonnées au point considéré,
cela revient en fait à poser x3 = 0 et à prendre le plan (x1, x2) comme plan tangent. La
métrique locale de la surface peut toujours s’écrire en coordonnées cartésiennes normales grâce
au théorème de Pythagore en deux dimensions :

ds2(u1, u2) = (dx1)2(u1, u2) + d(x2)2(u1, u2)

=
2∑

i=1

(dxi)2(u1, u2)

=
2∑

i=1

(
∂xi

∂u1
du1 +

∂xi

∂u2
du2

)2

=
2∑

i=1

(
∂xi

∂u1

)2

(du1)2 + 2
∂xi

∂u1

∂xi

∂u2
du1du2 +

(
∂xi

∂u2

)2

(du2)2

= g11du1du1 + 2g12du1du2 + g22du2du2

= Edu1du1 + 2Fdu1du2 + Gdu2du2

appelée première forme quadratique fondamentale de la surface considérée.

ds2(u1, u2) =
2∑

i=1

∂xi

∂uj

∂xi

∂uk
dujduk

= gjkdujduk (26)

où l’objet géométrique à deux indices et quatre composantes

gjk ,
2∑

i=1

∂xi

∂uj

∂xi

∂uk
(27)

est appelé tenseur métrique. Le nombre d’indices est appelé l’ordre du tenseur, le tenseur mé-
trique est d’ordre deux. Dans un espace de dimension n, le tenseur métrique a n2 composantes.
L’égalité

(dx1)2 + (dx2)2 = g11(du1)2 + 2g12du1du2 + g22(du2)2

montre que les termes carrés g11 et g22 du tenseur métrique indiquent le carré de l’échelle qui
a été appliquée en chaque point au système de coordonnées rectangulaires. Le terme rectangle
g12 apparait lorsque le système de coordonnées ui est oblique. Le tenseur métrique donne en
quelque sorte l’écart au système de coordonnées orthonormées.

Exemple 8.2.1. Si le système de coordonnées (u1, u2) est tel que




x1(u1) = 2u1

x2(u2) = u2

alors un point de coordonnée u1 = 1 a aussi pour coordonnée x1 = 2. L’échelle u1 est
deux fois plus grande que l’échelle x1. D’après (27) p. 71

g11 =

(
∂x1

∂u1

)2

= 4

(dx1)2 + (dx2)2 = 4(du1)2 + (du2)2
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D’après (26) p. 71, si les coordonnées de Gauss sont fonction du paramètre α, la longueur
d’une courbe du point a au point b a pour expression :

L =
ˆ b

a

ds

=
ˆ b

a

√
gjkdujduk

=
ˆ α1

α0

√

gjk
∂uj

∂α

∂uk

∂α
dα

Notez que lorsque la variation de L est nulle, δL = 0, le trajet entre les points a et b est
extrémal.
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L’espace de la relativité restreinte, appelé espace de Minkowski ou espace-temps de Poincaré-
Minkowski, est l’exemple prototypique d’un espace pseudo-euclidien.

9.1 Référentiels et principe de relativité

Définition 9.1.1. Référentiel
Un référentiel est un espace muni d’un système de coordonnées, et un temps mesuré par
une horloge fixe dans cet espace.

Définition 9.1.2. Principe de relativité
Parmi tous les référentiels possibles, il existe un ensemble infini continu de référentiels
dans lesquels les lois de la physique s’écrivent sous la même forme mathématique.

Définition 9.1.3. Référentiels équivalents
Les référentiels dans lesquels les lois de la physique s’écrivent sous la même forme ma-
thématique sont dits équivalents.

Définition 9.1.4. Référentiel galiléen
Les référentiels équivalents qui se déplacent d’un mouvement de translation rectiligne uni-
forme (à vecteur vitesse constant) par rapport aux étoiles lointaines sont appelés référen-
tiels galiléens.
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Définition 9.1.5. Configuration standard
Deux référentiels galiléens sont en configuration standard si :

— les centres des référentiels se croisent et se superposent à l’instant t0 = t′
0 = 0

— on utilise les coordonnées galiléennes (t, x, y, z), les repères sont orthonormés
directs, l’axe du temps est représenté normal à Ox, à Oy et à Oz

— le mouvement rectiligne n’a lieu que selon les axes Ox et O′x′ parallèles et de
même sens (confondus car les centres se superposent), vey = v′

ey′ = vez = v′
ez′ = 0

— le mouvement de translation est tel que les axes Oy et O′y′ sont parallèles, donc
aussi les axes Oz et O′z′ (pas de rotation statique)

— le mouvement uniforme de R′ est dans le sens des x croissants. La vitesse d’en-
trainement de R′ dans R selon l’axe Ox est positive ou nulle, vex = ‖~ve‖ = ve > 0

9.2 Invariants relativistes

On postule l’existence d’une vitesse limite notée c. Cette vitesse est donc invariante par
changement de référentiel galiléen, elle a même valeur pour tous les observateurs galiléens
sinon nous pourrions la dépacer par changement de référentiel. À un changement de référentiel
correspond une transformation des coordonnées spatio-temporelles, chaque référentiel ayant a
priori son propre système de coordonnées spatio-temporelles. La transformation de coordonnées
spatio-temporelles que l’on cherche doit laisser invariante c.

À partir de la vitesse limite on peut trouver un deuxième invariant relativiste qui fait in-
tervenir les coordonnées spatio-temporelles. Soient deux référentiels galiléens R et R′ en confi-
guration standard avec la vitesse relative d’entrainement V. Imaginons qu’à l’origine spatiale
O(0, 0, 0) de R se produise un flash à l’instant initial t0 = t′

0 = 0. Pour simplifier, on suppose
que la lumière se propage à la vitesse limite c. Un observateur dans R verra une sphère de
lumière de centre O s’étendre dans l’espace, d’équation :

x2 + y2 + z2 = (ct)2

En relativité restreinte comme en physique non relativiste, un observateur dans R′ verra aussi
une sphère de lumière s’étendre dans l’espace. Cependant, par invariance de c, en relativité la
sphère de lumière vue par un observateur dans R′ n’a pas pour centre O mais O′, et a pour
équation dans R′ :

x′2 + y′2 + z′2 = (ct′)2

L’équation de la sphère de lumière est invariante par changement de référentiels galiléens, c’est
un invariant relativiste.

9.3 Équation de la sphère de lumière

L’équation de la sphère de lumière étant la même dans tous les référentiels galiléens cela
suggère de poser au choix

∆s2 = c2∆t2 −
(
∆x2 + ∆y2 + ∆z2

)
ou ∆s2 = ∆x2 + ∆y2 + ∆z2 − c2∆t2
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Nous choisissons la convention de genre temps, l’autre étant la convention de genre espace :

∆s2 = c2∆t2 − ∆x2 − ∆y2 − ∆z2 (28)

Cette expression rappelle celle du carré de la distance euclidienne en trois dimensions d’espace.
Or, si s2 est nul dans un référentiel galiléen R, alors il est nul dans tout autre référentiel galiléen
R′, autrement dit s et s′ sont proportionnels :

s = αs′

9.4 Espace homogène et isotrope, temps homogène

L’espace étant supposé homogène (toute expérience donne le même résultat indépendam-
ment de l’endroit où elle est faite), le facteur de proportionnalité α ne peut être fonction des
coordonnées. Le temps étant également supposé homogène (toute expérience donne le même
résultat indépendamment de l’époque à laquelle elle est faite), α ne peut être fonction du temps.
L’espace étant supposé isotrope (toute expérience donne le même résultat indépendamment de
l’orientation choisie dans l’espace), α ne peut être fonction de la direction de la vitesse relative
des référentiels. α n’est donc fonction que de la norme de la vitesse relative des référentiels :

s = α(V)s′

9.5 Loi de composition interne

Si l’on considére trois référentiels d’inertie nous avons




s1 = α(V12)s2

s2 = α(V23)s3

s1 = α(V13)s3

soit,

s1 = α(V12)α(V23)s3

α(V13) = α(V12)α(V23)

Cette relation est impossible car V13 dépend non seulement des valeurs V12 et V23, mais aussi
de l’angle entre les vecteurs V12 et V23. Par conséquent α est une constante et nous avons :

α = α2

Cela laisse deux possibilités, α = 0 donne s = 0 ce qui est impossible, donc α = 1 et :

s = s′ (29)
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9.6 Intervalle d’univers

s est une distance spatio-temporelle quadridimentionnelle, invariante par changement de
référentiel galiléen, donc absolue dans l’espace-temps. Cette distance dans l’espace-temps entre
deux évènements est appelée intervalle d’univers ou distance d’univers ou intervalle d’espace-
temps ou métrique de l’espace-temps. Elle a même valeur dans tout référentiel galiléen. À partir
de (28) p. 75, considèrons deux évènements infiniment proches (t, x, y, z) et (t + dt, x + dx, y +
dy, z + dz) :

ds2 = c2dt2 − dx2 − dy2 − dz2 (30)

Si les deux évènements appartiennent à une trajectoire décrite avec une vitesse v(t), nous
avons dx2 + dy2 + dz2 = v2(t)dt2 :

ds2 =
[
c2 − v2(t)

]
dt2 (31)

Si v(t) est inférieure à c alors ds2 > 0 et s est réel dans la convention de genre temps. Pour un
déplacement à la vitesse limite, l’intervalle d’univers ds est nul.

Nous sommes ainsi conduits, en relativité restreinte, à douer la variété d’univers V4 de la
métrique définie par la forme quadratique différentielle (30), appelée métrique de Minkowski.
Cette métrique étant à coefficients constants en coordonnées rectangulaires appelées coordon-
nées galiléennes (t, x, y, z), elle définit V4 comme un espace pseudo-euclidien : le « pseudo »
vient du fait que la métrique n’a pas que des signes positifs ou que des signes négatifs, le « eu-
clidien » vient des coefficients constants en coordonnées galiléennes. À cet espace on donne le
nom d’espace-temps de Poincaré-Minkowski.

L’espace-temps de la relativité restreinte est un espace riemannien pseudo-euclidien. Nous
verrons qu’il est osculateur (tangent à l’ordre deux) à l’espace-temps pseudo-riemannien de la
relativité générale.

Substituons aux coordonnées t, x, y, z les coordonnées galiléennes réduites (9) p. 24 : La
métrique prend alors la forme :

ds2 =
(
dx0

)2 −
(
dx1

)2 −
(
dx2

)2 −
(
dx3

)2

Appelons ηαβ le tenseur métrique de l’espace de Poincaré-Minkowski dans ce système de coor-
données, les indices grecs variant de 0 à 3 :

ds2 = ηαβdxαdxβ

avec :

[ηαβ ] =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 (32)

Le déterminant de cette matrice est négatif :

η = 1 × −1 × −1 × −1

= −1 (33)

En convention de genre espace il est aussi négatif :

η = −1 × 1 × 1 × 1

= −1
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L’espace-temps de Poincaré-Minkowski peut bien entendu être rapporté à un système de coor-
données curvilignes (yα) quelconque et la métrique s’écrit

ds2 = gαβdyαdyβ

où les gαβ sont fonction des coordonnées curvilignes. D’après la loi d’inertie de Sylvester 5.3
p. 49, le déterminant g est négatif également en coordonnées curvilignes. La forme quadratique
associée à l’espace de Minkowski de la relativité restreinte, (28) p. 75 :

Q(t, x, y, z) = c2t2 − x2 − y2 − z2

a pour signature (1, 3) et pour rang 4.

9.7 Longueur d’un arc de courbe

Dans un système de coordonnées quelconque (xα) de l’espace de Minkowski, la longueur
d’une courbe C : xα = xα(λ) pour λ1 > λ > λ0 a pour expression :

Γ =
ˆ s1

s0

ds

=
ˆ s1

s0

√
εηαβdxαdxβ

=
ˆ λ1

λ0

√

εηαβ
dxα

dλ

dxβ

dλ
dλ

où la fonction indicatrice ε est définie par :




ε = 1 si ηαβ dxαdxβ > 0

ε = −1 si ηαβ dxαdxβ < 0
(34)

Soit r(xα) le quadrivecteur position d’un évènement de la courbe et soit

u(λ) = r′(λ)

= dxα/dλ

où le prime désigne la dérivation par rapport au paramètre λ. Le vecteur r′ est en tout point
tangent à la courbe, il forme un champ de vecteurs tangents. Si le paramètre est le temps propre
τ de la particule qui décrit la courbe (temps affiché par une horloge liée à la particule), alors
u(τ) est la quadrivitesse de cette particule.

Pour λ1 > λ > λ0, la longueur s’écrit

Γ =
ˆ λ1

λ0

‖u(λ)‖dλ

où ‖u(λ)‖ est la pseudo-norme de u(λ).

La métrique étant indéfinie, un arc de courbe peut avoir une longueur nulle.
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Exemple 9.7.1. Considérons la courbe paramétrique, pour 1 > λ > 0 :




x0 = 5λ

x1 = 3 sin λ

x2 = 3 cos λ

x3 = 4λ

(
dxα

dλ

)
= (5, 3 cos λ, −3 sin λ, 4)

ε

(
ds

dλ

)2

= ηαβ
dxα

dλ

dxβ

dλ

= 52 − (3 cos λ)2 − (−3 sin λ)2 − 42

= 0

Si bien que :

Γ =
ˆ 1

0

0dλ

= 0

Définition 9.7.1. Courbe nulle
Une courbe est nulle si l’un de ses arcs est de longueur nulle. Un arc représente plus d’un
point, et correspond à un intervalle c > λ > d avec c > d.

Définition 9.7.2. Arc de courbe nul en un point
Un arc de courbe est nul au point de paramètre λ = λ0 si le vecteur tangent à l’arc de
courbe en ce point est nul :

ds

dλ

∣∣∣∣∣
λ0

= 0

En ce point l’abscisse curviligne s arrête de croître (ou de décroître) avec le paramètre λ.

Définition 9.7.3. Ensemble nul d’une courbe
L’ensemble des valeurs du paramètre λ pour lesquelles l’arc de courbe est nul s’appelle
l’ensemble nul de la courbe.

Un arc de courbe peut être nul sans que sa longueur soit nulle, car il suffit que l’un de ses
segments soit de longueur nulle. En revanche, un arc de courbe de longueur nulle est nécessai-
rement nul.



Espaces pseudo-euclidiens 79

9.8 Courbe régulière

Pour une métrique définie positive, l’abscisse curviligne est bien définie comme une fonction
strictement croissante du paramètre de la courbe (ce paramètre est lui aussi une fonction
strictement croissante de l’abscisse curviligne). Nous pouvons librement passer de l’un de ces
paramètres à l’autre. Ce n’est plus le cas pour un arc de courbe nul, l’abscisse curviligne ne
peut plus être définie.

Définition 9.8.1. Courbe régulière
Une courbe est régulière si elle n’a pas de point nul, c’est-à-dire si en tout point

ds/dλ > 0 ou ds/dλ < 0

Soit une courbe régulière donnée en fonction de son abscisse curviligne xα = xα(s).
dr
ds

=
dr
dλ

dλ

ds

=
u(λ)

‖u(λ)‖
= t(λ)

t(λ) = dxα/ds est le vecteur tangent unitaire en chaque point de la courbe. Lorsque le paramètre
λ est le temps propre de la particule qui décrit la courbe, t(τ) est sa quadrivitesse unitaire.
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10.1 Espaces riemanniens

Les espaces proprement riemanniens regroupent les espaces euclidiens (plats) et non eucli-
diens (courbes). La métrique proprement riemannienne est une forme différentielle quadratique
définie positive. Les espaces pseudo-riemanniens regroupent les espaces pseudo-riemanniens
plats, c’est-à-dire pseudo-euclidien, et pseudo-riemanniens courbes. La métrique pseudo-rieman-
nienne est une forme différentielle quadratique indéfinie.

Les espaces riemanniens regroupent les espaces proprement riemanniens et pseudo-rieman-
niens. Dans le système de coordonnées (xi), leurs métriques s’écrivent :

ds2 = gij(xi)dxidxj

Les variétés généralisent les espaces riemanniens en levant la contrainte sur l’écriture de la
métrique. Le tableau suivant récapitule les différents espaces :

Variété Proprement r. Proprement r. Pseudo-riemann. Pseudo-riemann.
ou Pré-euclidien Pré-euclidien
espace Euclidien Non-euclidien Pseudo-euclidien Pseudo-r. courbe
Métrique définie positive définie positive indéfinie indéfinie
Signature + N/A + et - N/A
Représentation plat courbe plat courbe
Sys. de coord. rectiligne curviligne rectiligne curviligne
Coefficients constants f(x) constants f(x)
Application ϕ classique Méca. analytique Relat. restreinte Relat. générale
Exemple plan sphère esp. de Minkowski trajec. Mercure

Par « Métrique » on entend forme quadratique associée au tenseur métrique ou bien matrice
représentative du tenseur métrique. Les coefficients de la métrique sont les composantes du
tenseur métrique.
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10.1.1 Propriétés du tenseur métrique

Propriétés 10.1.1. Propriétés du tenseur métrique d’un espace de Riemann

(1) Les composantes gij(xi) sont différentiables de classe C2, leurs dérivées partielles
secondes par rapport aux coordonnées existent et sont continues

(2) Les gij sont symétriques : gij = gji

(3) La matrice G est telle que sa forme quadratique différentielle associée est une
distance : gijdxidxj doit être invariante par changement de coordonnées

(4) Définie : ∀u, giju
iuj = 0 ⇒ u = 0

(5) Positive : ∀u, giju
iuj > 0

Lorsque G est définie positive, le déterminant g et g11, g22, . . . , gnn sont tous positifs. Dans
les espaces pseudo-riemanniens les propriétés (4) et (5) sont remplacées par la propriété
moins restrictive :

(4) La matrice G est inversible (ssi son déterminant est non nul g 6= 0). Elle est dite
non singulière ou définie

Remarque 14. G est symétrique
Supposons que ce ne soit pas le cas et décomposons le tenseur métrique en une partie symétrique et une
partie antisymétrique :

∀i, j gij = 1

2
(gij + gji) + 1

2
(gij − gji)

La contribution à ds2 de la partie antisymétrique est nulle,
1

2
(gij − gji) dxidxj = 1

2

(
gijdxidxj − gjidxidxj

)

= 1

2

(
gijdxidxj − gijdxjdxi

)

= 1

2

(
gijdxidxj − gijdxidxj

)

= 0

et la métrique est symétrique.

La métrique d’un espace riemannien étant symétrique, calculons le nombre d’éléments dif-
férents de la matrice G, appelés composantes indépendantes du tenseur métrique. Comptons
les éléments diagonaux plus les éléments de la partie triangulaire supérieure de la matrice. Cela
représente la moitié des n2 éléments, plus la moitié restante des n éléments diagonaux, soit

n2

2
+

n

2
=

n(n + 1)
2

(35)

éléments différents.

Remarque 15. Si la matrice G

(1) est définie et positive, l’espace est dit proprement riemannien : pour tout vecteur v non nul,

gij vivj > 0

g et g11, g22, . . . , gnn sont tous positifs. De plus, G−1 est aussi définie positive. On peut faire
le rapprochement avec la définition d’un espace proprement euclidien.

(2) n’est pas définie positive, la métrique peut être positive, négative ou nulle, elle est indéfinie
et l’espace est dit pseudo-riemannien. On peut faire le rapprochement avec la définition d’un
espace pseudo-euclidien.
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Remarque 16. Un espace riemannien existe en lui-même et n’a nul besoin d’être plongé dans un
espace de dimension supérieure pour être représenté.

Exemple 10.1.1. Montrons que le champ de matrice suivant est le tenseur métrique d’un
espace riemannien :



(x1)2 − 1 1 0

1 (x2)2 0
0 0 64

9




On suppose que la métrique associée à cette matrice est invariante par changement de
coordonnées.

(1) Les éléments de la matrice sont des polynômes en x1 et x2, donc de classe C2.

(2) La matrice est symétrique

(3) Par hypothèse la métrique associée est invariante par changement de coordonnées

(4) g = 64
9

{
(x2)2

[
(x1)2 − 1

]
− 1

}
. On suppose que

[
(x1)2 − 1

]
− 1 6= 1 pour que la

matrice soit inversible.

Calculons la longueur de la courbe C (λ) d’équations paramétriques xi = xi(λ) :

C (λ) :





x1 = 2λ − 1

x2 = 2λ2

x3 = λ3

(0 6 λ 6 1)

Le carré de la dérivée de la distance élémentaire s’écrit :

ε

(
ds

dλ

)2

= gij
dxi

dλ

dxj

dλ

En notation matricielle :

ε

(
ds

dλ

)2

=

(
dxi

dλ

)T

G

(
dxj

dλ

)

=
(
2 4λ 3λ2

)



(2λ − 1)2 − 1 1 0
1 (2λ2)2 0
0 0 64

9







2
4λ
3λ2




= 64λ6 + 64λ4 + 16λ2

donc ε = 1.
(

ds

dλ

)2

=
(
8λ3 + 4λ

)2

ds

dλ
= 8λ3 + 4λ

Γ(λ) =
ˆ 1

0

ds =
ˆ 1

0

(
8λ3 + 4λ

)
dλ =

[
2λ4 + 2λ2

]1

0
= 4
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10.2 Variétés

10.2.1 Définitions

Tout système de n variables indépendantes xi(i = 1, . . . , n) occupant un certain domaine
constitue une variété à n dimensions. En général il n’est pas possible de couvrir une variété
avec un seul système de coordonnées qui ne soit pas dégénéré (voir la définition 7.3.2 p. 57).
Lorsque l’on ne peut pas lever la dégénérescence par changement de coordonnées on couvre la
variété avec des cartes, en référence aux cartes de géographie, chaque carte étant un système
de coordonnée couvrant une partie de la variété. L’ensemble des cartes nécessaire pour couvrir
toute la variété forme un atlas.

Plus le triangle tracé sur une sphère est petit, plus la somme de ses angles tend vers π et
son aire vers celle d’un triangle plat. Au voisinage infinitésimal d’un point, c’est-à-dire « locale-
ment », la surface de la sphère est assimilable au plan qui lui est tangent en ce point, autrement
dit à l’espace euclidien tangent de même dimension.

Définition 10.2.1. Homéomorphisme
Deux espaces topologiques sont homéomorphes s’il existe une application d’un espace dans
l’autre, qui soit continue, bijective, et d’inverse continue.

C’est un isomorphisme topologique.

Définition 10.2.2. Variété
Une variété (ou variété topologique), de dimension n, est un espace topologique localement
homéomorphe à un espace euclidien En de même dimension n.

Ces espaces sont localement équivalents.

Définition 10.2.3. Variété différentielle
Une variété différentielle (ou différentiable) est une variété sur laquelle on peut faire du
calcul différentiel.

La plupart des variétés en physique sont des variétés différentielles, ce qui signifie qu’elles
sont continues et différentiable dans le sens suivant : une variété est continue s’il existe au
voisinage de tout point d’autres points dont les coordonnées ne diffèrent qu’infinitésimalement.
Nous dirons qu’elles sont continuement paramétrisables, les paramètres étant les coordonnées
de la variété. Une variété est différentiable s’il est possible de définir un champ scalaire en tout
point de la variété qui puisse être partout différentié. L’association des points et des valeurs des
paramètres peut être vu comme une application allant des points de la variété vers les points
d’un espace euclidien de même dimension. Localement, une variété ressemble donc à un espace
euclidien.

Soient P et Q deux points d’une variété, infiniment proches, de coordonnées respectives
xi et xi + dxi. La distance infinitésimale entre P et Q, c’est-à-dire aussi le tenseur métrique,
détermine la géométrie locale de la variété au point P . Dans le cas le plus général, le carré de
la distance est une fonction des coordonnées et de leurs différentielles :

ds2 = f
(
xi, dxi

)
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La distance s’exprime dans un système de coordonnées mais c’est un invariant (par changement
de coordonnées), sa valeur est la même dans tous les systèmes de coordonnées.

10.2.2 Exemples

Exemple 10.2.1. La géométrie de Finsler est une variété différentielle de dimension 2,
dont le carré de la distance exprimée en coordonnées ξ et ζ a pour expression :

ds2 =
(
dξ4, dζ4

)1/2

Exemple 10.2.2. L’espace euclidien de la mécanique classique est une variété différen-
tielle à trois dimensions. Les paramètres sont les trois coordonnées de position.

Exemple 10.2.3. L’espace-temps de la relativité restreinte est une variété différentielle à
quatre dimensions. Les paramètres sont les trois coordonnées d’espace et celle de temps.

Exemple 10.2.4. L’espace des configurations d’un système dynamique à n degrés de li-
berté est une variété différentielle à n dimensions. À chaque point de cet espace correspond
une configuration du système.

Exemple 10.2.5. L’espace des phases d’une particule en mécanique classique est un
exemple abstrait de variété différentielle à six dimensions. Les paramètres sont les trois
coordonnées de position et les trois quantités de mouvement.

Exemple 10.2.6. Un autre exemple abstrait est donné par l’ensemble des rotations d’un
système de coordonnées rectangulaires dans un espace à trois dimensions. Les paramètres
sont les angles d’Euler et l’ensemble des rotations est une variété à trois dimensions. Les
coordonnées d’un point sont les trois angles d’Euler.
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11.1 Représentation géométrique

Tout comme les vecteurs, le produit scalaire est une notion issue de la mécanique classique.
Il permet d’exprimer le travail d’une force. En notant f l’intensité d’une force, d le déplacement
du point d’application de cette force sous l’effet de cette force, et θ l’angle que font la force et
le déplacement, le travail W (work) de la force lors de ce déplacement a pour expression :

W = fd cos(θ)

Le travail est une mesure de l’effet mécanique d’une force en l’absence de déformations. A l’ori-
gine il permettait d’évaluer l’énergie fournie par un cheval pour déplacer une charge, autrement
dit le travail du cheval. La notion de travail suggère de définir une nouvelle opération sur les
vecteurs.

Notons d le vecteur déplacement. Le produit scalaire de la force par le déplacement est la
projection du vecteur force sur le vecteur déplacement :

f · d = fd cos (f , d)

Remarque 17. Notez qu’en physique nous effectuons le produit scalaire de vecteurs qui n’appar-
tiennent pas forcément au même espace vectoriel.

Considérons l’espace ordinaire de la géométrie classique appliquée à la physique. À tout
couple de vecteurs (u, v) la multiplication scalaire fait correspondre un nombre noté u · v,
appelé leur produit scalaire, tel que :

u · v = ‖u‖‖v‖ cos(u, v)

Dans le cas particulier où u et v ont même direction,

u · v = ‖u‖‖v‖
et le produit scalaire d’un vecteur par lui-même donne le carré de sa norme euclidienne :

u · u = ‖u‖2

Notation 12. Le produit scalaire d’un vecteur avec lui-même est noté :

u · u , u
2
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Propriétés 11.1.1. Propriétés du produit scalaire euclidien

(1) Symétrie :

u · v = ‖u‖‖v‖ cos(θ)

= ‖v‖‖u‖ cos (−θ)

= v · u

(2) Distributivité par rapport à l’addition vectorielle

v

u1

u2
u3

Fig. 11.1 – Distributivité du produit scalaire

Posons u1 ⊕ u2 = u3 :

(u1 ⊕ u2) · v =u3 · v

=‖u3‖‖v‖ cos
(
v̂, u3

)

=‖u3‖‖v‖ cos[(v̂, u1) + (û1, u3)]

=‖u3‖‖v‖
[
cos

(
v̂, u1

)
cos

(
û1, u3

)
− sin

(
v̂, u1

)
sin

(
û1, u3

)]

= ‖u3‖‖v‖

cos

(
v̂, u1

) ‖u1‖ + ‖u2‖ cos (̂u1, u2)
‖u3‖ − sin

(
v̂, u1

) ‖u2‖ sin (̂u1, u2)
‖u3‖




= ‖v‖
[
‖u1‖ cos

(
v̂, u1

)
+ ‖u2‖ cos

(
v̂, u1

)
cos

(
x̂1, u2

)
− ‖u2‖ sin

(
v̂, u1

)
sin

(
x̂1, u2

)]

(u1 ⊕ u2) · v = ‖v‖‖u1‖ cos
(
v̂, u1

)
+ ‖v‖‖u2‖ cos

(
v̂, u2

)

= u1 · v + u2 · v

Il s’agit d’un abus de langage, il n’y a pas distributivité puisque le signe ⊕ du
membre de gauche est le signe opératoire de l’addition vectorielle, alors que le
signe + du membre de droite est celui de l’addition dans R.

(3) Associativité par rapport à la multiplication par un scalaire
Posons α ⊙ u = w :

(α ⊙ u) · v = w · v

= ‖w‖‖v‖ cos(θ)

= α‖u‖‖v‖ cos(θ)

= α × (u · v)
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Il s’agit ici aussi d’un abus de langage, il n’y a pas associativité puisque le signe
⊙ du membre de gauche est le signe opératoire de la multiplication d’un vecteur
par un scalaire, alors que le signe × du membre de droite est la multiplication
dans R.

(4) Définie : ∀u, u · u = 0 ⇒ u = 0

u · u = 0

‖u‖‖u‖ cos (û, u) = 0

‖u‖2 = 0

u = 0

(5) Positive : ∀u, u · u > 0

11.2 Représentation algébrique

Par la suite, le produit scalaire a été défini de façon purement algébrique par ses propriétés.

Définition 11.2.1. Produit scalaire euclidien
Soient λ et µ deux scalaires, et soient u, v, w trois vecteurs d’un espace vectoriel E.
Supposons qu’il existe une loi de composition externe, de E × E dans R, notée ·, telle
qu’à tout couple (u, v) de vecteurs de E elle fasse correspondre un scalaire de R, noté
u · v, ayant les propriétés suivantes :

(1) Symétrie : u · v = v · u
On trouve parfois le terme « commutativité » bien que ce terme soit réservé aux
lois de composition internes, l’application produit scalaire étant une opération
externe.

(2) Bilinéarité, c’est-à-dire :

(a) Distributivité à gauche par rapport à l’addition vectorielle :

u · (v ⊕ w) = u · v + u · w

La symétrie implique la distributivité à droite.

(b) Multiplication à gauche par un scalaire :

(λ ⊙ u) · v = λ × (u · v)

La symétrie implique la multiplication à droite.

2a et 2b sont équivalents à la linéarité à gauche :

u · (λ ⊙ v ⊕ µ ⊙ w) = λ × (u · v) + µ × (u · w)

La symétrie implique la linéarité à droite. La bilinéarité regroupe la linéarité à
droite et à gauche.

(3) Définie : ∀u, u · u = 0 ⇒ u = 0

(4) Positive : ∀u, u · u > 0

Cette loi s’appelle multiplication scalaire euclidienne de u par v sur le R-espace vecto-
riel E, et le scalaire u · v est appelé produit scalaire euclidien des vecteurs u et v.
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On parle de produit scalaire (tout court) lorsque les propriétés (3) et (4) sont remplacées
par la propriété suivante :

(3) Non dégénéréscence : ∀v, u · v = 0 ⇒ u = 0
Cette propriété est moins contraignante car si la loi est définie alors elle est non-dégénérée.
En effet, par contraposée, supposons la loi dégénérée alors

∃u 6= 0 / ∀v, u · v = 0

En particulier pour u = v nous avons

∃u 6= 0 / u · u = 0

et la loi n’est pas définie.

Le produit scalaire n’est pas associatif car (u · v) · w n’a pas de sens mathématique, le
terme entre parenthèses étant un scalaire. Le produit scalaire ne fait pas partie intégrante de
la structure d’espace vectoriel, mais est une structure supplémentaire qui peut ou non être
introduite. Les espaces vectoriels munis d’un produit scalaire portent un nom particulier :

Définition 11.2.2. Espaces vectoriels pré-euclidiens
Un espace vectoriel muni d’un produit scalaire (tout court) est appelé espace vectoriel
pré-euclidien.

Définition 11.2.3. Espace vectoriel euclidien
Un espace vectoriel muni d’un produit scalaire euclidien est appelé espace vectoriel eucli-
dien, ou proprement euclidien ou purement euclidien.

L’espace vectoriel euclidien est un cas particulier d’espace vectoriel pré-euclidien.

Définition 11.2.4. Espace vectoriel pseudo-euclidien
Un espace vectoriel muni d’un produit scalaire indéfini (qui peut être positif, négatif ou
nul) est appelé espace vectoriel pseudo-euclidien ou improprement euclidien.

L’espace vectoriel pseudo-euclidien est un cas particulier d’espace vectoriel pré-euclidien.

Remarque 18. Les espaces vectoriels pré-euclidiens sont des espaces plats. L’existence d’un produit
scalaire n’est possible que dans ces espaces, et par conséquent les définit pleinement. Dans un espace
courbe, le produit scalaire n’est défini que localement dans l’espace pré-euclidien tangent.
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11.3 Expression analytique du produit scalaire

Soient u et v deux vecteurs d’un espace vectoriel pré-euclidien E2, exprimés en composantes
contravariantes dans une base quelconque (e1, e2). En utilisant la bilinéarité et la symétrie du
produit scalaire :

u · v =
(
u1e1 ⊕ u2e2

)
·
(
v1e1 ⊕ v2e2

)

=
(
v1e1 ⊕ v2e2

)
· u1e1 +

(
v1e1 ⊕ v2e2

)
· u2e2

= u1e1 ·
(
v1e1 ⊕ v2e2

)
+ u2e2 ·

(
v1e1 ⊕ v2e2

)

= u1e1 · v1e1 + u1e1 · v2e2 + u2e2 · v1e1 + u2e2 · v2e2

= u1v1e1 · e1 + u1v2e1 · e2 + u2v1e2 · e1 + u2v2e2 · e2

Généralisons à un espace à n dimensions :
Soient u = uiei et v = vjej deux vecteurs d’un espace vectoriel pré-euclidien En :

u · v = uiei · vjej

u · v = uivjei · ej (36)

Cette relation est valable que la base soit orthogonale ou non, normée ou non, car nous n’avons
pas fait d’hypothèse. Lorsque la base est orthonormée :

u · v = δiju
ivj (37)

Définition 11.3.1. Vecteurs orthogonaux
Deux vecteurs u et v d’un espace vectoriel euclidien sont orthogonaux ssi leur produit
scalaire est nul :

u · v = 0

11.4 Composantes covariantes

Le produit scalaire permet de définir les composantes covariantes. À partir d’un système
de coordonnées rectilignes obliques (x1, x2), construisons une base normée (e1, e2). En proje-
tant le vecteur u perpendiculairement aux vecteurs de base, nous obtenons ses composantes
covariantes :
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u

e1

e2

o u1

u2

x1

x2

Fig. 11.2 – Composantes covariantes du vecteur u

Nous avons :

u1 = u · e1

u2 = u · e2

Remarque 19. À chaque axe de coordonnée on associe un vecteur de base tangent normé, sur lequel
on définit deux composantes, l’une contravariante, l’autre covariante. La variance, c’est-à-dire le fait
d’être covariant ou contravariant, ne s’applique qu’aux composantes.

Remarque 20. Bien qu’ayant un indice supérieur, les coordonnées ne sont ni contravariantes ni
covariantes. Les coordonnées du point à l’extrémité d’un vecteur se confondent avec ses composantes
contravariantes, ce qui justifie la position haute de leur indice.

Remarque 21. La représentation du produit scalaire comme projection orthogonale donnée figure 11.2
ne s’applique plus lorsque le produit scalaire n’est pas euclidien. Nous verrons par exemple que dans une
base orthonormée de l’espace pseudo-euclidien de la relativité restreinte, les composantes contravariantes
et covariantes ne sont pas confondues (paragraphe 17.3 p. 146).

Définition 11.4.1. Composantes covariantes
Soit (ei) une base d’un espace vectoriel euclidien En. On appelle composantes covariantes
d’un vecteur u, les n scalaires ui tels que :

∀i ui , u · ei

Elles sont représentées au moyen d’indices inférieurs.

Remarque 22. Lorsqu’un vecteur de base est multiplié par deux, la composante covariante corres-
pondante l’est aussi, d’où son nom.

Remarque 23. La position de l’indice de numérotation des vecteurs de base (ei) indique un lien avec
la covariance (voir le paragraphe 12.8.2 p. 107).
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Bien que la base (e1, e2) soit normée :

u 6= u1e1 + u2e2

Théorème 11.4.1. Pour que n quantités rapportées à une base d’un espace vectoriel En

soient les composantes d’un vecteur, il faut et il suffit que ces quantités soient toutes covariantes
ou toutes contravariantes par changement de base.

Une égalité entre deux vecteurs est indépendante de la base dans laquelle on l’exprime
puisque les termes de l’égalité (les vecteurs) sont invariants par changement de base. Une
égalité entre deux vecteurs qui est vraie dans une base, est vraie dans toutes les bases.

11.5 Covecteurs

À tout vecteur u on peut associer son covecteur ũ = (u1, u2), qui n’est autre que le vecteur u
exprimé en composantes covariantes. Représentons u = v+w et projetons perpendiculairement
ces vecteurs sur les axes de coordonnées x1 et x2 :

u

v

w

o u1

u2

x1

x2

e1

e2

Fig. 11.3 – Composantes covariantes

Dans la base normée (e1, e2) associée au système de coordonnées :

(v1, v2) ⊕ (w1, w2) = (v1 + w1, v2 + w2)

= (u1, u2)

ṽ ⊕ w̃ = ũ

et :

α ⊙ (u1, u2) = (αu1, αu2)

Les lois de compositions sont similaires à celles écrites en composantes contravariantes (para-
graphe 3.2.3 p. 24). En effet, d’après les définitions 3.1.2 p. 15, ces lois définissent les vecteurs,
et les vecteurs sont indépendants du choix de la base, donc du choix des composantes puisque
des composantes contravariantes dans une base sont covariantes dans la base réciproque.
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11.6 Norme

11.6.1 Norme euclidienne

Dans un système de coordonnées rectangulaires, le théorème de Pythagore donne la longueur
d’un vecteur quelconque u(u1, u2, u3), appelée norme euclidienne de ce vecteur :

‖u‖ =
√

(u1)2 + (u2)2 + (u3)2

=
√

δijuiuj

Nous retrouvons l’expression analytique (37) p. 91 du produit scalaire euclidien dans une base
orthonormée. Dans l’espace euclidien en coordonnées quelconques :

‖u‖ =
√

gijuiuj

On pose alors la définition suivante :

Définition 11.6.1. Norme euclidienne d’un vecteur
Le carré de la norme euclidienne est le produit scalaire euclidien du vecteur avec lui-
même :

‖u‖2 = u · u

‖u‖ =
√

u2

11.7 Définition d’une norme

On définit une norme par ses propriétés.

Définition 11.7.1. Norme
Soit E un espace vectoriel sur le corps des réels R. L’application :

φ : E → R+

u 7→ φ(u)

est une norme si elle satisfait aux propriétés suivantes :

Séparation : ∀u ∈ E, φ(u) = 0 ⇒ u = 0

Homogénéité : ∀α ∈ R, ∀u ∈ E, φ(α ⊙ u) = |α| × φ(u)

Inégalité triangulaire : ∀(u, v) ∈ E2, φ(u) + φ(v) > φ(u ⊕ v)

Remarquons que la définition de la norme ne nécessite pas l’existence d’un produit scalaire. À
partir de l’inégalité triangulaire et de l’homogénéité, nous tirons la propriété de non-négativité :

φ(u) + ‖ − u‖ > φ(u ⊕ (−u))

φ(u) + | − 1|φ(u) > φ(0)

φ(u) + φ(u) > 0

φ(u) > 0
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La norme est donc toujours positive ou nulle. On vérifie que la norme euclidienne ‖ · ‖ est bien
une norme :

‖u‖ = 0
√

(u1)2 + (u2)2 + (u3)2 = 0

u1 = u2 = u3 = 0

u = 0

‖α ⊙ u‖ =
√

(αu1)2 + (αu2)2 + (αu3)2

= |α|‖u‖

‖u ⊕ v‖2 = (u ⊕ v)2

= u2 + v2 + 2u · v

6 ‖u‖2 + ‖v‖2 + 2‖u‖‖v‖
6 (‖u‖ + ‖v‖)2

Définition 11.7.2. Vecteur normé
On appelle vecteur normé ou vecteur unitaire, un vecteur de norme unité. En divisant un
vecteur quelconque u par sa norme, on obtient un vecteur normé :

e =
u

‖u‖
‖e‖ = 1

11.7.1 Pseudo-norme

Dans un espace vectoriel pseudo-euclidien, le produit scalaire est indéfini, le carré de la
norme de tout vecteur peut être positif, négatif ou nul, comme c’est le cas dans l’espace-
temps pseudo-euclidien de la relativité restreinte. Nous parlerons alors de pseudo-norme. En
coordonnées galiléennes réduites (9) p. 24 dans l’espace de Minkoswski, la pseudo-norme d’un
vecteur quelconque u(u0, u1, u2, u3) est définie par :

‖u‖ =
√

ε [(u0)2 − (u1)2 − (u2)2 − (u3)2]

où ε est la fonction indicatrice qui vaut ±1, de sorte que le terme sous le radical soit positif.
Cette définition nous assure que ‖u‖ > 0, mais il est possible d’avoir ‖u‖ = 0 pour u 6= 0. Un
tel vecteur s’appelle un vecteur nul (ne pas confondre avec le vecteur zéro 0(0, 0, 0)).





12
Tenseur métrique

12.1 Définition

L’expression analytique du produit scalaire de deux vecteurs, relation (36) p. 91, fait appa-
raitre le produit scalaire de tous les vecteurs de base pris deux à deux, ei · ej . Nous pouvons
former une matrice carrée à partir de ces produits scalaires.

Définition 12.1.1. Tenseur métrique
La matrice [gij] définie par ses composantes gij telles que

∀i, j gij , ei · ej

est appelée tenseur métrique ou tenseur fondamental, noté G.

On retrouve les propriétés du produit scalaire. On ajoute le fait que les composantes du
tenseur métrique sont fonction des coordonnées lorsqu’elles ne sont pas rectilignes puisque les
vecteurs de base varient d’un point à l’autre (donc dans les espaces pré-euclidiens en coordonnées
curvilignes, et dans les espaces ayant une courbure intrinsèque).

Exemple 12.1.1. Dans la base naturelle, le tenseur métrique de l’espace euclidien a pour
composantes en coordonnées cylindriques (en utilisant (6) p. 23) :

G



eρ · eρ 0 0

0 eφ · eφ 0
0 0 ez · ez


 = G




1 0 0
0 ρ2 0
0 0 1


 (38)

et en coordonnées sphériques (en utilisant (8) p. 23) :

G



er · er 0 0

0 eθ · eθ 0
0 0 eφ · eφ


 = G



1 0 0
0 r2 0
0 0 r2 sin2(θ)


 (39)

Exemple 12.1.2. À la surface d’une sphère de rayon r, plaçons nous dans la base na-
turelle (eθ, eφ) associée aux coordonnées sphériques (θ, φ), où θ est la colatitude et φ la
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longitude (voir la figure 7.4 p. 64). Le tenseur métrique a pour composantes

G

[
eθ · eθ eθ · eφ

eφ · eθ eφ · eφ

]
= G

[
r2 0
0 r2 sin2(θ)

]

où r est constant.

Au paragraphe 20.8 p. 204 nous montrons que la matrice G se transforme de façon à rendre
invariante la distance entre deux points par changement de coordonnées, donc par changement
de base. Les matrices qui se transforment de la sorte portent le nom de tenseur. Toutes les
matrices ne sont pas des tenseurs, tous les tenseurs à deux indices peuvent être représentés sous
forme de matrices. Nous verrons que la représentation matricielle des tenseurs à des limites que
n’a pas la notation indicielle.

Exemple 12.1.3. Soit (ex, ey) une base orthonormée de l’espace vectoriel euclidien E2

(le plan euclidien aussi noté R2). Le tenseur métrique a pour composantes :

G

[
ex · ex ex · ey

ex · ey ey · ey

]
= G

[
1 0
0 1

]

Exemple 12.1.4. Soit (ex, ey) la base d’un système de coordonnées cartésiennes de l’es-
pace vectoriel euclidien E2, telle que ‖ex‖ = a et ‖ey‖ = b. Le tenseur métrique a pour
composantes :

G

[
ex · ex ex · ey

ex · ey ey · ey

]
= G

[
a2 ab cos(θ)

ab cos(θ) b2

]

La symétrie du produit scalaire implique la symétrie des gij quelle que soit la base :

∀i, j ei · ej = ej · ei

∀i, j gij = gji (40)

Grâce au tenseur métrique le produit scalaire s’écrit :

u · v = giju
ivj (41)

En utilisant la non dégénérescence du produit scalaire :

Si ∀v, u · v = 0, alors u = 0

⇔ Si ∀vj , giju
ivj = 0, alors ui = 0

⇒ Si ∀j, giju
i = 0, alors ui = 0

⇒ Si





g11u
1 + g21u2 + · · · + gn1u

n = 0

g12u
1 + g22u2 + · · · + gn2u

n = 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
g1nu1 + gn2u

2 + · · · + gnnun = 0

alors u1 = u2 = · · · = un = 0
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⇒ Si




g11 g21 · · · gn1

g12 g22 · · · gn2
...

... · · · ...
g1n gn2 · · · gnn







u1

u2

...
un




=




0
0
...
0




alors




u1

u2

...
un




=




0
0
...
0




La condition nécessaire et suffisante pour que giju
ivj soit non dégénérée est que le déterminant

de la matrice carrée G soit non nul :

g 6= 0 (42)

12.2 Tenseur métrique et composantes

En utilisant les définitions 11.4.1 p. 92 et 3.2.9 p. 28 :

∀j uj = u · ej

=
∑

i

(
uiei

)
· ej

=
∑

i

ui (ei · ej)

=
∑

i

giju
i

Les gij permettent de passer des composantes contravariantes aux composantes covariantes,
autrement dit d’abaisser les indices :

∀j uj = giju
i (43)

Ces relations sont des relations entre composantes. Si i et j varient de 1 à 3, l’écriture
indicielle condense trois relations, comme le ferait une écriture vectorielle.

Exemple 12.2.1. Soit u un vecteur d’un espace vectoriel euclidien E2. Pour la première
composante covariante,

u1 = u · e1

=
(
u1e1 + u2e2

)
· e1

= u1 (e1 · e1) + u2 (e2 · e1)

= g11 u1 + g21 u2

et pour la seconde composante covariante :

u2 = u · e2

= (u1e1 + u2e2) · e2

= u1(e1 · e2) + u2(e2 · e2)

= g12 u1 + g22 u2

En écriture matricielle nous avons le système :




g11 u1 + g21 u2 = u1

g12 u1 + g22 u2 = u2

⇔
[
g11 g21

g12 g22

](
u1

u2

)
=

(
u1

u2

)
(44)
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12.3 Représentations du produit scalaire

Avec le tenseur métrique le produit scalaire de deux vecteurs (36) p. 91 s’écrit (relation (41)
p. 98) :

u · v = giju
ivj

Notation 13. On trouve aussi la notation

u · v , g(u, v)

qui montre explicitement que le tenseur métrique prend en entrée deux vecteurs et donne en sortie un
scalaire.

En utilisant les relations (43) p. 99 :

u · v = ujv
j (45)

Le tenseur métrique n’apparait plus dans l’expression du produit scalaire et tous les termes
sont précédés d’un signe positif,

u · v = u1v
1 + u2v

2 + . . . unvn

mais chaque terme est algébrique, c’est-à-dire positif, négatif ou nul.

Exemple 12.3.1. Dans l’espace vectoriel euclidien E2, montrons que le vecteur u de
composantes contravariantes (3/5, 4/(5ρ)) est normé. Les composantes sont données dans
la base naturelle polaire locale (eρ, eθ), c’est-à-dire la base présente en tout point du plan
mais différente en chaque point (on devrait parler des bases naturelles polaires au pluriel) :

u =
3
5

eρ +
4
5ρ

eθ ⇒ u

(
3/5

4/5ρ

)

Montrons également que u est orthogonal au vecteur normé v :

v =
−4
5

eρ +
3
5ρ

eθ ⇒ v

(
−4/5

3/5ρ

)

Avec la relation (15) p. 47 :

‖u‖2 = giju
iuj =

(
3/5 4/5ρ

) [1 0
0 ρ2

](
3/5

4/5ρ

)
=
(

3/5 4/5ρ

)( 3/5

4ρ/5

)
=

9
25

+
16ρ

25ρ
= 1

‖v‖2 = gijv
ivj =

(
−4/5 3/5ρ

) [1 0
0 ρ2

](
−4/5

3/5ρ

)
=
(

−4/5 3/5ρ

)(−4/5

3ρ/5

)
=

16
25

+
9ρ

25ρ
= 1

u · v = giju
ivj =

(
3/5 4/5ρ

) [1 0
0 ρ2

](
−4/5

3/5ρ

)
=
(

3/5 4/5ρ

)(−4/5

3ρ/5

)
= −12

25
+

12ρ

25ρ
= 0
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12.4 Notation matricielle des covecteurs

Nous pouvons écrire le produit scalaire sous forme de multiplication matricielle :

(
u1 u2 . . . un

)




v1

v2

...
vn




= u1v
1 + u2v

2 + · · · + unvn

et donc représenter les covecteurs par des matrices lignes. La symétrie du produit scalaire
devient :

(
u1 u2 . . . un

)




v1

v2

...
vn




=
(
v1 v2 . . . vn

)




u1

u2

...
un




En revanche l’écriture matricielle de l’égalité 44 p. 99 n’est plus possible car on aurait
[
g11 g21

g12 g22

](
u1

u2

)
=
(
u1 u2

)
(46)

qui ne respecte pas la notation que l’on a choisi pour la multiplication matricielle. Au paragraphe
14 p. 123 nous changeons de notation matricielle pour le tenseur métrique.

Remarque 24. Un covecteur n’est pas la transposée d’un vecteur car leurs composantes ne se trans-
forment pas de la même façon par changement de base :

(
u1 u2

)
6=
(
u1 u2

)

12.5 Tenseur métrique dual

Cherchons l’expression des composantes contravariantes d’un vecteur en fonction de ses
composantes covariantes. Nous devons résoudre (inverser) le système des n équations linéaires
à n inconnues uj des relations (43) p. 99 :

∀i giju
j = ui

D’après (42) p. 99 le déterminant g de la matrice G est différent de zéro, par suite le système
admet une solution unique. La méthode de résolution de Cramer donne alors :

∀j uj =
∑

i

Cij(G)
g

ui

En posant,

∀i, j gji ,
Cij(G)

g
(47)

nous obtenons les relations cherchées :

∀j uj = gjiui (48)

où les gij sont les éléments de la matrice inverse de la matrice G, appelé tenseur dual ou
tenseur conjugué du tenseur métrique. Il permet de passer des composantes covariantes aux
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composantes contravariantes, autrement dit d’élever les indices. La notation avec deux indices
supérieurs sera justifiée au paragraphe 20.8 p. 204.

G étant symétrique, il en est de même de [gij]. De plus les déterminants de matrices inverses
sont inverses l’un de l’autre :

GG−1 = I (49)

det
(
GG−1

)
= det I

det G × det G−1 = 1

det[gji] =
1
g

(50)

Les relations (43) p. 99 et (48) p. 101 nous donnent :

∀k uk = gkju
j

∀i gikuk = gikgkju
j

∀i ui = gikgkju
j

Par conséquent

gikgkj = δi
j (51)

qui exprime en notation indicielle que les matrices sont inverses l’une de l’autre. En particulier
pour un espace à n dimensions :

n∑

i=1

gikgki =
n∑

i=1

δi
i

Avec la convention de sommation sur les indices répétés en haut et en bas :

gikgki = δi
i

= δ1
1 + δ2

2 + · · · + δn
n

= n (52)

Notez que δii = 1 d’après la définition 2.3.1 p. 7.

Exemple 12.5.1. Dans la base naturelle polaire le tenseur métrique a pour composantes :

G

[
eρ · eρ eρ · eθ

eθ · eρ eθ · eθ

]
= G

[
1 0
0 ρ2

]

Les éléments du tenseur métrique sont fonction des coordonnées, par exemple ici gθθ = ρ2.
On les appelle des fonctions métriques. Le déterminant du tenseur métrique polaire vaut :

g = 1 × ρ2 − 0 × 0

= ρ2

L’inverse du tenseur métrique dans la base naturelle polaire a pour composantes :
[
gij
]

=
1
ρ2

[
ρ2 0
0 1

]

=

[
1 0
0 1/ρ2

]
(53)
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Exemple 12.5.2. À la surface d’une sphère de rayon r le tenseur métrique a pour com-
posantes :

G

[
r2 0
0 r2 sin2(θ)

]

Le déterminant du tenseur métrique vaut :

g = r4 sin2(θ)

L’inverse du tenseur métrique s’écrit :
[
gij
]

=
1

r4 sin2(θ)

[
r2 sin2(θ) 0

0 r2

]

=

[
1/r2 0

0 1/(r2 sin2(θ))

]
(54)

Exemple 12.5.3. Le tenseur métrique de Schwarzschild
La métrique de Schwarzschild s’écrit :

ds2 = eαc2dt2 − eβdr2 − r2dθ2 − r2 sin2(θ)dφ

où α et β sont des fonctions de r et t. En coordonnées galiléennes réduites, (9) p. 24 :

ds2 = g00d(x0)2 + g11d(x1)2 + g22d(x2)2 + g33d(x3)2

avec 



g00 = eα

g11 = −eβ

g22 = −r2

g33 = −r2 sin2(θ)

⇔ G




eα 0 0 0
0 −eβ 0 0
0 0 −r2 0
0 0 0 −r2 sin2(θ)


 (55)

Le déterminant de G s’écrit

g = −eαeβr4 sin2(θ) (56)

Les composantes du tenseur dual s’écrivent :

g00 =
1
g

∣∣∣∣∣∣∣

−eβ 0 0
0 −r2 0
0 0 −r2 sin2(θ)

∣∣∣∣∣∣∣
⇒ g00 =

−eβr4 sin2(θ)
−eαeβr4 sin2(θ)

g11 =
1
g

∣∣∣∣∣∣∣

eα 0 0
0 −r2 0
0 0 −r2 sin2(θ)

∣∣∣∣∣∣∣
⇒ g11 =

eαr4 sin2(θ)
−eαeβr4 sin2(θ)

g22 =
1
g

∣∣∣∣∣∣∣

eα 0 0
0 −eβ 0
0 0 −r2 sin2(θ)

∣∣∣∣∣∣∣
⇒ g22 =

eαeβr2 sin2(θ)
−eαeβr4 sin2(θ)

g33 =
1
g

∣∣∣∣∣∣∣

eα 0 0
0 −eβ 0
0 0 −r2

∣∣∣∣∣∣∣
⇒ g33 =

eαeβr2

−eαeβr4 sin2(θ)
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



g00 = e−α

g11 = −e−β

g22 = − 1
r2

g33 = − 1
r2 sin2(θ)

⇔
[
gij
]

=




e−α 0 0 0
0 −e−β 0 0
0 0 − 1

r2 0
0 0 0 − 1

r2 sin2(θ)




12.6 Différentielle du déterminant du tenseur métrique

La relation (14) p. 41 donne la différentielle du déterminant du tenseur métrique :

dg =
∑

i

∑

j

dgij Cij(G)

La relation (47) p. 101 donne l’expression du cofacteur :

dg = ggijdgij (57)

∂kgdxk = ggij∂kgijdxk

∂kg = ggij∂kgij (58)

Remarque 25. Ce dernier résultat s’obtient également par :

g =
∑

i

gij Cij(G)

∀k ∂kg =
∑

i

∂k[gij Cij(G)]

=
∑

i

{
∂[gij Cij(G)]

∂gij

∂gij

∂xk

}

Le Cij(G) ne contenant pas explicitement gij :

∀k ∂kg =
∑

j

[Cij(G) ∂kgij ]

Avec (52) p. 102 :

∀k ∂kg =
∑

i

[
Cij(G) gijgij ∂kgij

]

= g
∑

i

(
gij∂kgij

)

= ggijgij,k

12.7 Tenseur métrique et norme

La définition du carré de la norme d’un vecteur 11.6.1 p. 94

‖u‖2 = u · u

peut s’écrire grâce au tenseur métrique.
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Définition 12.7.1. Norme d’un vecteur
Le carré de la norme d’un vecteur a pour expression

‖u‖2 = giju
iuj

Nous avons également :

‖u‖2 = gijuiuj

= uiu
i

12.8 Tenseur métrique et bases

12.8.1 Base orthonormée

Définition 12.8.1. Base orthogonale
Une base (e1, e2, . . . , en) d’un espace vectoriel euclidien En est orthogonale ssi ses vecteurs
sont orthogonaux deux à deux :

∀i 6= j, ei · ej = 0

∀i 6= j, gij = 0 (59)

G est donc diagonale. L’inverse d’une matrice diagonale étant diagonale :

∀i 6= k, gik = 0

Les relations (51) p. 102 pour i = j deviennent :

∀i = 1, . . . , n gikgki = 1 sans sommer sur i

Les termes non diagonaux étant nuls, i = k :

∀i = 1, . . . , n giig
ii = 1 sans sommer sur i

soit, dans toute base orthogonale :

g11 =
1

g11
, g22 =

1
g22

, . . . , gnn =
1

gnn
(60)

Définition 12.8.2. Base orthonormée
(ei) est une base orthonormée d’un espace vectoriel euclidien ssi ses vecteurs sont normés
et orthogonaux deux à deux :

∀i, j ei · ej = δij

∀i, j gij = δij

Dans toute base orthonormée d’un espace vectoriel euclidien, les composantes covariantes
et contravariantes sont confondues. En effet, en partant des relations (43) p. 99 et avec la
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définition 12.8.2 ci-dessus :

∀i ui = giju
j

= δiju
j

= ui

Il est souvent avantageux de se placer dans une base orthonormée.

Théorème 12.8.1. Théorème de Gram-Schmidt
Tout espace vectoriel pré-euclidien admet des bases orthonormées.

La démonstration est donnée en annexe 27.2 p. 373.

Exemple 12.8.1. Dans l’espace de la physique classique non relativiste, plaçons nous
dans la base orthonormée (ex, ey, ez). Le tenseur métrique a pour composantes :

G




ex · ex ex · ey ex · ez

ey · ex ey · ey ey · ez

ez · ex ez · ey ez · ez


 = G




1 0 0
0 1 0
0 0 1




Exemple 12.8.2. Plaçons-nous dans l’une des deux bases canoniques (e0, e1, e2, e3),
c’est-à-dire les plus simples, de l’espace-temps de la relativité restreinte :





e0(1, 0, 0, 0)

e1(0, i, 0, 0)

e2(0, 0, i, 0)

e3(0, 0, 0, i)

ou





e0(i, 0, 0, 0)

e1(0, 1, 0, 0)

e2(0, 0, 1, 0)

e3(0, 0, 0, 1)

où i est le nombre imaginaire tel que i2 = −1. Dans la première base canonique (conven-
tion de genre temps), le tenseur métrique a pour composantes :

η




e0 · e0 e0 · e1 e0 · e2 e0 · e3

e1 · e0 e1 · e1 e1 · e2 e1 · e3

e2 · e0 e2 · e1 e2 · e2 e2 · e3

e3 · e0 e3 · e1 e3 · e2 e3 · e3


 = η




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




L’espace-temps de la relativité restreinte est pseudo-euclidien (en coordonnées rectangu-
laires son tenseur métrique est diagonal et ses composantes valent ±1). Sa base canonique
est pseudo-orthonormale. Calculons l’inverse du tenseur métrique :




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




−1

=




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 (61)

Le tenseur métrique de l’espace-temps de la relativité restreinte est égal à son inverse.
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12.8.2 Base orthogonale non normée

Dans une base orthogonale non normée, les composantes covariantes et contravariantes ne
sont pas confondues. Soit (e1, e2) une base orthogonale d’un espace vectoriel euclidien E2, telle
que ‖e1‖ = 2 et ‖e2‖ = 1 (Fig. 12.1).

+ +

u

e1

e2

O

u1u1

u2 = u2

Fig. 12.1 – Base orthogonale non normée

Pour avoir,

u = u1e1 + u2e2

la composante contravariante u1 est divisée par 2 pour compenser la multiplication par 2 de
la norme du vecteur de base e1. Elle varie contrairement (contra-variante) à la norme de son
vecteur de base e1.

La composante covariante u1, telle que

u1 = u · e1

est multipliée par 2 en même temps que le vecteur de base e1. Elle varie comme (co-variante)
la norme de son vecteur de base e1.

Bien que la base soit orthogonale nous avons quand même u 6= u1e1 + u2e2, car lors d’un
changement de base la composante covariante u1 et le vecteur de base e1 sont multipliés dans
le même rapport, ne laissant pas invariant u1e1 +u2e2. En utilisant les relations (43) p. 99 nous
avons :

u1 = g11u
1

= (e1 · e1) u1

= ‖e1‖2u1

= 4u1

La composante g11 = e1 · e1, et de façon générale toutes les composantes gij, est covariante au
carré puisqu’elle varie comme ‖e1‖2. Nous la dirons deux fois covariante.

Remarque 26. Par abus de langage nous dirons que le tenseur est deux fois covariant alors que ce
sont ses composantes qui le sont.

La double covariance du tenseur métrique permet l’indépendance du produit scalaire par
changement de base, relation (36) p. 91.
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Pour la seconde composante :

u2 = g22u2

= (e2 · e2) u2

= ‖e2‖2u2

= u2

Le tenseur métrique s’écrit :
[
e1 · e1 e1 · e2

e2 · e1 e2 · e2

]
=

[
4 0
0 1

]

12.8.3 Base oblique normée

u

e2

e1

O
u1

u2

u1

u2

α

Fig. 12.2 – Base oblique normée

Le tenseur métrique s’écrit :
[
e1 · e1 e1 · e2

e2 · e1 e2 · e2

]
=

[
1 cos(α)

cos(α) 1

]

Son déterminant vaut

g = 1 − cos2 α

= sin2 α

et son inverse s’écrit :
[
gij
]

=
1

sin2 α

[
1 − cos(α)

− cos(α) 1

]
(62)

12.8.4 Base oblique non normée
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Exemple 12.8.3. Soit {e1(2, 0), e2(−1, 3)} une base de l’espace vectoriel E2. Le tenseur
métrique s’écrit :





g11 = e1 · e1

g12 = e1 · e2

g21 = e2 · e1

g22 = e2 · e2

⇒





g11 = 4

g12 = −2

g21 = −2

g22 = 10

⇒ G

[
4 −2

−2 10

]

Cette base est oblique et non normée. Déterminons les composantes de son inverse [gij].
L’inverse d’une matrice vaut un sur le déterminant fois la transposée de la comatrice :

M−1 =
1

det M
[com(M)]T

Or :

g = 4 × 10 − (−2) × (−2)

= 36

La comatrice de toute matrice symétrique est symétrique. Ici elle a pour composantes :

com G

[
10 2
2 4

]

Toute matrice symétrique étant égale à sa transposée (com G)T = com G, et :

[gij] =
1
18

[
5 1
1 2

]

Déterminons l’inverse du tenseur métrique grâce aux relations (51) p. 102 :




g11g11 + g12g
21 = δ1

1

g11g12 + g12g
22 = δ2

1

g21g11 + g22g
21 = δ1

2

g21g12 + g22g
22 = δ2

2

⇒





4g11 − 2g21 = 1

4g12 − 2g22 = 0

− 2g11 + 10g21 = 0

− 2g12 + 10g22 = 1

⇒





g11 = 5/18

g12 = 1/18

g21 = 1/18

g22 = 1/9





13
Formes linéaires

13.1 Formes linéaires

Nous donnons une définition alternative à la définition 5.0.7 p. 44 d’une forme linéaire.

Définition 13.1.1. Forme linéaire
Soit E un espace vectoriel sur le corps des réels R. Une forme linéaire est une application
qui à un vecteur v de E associe, ou fait correspondre, un scalaire α de son propre corps
R et qui est linéaire :

x̃ :E → R

v 7→ x̃(v) = α

∀u, v ∈ E × E, ∀λ ∈ R, x̃(λ ⊙ u ⊕ v) = λx̃(u) + x̃(v)

L’équivalence entre les deux définitions est démontrée un peu plus loin, théorème 13.1.2
p. 113.

Exemple 13.1.1. Produit scalaire avec un vecteur donné
Soit v un vecteur donné d’un espace vectoriel E sur le corps R. Le produit scalaire avec
le vecteur v, noté fv, prend en entrée un vecteur x de E et donne en sortie un scalaire
de R :

fv(x) = v · x

= vixi

De plus, le produit scalaire possède les propriétés de linéarité de la définition 13.1.1 p. 111
d’une forme linéaire :

(1) Additivité :

fv(x) + fv(y) = v · x + v · y

= v · (x + y)

= fv(x + y)
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(2) Homogénéité :

αfv(x) = α(v · x)

= v · (αx)

= fv(αx)

Par conséquent, fv est une forme linéaire. Reprenons le produit scalaire (45) p. 100 :

u · v = uiv
i

Nous pouvons l’écrire

ũ(v) = uiv
i

où ũ prend en entrée un vecteur et donne en sortie un scalaire. Notons que par symétrie
du produit scalaire :

ũ(v) = ṽ(u)

Exemple 13.1.2. Soit E = R2 un espace vectoriel de dimension 2, et soit v un vecteur
de E de composantes (v1, v2). L’application,

x̃ : R2 → R

v(v1, v2) 7→ x̃(v) = 2v1 + 3v2

est une forme linéaire sur R2. En effet, x̃ prend en entrée un vecteur et donne en sortie
un scalaire (sous la forme d’un polynôme homogène de degré un des variables v1 et v2).
Nous pouvons vérifier les deux conditions de linéarité :

(1) Additivité : soient u, v, w ∈ E3 tels que w = u ⊕ v,

x̃(u ⊕ v) = x̃(w)

= 2w1 + 3w2

= 2(u1 + v1) + 3(u2 + v2)

= 2u1 + 3u2 + 2v1 + 3v2

= x̃(u) + x̃(v)

(2) Homogénéité : Soient u, v ∈ E2 tels que u = λ ⊙ v,

x̃(λ ⊙ v) = x̃(u)

= 2u1 + 3u2

= 2(λv1) + 3(λv2)

= λ(2v1 + 3v2)

= λx̃(v)

Exemple 13.1.3. Soit E = Rn un espace vectoriel de dimension n, et soit v un vecteur
de E de composantes (v1, v2, . . . , vn). L’application qui à un vecteur associe le carré de
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sa norme est une forme quadratique (voir la définition 12.7.1 p. 105) :

x̃ : Rn → R

v(v1, v2, . . . , vn) 7→ x̃(v) = ‖v‖2 = gijv
ivj

Elle n’est pas linéaire (puisque quadratique). En effet, soient u, v ∈ E2 :

x̃ : Rn → R

x̃(u ⊕ v) = ‖u ⊕ v‖2

6= ‖u‖2 + ‖v‖2

6= x̃(u) + x̃(v)

Montrons l’équivalence avec la définition 5.0.7 p. 44 d’une forme linéaire.

Théorème 13.1.1. Tout polynôme homogène de degré un des n variables v1, v2, . . . , vn est
une application linéaire qui au vecteur v(v1, v2, . . . , vn) de l’espace vectoriel E sur le corps des
réels fait correspondre un réel.

Démonstration. C’est la généralisation à Rn de l’exemple 13.1.2 p. 112 :

x̃ : Rn → R

∀ai ∈ R, v(v1, v2, . . . , vn) 7→ x̃(v) = a1v1 + a2v2 + · · · + anvn

x̃(λ ⊙ u ⊕ v) = a1(λu1 + v1) + a2(λu2 + v2) + · · · + an(λun + vn)

= λa1u
1 + a1v1 + λa2u2 + a2v2 + · · · + λanun + anvn

= λx̃(u) + x̃(v)

�

Réciproquement :

Théorème 13.1.2. Toute forme linéaire de Rn dans R peut s’écrire comme un polynôme
homogène de degré un par rapport à n variables v1, v2, . . . , vn :

x̃ : Rn → R

v(v1, v2, . . . , vn) 7→ x̃(v) = a1v1 + a2v2 + · · · + anvn

où ∀i ai ∈ R.

Démonstration. Dans la base (e1, e2, . . . , en) de Rn, soit v le vecteur de composantes
(v1, v2, . . . , vn). En utilisant l’additivité puis l’homogénéité,

x̃(v) = x̃(v1e1 ⊕ v2e2 ⊕ · · · ⊕ vnen)

= x̃(v1e1) + x̃(v2e2) + · · · + x̃(vnen)

= v1x̃(e1) + v2x̃(e2) + · · · + vnx̃(en)

= a1v1 + a2v2 + · · · + anvn

= aiv
i

où ∀i ai ∈ R, ai = x̃(ei). �
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13.2 Expression analytique d’une forme linéaire

Dans la base (ei) de l’espace vectoriel E, soit u un vecteur :

x̃(u) = x̃(uiei)

= uix̃(ei)

= uiai

où

∀i ai ∈ R, ai = x̃(ei)

La forme linéaire x̃(u) est donc parfaitement déterminée par les n scalaires ai, sa décomposition
étant unique. Ainsi on peut déterminer une forme linéaire par correspondance des vecteurs de
base avec des scalaires déterminés.

13.3 Espace vectoriel dual

Considérons l’ensemble des formes linéaires définies sur E. Pour en faire un espace vectoriel
adoptons pour cet ensemble les deux lois de composition :

(1) Addition vectorielle
La somme de deux formes linéaires est une forme linéaire :

x̃(u) + ỹ(u) = uiai + uibi

=
∑

i

ui(ai + bi)

= uici

= z̃(u)

(2) Multiplication par un scalaire
La multiplication par un scalaire d’une forme linéaire est une forme linéaire :

αx̃(u) = α(uiai)

= (αai)ui

= biu
i

= ỹ(u)

Ces deux lois de composition vérifient les propriétés énoncées au paragraphe 3.2.3 p. 24. Par
conséquent, l’ensemble des formes linéaires munies de ces deux lois forment un espace vectoriel
appelé dual 1 de E et noté E∗, dont les formes linéaires de E en sont les vecteurs.

1. dual signifie « deux »
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13.4 Base duale

Soit u un vecteur d’un espace vectoriel E, et soit la forme linéaire ẽi telle que :

∀i ẽi(u) = ui

Cette forme linéaire est particulière puisqu’elle donne en sortie la ième composante contrava-
riante du vecteur qu’elle prend en entrée. Alors :

x̃(u) = aiu
i

= aiẽ
i(u)

x̃ = aiẽ
i

Le système des n formes linéaires ẽi constitue donc une base de l’espace vectoriel dual E∗. Les
ai sont les composantes de la forme linéaire x̃. De plus

∀j ẽj(u) = ẽj(uiei)

∀j uj = uiẽj(ei)

donc :

∀i, j ẽj(ei) = δj
i

Définition 13.4.1. Base duale
La base (ẽ1, ẽ2, . . . , ẽn) de E∗ telle que

∀i, j ẽj(ei) , δj
i

est appelée base duale de la base (e1, e2, . . . , en) de E.

13.5 Base réciproque

Définition 13.5.1. Base réciproque
La base (ǫ1, . . . , ǫn) de l’espace vectoriel En, telle que

∀i, j ei · ǫj , δij (63)

est appelée base réciproque de la base (e1, . . . , en) de En.

Si la base (ei) est la base formée par les vecteurs tangents aux lignes de coordonnées, alors
sa base réciproque ǫj est la base formée par les vecteurs perpendiculaires aux hypersurfaces de
coordonnées. Elles sont confondues si elles sont orthogonales et normées car avec e1 · ǫ1 = 1, si
e1 = 2 alors ǫ1 = 1/2.

Cette définition est proche de la définition 13.4.1 ci-dessus de la base duale. Cependant on
reste dans l’espace E et on utilise un produit scalaire. Dans les espaces définis sans produit
scalaire, donc sans métrique, la base réciproque s’appelle base duale, et les covecteurs s’appellent
des formes linéaires ou vecteurs duaux.
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Soit B la matrice de passage de la base réciproque vers la base d’origine (la matrice de
passage est habituellement définie comme étant la transposée de B, voir la définition 19.2.1
p. 166) :

∀i ei =
∑

j

Bij ǫj

∀i, k ei · ek =
∑

j

Bij ǫj · ek

∀i, k gik =
∑

j

Bij δjk

∀i, k gik = Bik

Par conséquent :

∀i ei =
∑

j

gij ǫj

Le tenseur métrique G permet de passer d’une base réciproque à sa base d’origine. Nous voyons
que cette relation qui s’appliquait à des composantes, relations (43) p. 99, s’applique ici à des
vecteurs. Par analogie, les vecteurs de la base réciproque seront notés avec un indice supérieur,
ce qui permettra l’emploi de la convention de sommation. En remplaçant ǫj par ej, la dernière
relation s’écrit

∀i ei = gij ej

et la définition 63 p. 115 devient :

∀i, j ei · ej , δj
i (64)

Avec les relations (51) p. 102 :

∀i, j ei · ej = δj
i

∀i, j gik ek · ej = gik gkj

∀k, j ek · ej = gkj

Soit A la matrice de passage de la base d’origine vers la base réciproque :

∀i ei =
∑

j

Aij ej

∀i, k ei · ek =
∑

j

Aij ej · ek

∀i, k gik =
∑

j

Aij δk
j

∀i, k gik = Aik

Le tenseur métrique [gij] permet de passer d’une base à sa base réciproque :

∀i ei = gij ej (65)
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Si la base d’origine n’est pas orthonormée, les vecteurs de la base réciproque ne sont pas de
norme unité :

∀i, j ei · ej = δj
i

∀i ei · ei = 1

∀i ‖ei‖ ‖ei‖ cos
(
ei, ei

)
= 1

∀i ‖ei‖ =
1

‖ei‖ cos (ei, ei)

13.6 Indépendance linéaire des vecteurs réciproques

Soit (e1, e2, . . . , en) une base de En, pour démontrer que les vecteurs réciproques (e1, e2, . . . , en)
forment aussi une base de En, nous devons montrer qu’ils sont linéairement indépendants :

λje
j = 0 ⇒ ∀j, λj = 0

Posons λjej = 0. Soit u = uiei un vecteur quelconque de l’espace vectoriel En :

λje
j · u = λje

j · uiei

0 · u = λju
i(ej · ei)

0 = λju
iδj

i

0 = λju
j

Cette égalité devant être vérifiée quels que soient les uj, tous les λj sont nuls et les vecteurs ej

sont linéairement indépendants.

Exemple 13.6.1. Dans un espace vectoriel euclidien E2, soit une base (e1, e2) telle que

e1

(
1
2

)
, e2

(
3
4

)

où les vecteurs de base sont exprimés dans la base rectangulaire (ex, ey). Déterminons sa
base réciproque (e1, e2).

(1) En utilisant la définition de la base réciproque (64) p. 116. Posons e1(a, b) et
e2(c, d) :




e1 · e1 = 1

e1 · e2 = 0

{
a + 2b = 1

3a + 4b = 0

{
a = 1 − 2b

3 − 2b = 0

{
a = −2

b = 3/2
⇒ e1

(
−2
3/2

)





e2 · e1 = 1

e2 · e2 = 0

{
c + 2d = 0

3c + 4d = 1

{
c = −2d

− 2d = 1

{
c = 1

d = −1/2
⇒ e2

(
1

−1/2

)

(2) En se servant de l’inverse du tenseur métrique (65) p. 116 :

G

[
5 11
11 25

]
⇒ [gij] =

1
4

[
25 −11

−11 5

]

e1 = g11e1 + g12e2 =
25
4

(
1
2

)
− 11

4

(
3
4

)
=

(
−2
3/2

)
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e2 = g21e1 + g22e2 = −11
4

(
1
2

)
+

5
4

(
3
4

)
=

(
1

−1/2

)

Exemple 13.6.2. Soit {e1 (a, 0, 0) , e2 (0, b, 0) , e3 (0, 0, c)} une base de E3. Déterminons
sa base réciproque. Soit e1 (x1, x2, x3) :





e1 · e1 = 1

e2 · e1 = 0

e3 · e1 = 0

⇒





(a, 0, 0) · (x1, x2, x3) = 1

(0, b, 0) · (x1, x2, x3) = 0

(0, 0, c) · (x1, x2, x3) = 0

⇒





ax1 = 1

bx2 = 0

cx3 = 0
⇒





x1 = 1/a

x2 = 0

x3 = 0

Par conséquent e1 =
(

1
a
, 0, 0

)
. De même on trouve e2 =

(
0, 1

b
, 0
)

et e3 =
(
0, 0, 1

c

)
. Lorsque

la base est orthonormée, a = b = c = 1, elle se confond avec sa base réciproque.

Exemple 13.6.3. Soit (e1, e2) une base normée d’un espace vectoriel, telle que (ê1, e2) =
70◦. Construisons sa base réciproque.

(1) En utilisant la définition de la base réciproque (64) p. 116 :




e1 · e1 = 1

e1 · e2 = 0
⇒ ‖e1‖ =

1
‖e1‖ cos (e1, e1)

=
1

cos 20
≈ 1, 064





e2 · e1 = 0

e2 · e2 = 1
⇒ ‖e2‖ =

1
‖e2‖ cos (e2, e2)

=
1

cos 20
≈ 1, 064

(2) En se servant du tenseur métrique (65) p. 116 :

G

[
1 cos(70)

cos(70) 1

]
⇒ [gij] =

−1
sin2(70)

[
−1 cos(70)

cos(70) −1

]

e1 = g11e1 + g12e2

=
e1

sin2(70)
− cos(70)

sin2(70)
e2

e2 = g21e1 + g22e2

= − cos(70)
sin2(70)

e1 +
e2

sin2(70)

En exprimant e1 et e2 dans la base rectangulaire (ex, ey) :

e1 =
1

sin2(70)

(
1
0

)
− cos(70)

sin2(70)

(
cos(70)
sin(70)

)

=

(
1

− cos(70)/ sin(70)

)
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e2 = − cos(70)
sin2(70)

(
1
0

)
+

1
sin2(70)

(
cos(70)
sin(70)

)

=

(
0

1/ sin(70)

)

α

α
M

e1

e2e2

e1
O

Fig. 13.1 – Bases réciproques

Exemple 13.6.4. Déterminons la base réciproque de la base polaire naturelle (eρ, eθ).

(1) En utilisant la définition de la base réciproque (64) p. 116 :
{

eρ · eρ = 1

eρ · eθ = 0
⇒ ‖eρ‖ =

1
‖eρ‖ = 1 ⇒ eρ = eρ





eθ · eρ = 0

eθ · eθ = 1
⇒ ‖eθ‖ =

1
‖eθ‖

=
1
ρ

⇒ eθ =
eθ

ρ2

(2) En se servant de l’inverse du tenseur métrique en coordonnées polaires (53)
p. 102 :

[gij] =

[
1 0
0 1/ρ2

]

eρ = gρρeρ + gρθeθ

= eρ

eθ = gθρeρ + gθθeθ

= eθ/ρ2

Exemple 13.6.5. Déterminons la base réciproque de la base (e0, e1, e2, e3) de la relativité
restreinte.
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(1) En utilisant la définition de la base réciproque (64) p. 116. Pour le vecteur réci-
proque e0 porté par la coordonnée temporelle :





e0 · e0 = 1

e0 · e1 = 0

e0 · e2 = 0

e0 · e3 = 0

En convention de genre temps :

e0 · e0 = 1

= e0 · e0

e0 = e0

Pour le vecteur réciproque e1 porté par la première coordonnée spatiale :




e1 · e0 = 0

e1 · e1 = 1

e1 · e2 = 0

e1 · e3 = 0

e1 · e1 = −1

= −e1 · e1

e1 = −e1

De même e2 = −e2 et e3 = −e3.

(2) D’après (61) p. 106 le tenseur métrique en relativité restreinte est égal à son
inverse : 



e0

e1

e2

e3


 =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1







e0

e1

e2

e3




=




e0

−e1

−e2

−e3



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13.7 Composantes contravariantes dans la base réciproque

À partir de la définition 3.2.9 p. 28 des composantes contravariantes dans la base réciproque :

OM = uiǫi

=
∑

i

uiei

∀j OM · ej =
∑

i

uiei · ej

∀j uj =
∑

i

uiδi
j

par conséquent :

∀j uj = uj (66)

et
OM = uie

i (67)

Exemple 13.7.1. En reprenant l’exercice 13.6.3 p. 118, représentons les composantes
contravariantes du vecteur u = OM dans la base réciproque (e1, e2) non normée (Fig.
13.2) :

+

+

M

e1

e2ǫ2 ≡ e2

ǫ1 ≡ e1

O

u1 = u1

u2 = u2

u

u1

u2

Fig. 13.2 – Composantes contravariantes dans la base réciproque

13.8 Composantes covariantes dans la base réciproque

À partir de la définition 3.2.9 p. 28 des composantes contravariantes dans la base d’origine :

OM = uiei

∀j OM · ǫj = uiei · ǫj

∀j uj = uiei · ej

∀j uj = uiδj
i
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par conséquent :

∀j uj = uj (68)

et
∀i OM · ei = ui

Exemple 13.8.1. En reprenant l’exercice 13.6.3 p. 118, représentons les composantes
covariantes du vecteur u = OM dans la base réciproque (e1, e2) non normée (Fig. 13.3) :

+

+

M

e1

e2ǫ2 ≡ e2

ǫ1 ≡ e1

O

u1 = u1

u2 = u2

u

Fig. 13.3 – Composantes covariantes dans la base réciproque
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Formes bilinéaires

Définition 14.0.1. Forme bilinéaire
Soit E un espace vectoriel sur le corps des réels R. Une forme bilinéaire est une application
qui à deux vecteurs u et v de E × E associe un scalaire de son propre corps R,

B : E × E → R

u, v 7→ B(u, v) = α

et qui est linéaire dans chacun de ses deux arguments. B est linéaire dans le premier
espace vectoriel,

∀u, v, w ∈ E3, ∀λ ∈ R, B(u ⊕ v, w) = B(u, w) + B(v, w)

B(λ ⊙ u, v) = λB(u, v)

et B est linéaire dans le second espace vectoriel :

B(u, v ⊕ w) = B(u, v) + B(u, w)

B(u, λ ⊙ v) = λB(u, v)

Les formes bilinéaires généralisent les formes linéaires, en ce sens qu’elles prennent en entrée
deux vecteurs plutôt qu’un seul. On appelle les formes linéaires des une-formes, et les formes
bilinéaires des deux-formes, ce qui permet de généraliser aux n-formes qui prennent en entrée
n vecteurs et donnent en sortie un scalaire.

Définition 14.0.2. Forme bilinéaire symétrique
Une forme bilinéaire est symétrique si :

∀u, v B(u, v) = B(v, u)

Exemple 14.0.1. Le tenseur métrique est une forme bilinéaire symétrique. En effet :

g : E × E → R

u, v 7→ g(u, v) = α
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g est linéaire dans ses deux arguments :

giju
ivj = gij

(
ai + bi

)
vj =

(
gija

i + gijb
i
)

vj = gija
ivj + gijb

ivj

giju
ivj = giju

i
(
aj + bj

)
= ui

(
gija

j + gijb
j
)

= giju
iaj + giju

ibj

gij

(
λui

)
vj = λgiju

ivj = giju
i
(
λvj

)

et g est symétrique :

g(u, v) = g(v, u)

Définition 14.0.3. Forme bilinéaire antisymétrique
Une forme bilinéaire est antisymétrique si :

∀u, v B(u, v) = −B(v, u)

On en déduit :

B(u, u) = −B(u, u)

= 0

14.1 Expression analytique d’une forme bilinéaire

Dans la base (ei) de l’espace vectoriel En, soient u et v deux vecteurs :

B(u, v) = B(uiei, vjej)

= uivjB(ei, ej)

= uivjaij

où

∀i, j ai,j ∈ R, aij = B(ei, ej)

La forme bilinéaire B(u, v) est donc parfaitement déterminée par les n2 scalaires aij , sa décom-
position étant unique. Ainsi on peut déterminer une forme bilinéaire par correspondance des
couples de vecteurs de base avec des scalaires déterminés.

Exemple 14.1.1. Considérons la forme bilinéaire sur E2 × E2 :

B(u, v) = au1v1 + b(u1v2) + b′(u2v1) + cu2v2

où a, b, b′, c sont des scalaires.

14.1.1 Expression analytique d’une forme bilinéaire symétrique

Lorsque la forme bilinéaire est symétrique

aij = aji

sa décomposition est déterminée par les n(n + 1)/2 scalaires aij .
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Exemple 14.1.2. Considérons la forme bilinéaire sur E2 × E2 :

B(u, v) = au1v1 + b(u1v2 + u2v1) + cu2v2

où a, b, c sont des scalaires.

14.1.2 Expression analytique d’une forme bilinéaire antisymétrique

Lorsque la forme bilinéaire est antisymétrique

aij = −aji

sa décomposition est déterminée par les n(n − 1) scalaires aij.

Exemple 14.1.3. Considérons la forme bilinéaire sur E2 × E2 :

B(u, v) = b
(
u1v2

)
− b

(
u2v1

)

= b
(
u1v2 − u2v1

)

où b est un scalaire.

14.2 Forme quadratique associée à une forme bilinéaire

Soit B une forme bilinéaire symétrique et soit Q la forme quadratique telle que :

Q : E → R

u 7→ Q(u) = B(u, u)

Q est la forme quadratique associée à la forme bilinéaire symétrique B. Supposons B symétrique,
en utilisant la linéarité des formes bilinéaires :

Q(u + v) = B(u + v, u + v)

= B(u + v, u) + B(u + v, v)

= B(u, u) + B(v, u) + B(u, v) + B(v, v)

= Q(u, u) + 2B(u, v) + Q(u, v)

Soit Q une forme quadratique du R-espace vectoriel E dans le corps des réels R et soit B
la forme bilinéaire symétrique telle que :

B : E × E → R

u, v 7→ B(u, v) = 1
2

[Q(u + v) − Q(u) − Q(v)]

B est la forme bilinéaire symétrique associée à la forme quadratique Q. Toute forme quadratique
définit une forme bilinéaire et réciproquement. Les formes bilinéaires symétriques et les formes
quadratiques se déterminent mutuellement. Les théories des formes bilinéaires symétriques et
des formes quadratiques sont essentiellement les mêmes.

Nous avons alors :

Q(λ ⊙ u) = B(λ ⊙ u, λ ⊙ u)

= λ2B(u, u)

= λ2Q(u)
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Pour λ = 0 :

Q(0 ⊙ u) = 02Q(u)

Q(0) = 0

14.3 Expression analytique d’une forme quadratique

Q(u) = B(u, u)

= B(uiei, ujej)

= uiujB(ei, ej)

Exemple 14.3.1. Considérons la forme bilinéaire sur E2 × E2 :

B(u, u) = au1u1 + b(u1u2 + u2u1) + cu2u2

= a(u1)2 + 2b(u1u2) + c(u2)2

où a, b, c sont des scalaires.

14.4 Matrices et formes bilinéaires

Une transformation linéaire est une matrice carrée prenant en entrée un vecteur et donnant
en sortie un vecteur. Les matrices carrées ne peuvent donc pas représenter aussi les formes
bilinéaires qui elles prennent en entrée un vecteur et donnent en sortie une forme linéaire. Une
représentation des formes bilinéaires reste cependant possible sous la forme d’une matrice ligne
de matrices lignes. La relation (46) p. 101 s’écrit :

((
g11 g12

) (
g21 g22

)) (u1

u2

)
=
((

g11 g12

)
u1

(
g21 g22

)
u2
)

=
((

g11u1 g12u
1
)

+
(
g21u2 g22u

2
))

=
(
g11u

1 + g21u2 g12u
1 + g22u2

)

Nous avons alors
(
g11u1 + g21u

2 g12u1 + g22u
2
)

=
(
u1 u2

)

qui redonne bien le système : 



u1 = g11 u1 + g21 u2

u2 = g12 u1 + g22 u2

Dans un espace vectoriel de dimension trois, le tenseur métrique s’écrit :
((

g11 g12 g13

) (
g21 g22 g23

) (
g31 g32 g33

))

Pour inverser G nous devons revenir à une matrice carrée. De plus, cette notation n’est pas
applicable à des tenseurs ayant plus de deux indices.
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Exemple 14.4.1. Soit {e1(2, 0), e2(−1, 3)} une base de l’espace vectoriel E2. Le tenseur
métrique s’écrit :





g11 = e1 · e1 = 4

g12 = e1 · e2 = −2

g21 = e2 · e1 = −2

g22 = e2 · e2 = 10

⇒ G
((

4 −2
) (

−2 10
))

Exemple 14.4.2. Dans l’espace de la physique classique non relativiste, plaçons nous
dans la base orthonormée (ex, ey, ez). Le tenseur métrique s’écrit :

((
ex · ex ex · ey ex · ez

) (
ey · ex ey · ey ey · ez

) (
ez · ex ez · ey ez · ez

))

=
((

1 0 0
) (

0 1 0
) (

0 0 1
))

Exemple 14.4.3. Plaçons-nous dans l’une des deux bases canoniques (e0, e1, e2), de
l’espace-temps de la relativité restreinte en deux dimensions d’espace :





e0(i, 0, 0)

e1(0, 1, 0)

e2(0, 0, 1)

Le tenseur métrique s’écrit :
((

e0 · e0 e0 · e1 e0 · e2

) (
e1 · e0 e1 · e1 e1 · e2

) (
e2 · e0 e2 · e1 e2 · e2

))

=
((

−1 0 0
) (

0 1 0
) (

0 0 1
))

Exemple 14.4.4. Dans une base (e1, e2) de E2, on se donne le tenseur métrique suivant :

G
((

2 −3
) (

−3 1
))

Déterminons les composantes de son inverse [gij] grâce aux relations (51) p. 102 :




g11g
11 + g12g

21 = δ1
1

g11g
12 + g12g

22 = δ2
1

g21g
11 + g22g

21 = δ1
2

g21g
12 + g22g

22 = δ2
2

⇒





2g11 − 3g21 = 1

2g12 − 3g22 = 0

−3g11 + g21 = 0

−3g12 + g22 = 1

⇒





g11 = −1/7

g12 = −3/7

g21 = −3/7

g22 = −2/7

[
gij
]

=




(
−1/7
−3/7

)

(
−3/7
−2/7

)




La matrice de matrice suggère d’introduire un nouveau produit matriciel, le produit de
Kronecker.
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Produit de Kronecker

15.1 Introduction

Le produit de Kronecker de deux matrices de tailles arbitraires, carrées ou rectangulaires,
donne une matrice de sous-matrices. Le produit de Kronecker de deux matrices s’écrit :

A ⊗ B =

[
a11 a12

a21 a22

]
⊗ B

=

[
a11B a12B
a21B a22B

]

=




a11

[
b11 b12 b13

b21 b22 b23

]
a12

[
b11 b12 b13

b21 b22 b23

]

a21

[
b11 b12 b13

b21 b22 b23

]
a22

[
b11 b12 b13

b21 b22 b23

]




=




[
a11b11 a11b12 a11b13

a11b21 a11b22 a11b23

] [
a12b11 a12b12 a12b13

a12b21 a12b22 a12b23

]

[
a21b11 a21b12 a21b13

a21b21 a21b22 a21b23

] [
a22b11 a22b12 a22b13

a22b21 a22b22 a22b23

]




Contrairement à la multiplication matricielle les matrices n’ont pas besoin d’être compatibles.
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15.2 Propriétés

Propriétés 15.2.1. Propriétés du produit de Kronecker

(1) Associativité :

A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C

(2) Distributivité à gauche par rapport à l’addition matricielle :

A ⊗ (B + C) = A ⊗ B + A ⊗ C

(3) Distributivité à droite par rapport à l’addition matricielle :

(B + C) ⊗ A = B ⊗ A + C ⊗ A

(4) Multiplication par un scalaire :

k(A ⊗ B) = (kA) ⊗ B = A ⊗ (kB)

(5) En général non commutativité :

A ⊗ B 6= B ⊗ A

15.3 Exemples

Exemple 15.3.1. Produit de Kronecker de deux matrices colonnes

(
a1

a2

)
⊗
(

b1

b2

)
=




a1

(
b1

b2

)

a2

(
b1

b2

)




=




(
a1b1

a1b2

)

(
a2b1

a2b2

)




Le résultat est une matrice colonne de matrices colonnes, c’est-à-dire une matrice ayant
deux éléments et non quatre.

Exemple 15.3.2. Produit de Kronecker d’une matrice colonne par une matrice ligne
(

a1

a2

)
⊗
(
b1 b2

)
=


a1

(
b1 b2

)

a2

(
b1 b2

)



=



(
a1b1 a1b2

)
(
a2b1 a2b2

)



Le résultat est une matrice colonne de matrices lignes. La pré-multiplication matricielle
de ce résultat (et non le produit de Kronecker) par une forme linéaire ũ donne une forme
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linéaire,

(
u1 u2

)


(
a1b1 a1b2

)
(
a2b1 a2b2

)

 = u1

(
a1b1 a1b2

)
+ u2

(
a2b1 a2b2

)

=
(
u1a1b1 u1a1b2

)
+
(
u2a2b1 u2a2b2

)

=
(
u1a1b1 + u2a2b1 u1a1b2 + u2a2b2

)

puis la post-multiplication matricielle par un vecteur v donne un scalaire :
(
u1a1b1 + u2a2b1 u1a1b2 + u2a2b2

)(v1

v2

)
= u1a1b1v1 + u2a2b1v1 + u1a1b2v2 + u2a2b2v2

Exemple 15.3.3. Produit de Kronecker d’une matrice ligne par une matrice colonne
(
b1 b2

)
⊗
(

a1

a2

)
=

(
b1

(
a1

a2

)
b2

(
a1

a2

))

=

((
b1a1

b1a2

) (
b2a1

b2a2

))

Le résultat est une matrice ligne de matrices colonnes. La post-multiplication matricielle
de ce résultat par un vecteur v donne un vecteur,

((
b1a1

b1a2

) (
b2a1

b2a2

))(
v1

v2

)
=

((
b1a1

b1a2

)
v1 +

(
b2a1

b2a2

)
v2

)

=

[(
b1a1v

1

b1a2v
1

)
+

(
b2a1v2

b2a2v2

)]

=

(
b1a1v1 + b2a1v2

b1a2v1 + b2a2v2

)

puis la pré-multiplication par une forme linéaire ũ donne le même scalaire qu’en 15.3.2 :
(
u1 u2

)(b1a1v1 + b2a1v2

b1a2v1 + b2a2v2

)
= u1b1a1v1 + u1b2a1v

2 + u2b1a2v
1 + u2b2a2v2

15.4 Formes bilinéaires

Le produit de Kronecker d’une matrice ligne par une matrice ligne donne une matrice ligne
de matrices lignes :

(
a1 a2

)
⊗
(
b1 b2

)
=
[
a1

(
b1 b2

)
a2

(
b1 b2

)]

=
[(

a1b1 a1b2

) (
a2b1 a2b2

)]
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On note que :
(
b1 b2

)
⊗
(
a1 a2

)
=
[
b1

(
a1 a2

)
b2

(
a1 a2

)]

=
[(

b1a1 b1a2

) (
b2a1 b2a2

)]

6=
(
a1 a2

)
⊗
(
b1 b2

)

On vérifie que c’est une forme bilinéaire. La multiplication matricielle par un premier vecteur
u donne une forme linéaire :

[(
a1b1 a1b2

) (
a2b1 a2b2

)] (u1

u2

)
=
[(

a1b1 a1b2

)
u1 +

(
a2b1 a2b2

)
u2
]

=
[(

a1b1u1 a1b2u1
)

+
(
a2b1u2 a2b2u

2
)]

=
(
a1b1u1 + a2b1u2 a1b2u1 + a2b2u2

)

La multiplication matricielle par un second vecteur v donne un scalaire :
(
a1b1u1 + a2b1u2 a1b2u1 + a2b2u2

)(v1

v2

)
= a1b1u1v1 + a2b1u2v1 + a1b2u1v2 + a2b2u2v2
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16.1 Signature d’un espace vectoriel pré-euclidien

Grâce au théorème 12.8.1 p. 106 de Gram-Schmidt plaçons nous dans une base orthogonale
d’un espace vectoriel pré-euclidien. Dans cette base le tenseur métrique est diagonal et les
coefficients gij sont des constantes. Le produit scalaire de deux vecteurs non nuls u et v s’écrit

u · v = g11u1v1 + g22u2v2 + · · · + gnnunvn

et la norme d’un vecteur non nul u a pour expression :

‖u‖ =
[
g11

(
u1
)2

+ g22

(
u2
)2

+ · · · + gnn (un)2
]1/2

Définition 16.1.1. Signature d’un espace vectoriel pré-euclidien
On appelle signature d’un espace vectoriel l’ensemble des signes positifs et négatifs ap-
paraissant dans l’expression du produit scalaire de deux vecteurs ou de la norme d’un
vecteur, où l’on a remplacé tous les gii par leur valeur respective, positive ou négative. Le
nombre de signes + et de signes − est une caractéristique intrinsèque de l’espace vectoriel,
indépendante de la base orthogonale considérée.

Si la signature ne comporte que des signes identiques, la forme quadratique est alors définie
et l’espace vectoriel est euclidien. Si elle ne comporte que des signes positifs, elle est définie
positive. Tous les gii sont positifs, le produit scalaire est euclidien et la norme d’un vecteur non
nul est strictement positive.

Si la signature comporte des signes différents, le produit scalaire n’est plus euclidien, la
norme s’appelle pseudo-norme (voir 11.6 p. 94) car elle ne satisfait pas à la condition de sépa-
ration. L’espace est pseudo-euclidien, son tenseur métrique est de la forme

∀i, j gij = ±δij

avec au moins un signe positif et un signe négatif.

Exemple 16.1.1. Dans une base orthonormée de l’espace newtonien de la physique clas-
sique non relativiste, le produit scalaire s’écrit :

u · v = u1v1 + u2v2 + u3v3
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C’est l’espace euclidien de dimension 3, de signature (+ + +).

Exemple 16.1.2. À la surface d’un cylindre de rayon ρ, plaçons nous dans la base na-
turelle (eφ, ez) associée aux coordonnées cylindriques (φ, z) (voir la figure 7.3 p. 63). Le
tenseur métrique s’écrit

[
eφ · eφ eφ · ez

ez · eφ ez · ez

]
=

[
ρ2 0
0 1

]

où ρ est constant. C’est l’espace euclidien de dimension 2, de signature (++). Le tenseur
métrique est le même que celui d’un plan car en déroulant un cylindre (ou un cône) on
obtient un plan.

Exemple 16.1.3. Dans une base orthonormée de l’espace-temps de la relativité restreinte,
le quadri-produit scalaire s’écrit :

u · v = u0v0 − u1v1 − u2v2 − u3v3

C’est un espace pseudo-euclidien de dimension 4, de signature (+ − −−).

Exemple 16.1.4. Cherchons la signature de l’espace plat dont la métrique s’écrit :

εds2 = 4
(
dx1

)2
+ 5

(
dx2

)2 − 2
(
dx3

)2
+ 2

(
dx4

)2 − 4dx2dx3 − 4dx2dx4 − 10dx3dx4

det[G − λI] =

∣∣∣∣∣∣∣∣∣

4 − λ 0 0 0
0 5 − λ 0 0
0 −2 −2 − λ −5
0 −2 −5 2 − λ

∣∣∣∣∣∣∣∣∣

= (4 − λ)

∣∣∣∣∣∣∣

5 − λ −2 −2
−2 −2 − λ −5
−2 −5 2 − λ

∣∣∣∣∣∣∣

= −(4 − λ)

∣∣∣∣∣∣∣

5 − λ 2 0
−2 2 + λ −3 + λ
−2 5 7 − λ

∣∣∣∣∣∣∣

= −(4 − λ)
[
(5 − λ)

(
29 − λ2

)
+ 8(5 − λ)

]

= −(4 − λ)(5 − λ)
(
37 − λ2

)

= 0

Les valeurs propres sont les suivantes :

λ = +4, +5, +
√

37, −
√

37
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Il existe une transformation des coordonnées telle que dans le nouveau système la métrique
s’écrive :

εds2 = 4
(
dx1

)2
+ 5

(
dx2

)2
+

√
37
(
dx3

)2 −
√

37
(
dx4

)2

=
(
dx̄1

)2
+
(
dx̄2

)2
+
(
dx̄3

)2 −
(
dx̄4

)2

Par conséquent la signature est (+ + +−).

Un espace vectoriel sur lequel est défini un produit scalaire est appelé espace vectoriel pré-
euclidien (définition 11.2.2 p. 90). Les espaces vectoriels pré-euclidiens sont plats, ce sont des
cas particuliers d’espaces riemanniens.

D’après le théorème de Gram-Schmidt, dans tout espace pré-euclidien on peut trouver une
base orthonormale ou pseudo-orthonormale globale (par exemple en relativité restreinte), c’est-
à-dire un tenseur métrique diagonal (base pseudo-orthonormale) dont les termes sont indé-
pendants des coordonnées (base globale). À cette base nous pouvons associer un système de
coordonnées rectangulaires global. En revanche, dans un espace courbe il n’existe pas de base
globale. Le tenseur métrique peut être diagonal mais ses éléments dépendent des coordonnées,
il est local.

16.2 Inégalité de Cauchy-Schwarz

Théorème 16.2.1. Inégalité de Cauchy-Schwarz
Soient u et v deux vecteurs de En :

|u · v| 6 ‖u‖‖v‖

Démonstration. ∀λ ∈ R, ∀u, v ∈ En, formons le carré de la norme du vecteur λu ⊕ v :

(λu ⊕ v)2 = (λu ⊕ v) · (λu ⊕ v)

= λu · (λu ⊕ v) + v · (λu ⊕ v)

= (λu ⊕ v) · λu + (λu ⊕ v) · v

= λu · λu + v · λu + λu · v + v · v

= u2λ2 + 2u · vλ + v2

Or,

(λu ⊕ v)2 > 0

u2λ2 + 2u · vλ + v2 > 0

Ce trinôme de degré deux en λ, où λ est ici la variable et non un paramètre, est positif ou nul
si son discriminant (réduit) est négatif ou nul :

∆′ 6 0

(u · v)2 − u2v2 6 0

(u · v)2 6 u2v2

|u · v| 6 ‖u‖‖v‖
�
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De plus, si u et v sont proportionnels :

∃!λ ∈ R, λu ⊕ v = 0

(λu ⊕ v)2 = 0

u2λ2 + 2u · vλ + v2 = 0

λ étant unique, ∆′ = 0

|u · v| = ‖u‖‖v‖
Réciproquement, si on a l’égalité, alors :

|u · v| = ‖u‖‖v‖
(u · v)2 − u2v2 = 0

∃λ ∈ R, u2λ2 + 2u · vλ + v2 avec ∆′ = 0

∃λ ∈ R, (λu ⊕ v)2 = 0

∃λ ∈ R, λu ⊕ v = 0

Théorème 16.2.2. Inégalité triangulaire
∀u, v ∈ En :

‖u ⊕ v‖ 6 ‖u‖ + ‖v‖

Démonstration. À partir de l’inégalité de Cauchy-Schwarz :

|u · v| 6 ‖u‖‖v‖
u2 + 2|u · v| + v2 6 u2 + 2‖u‖‖v‖ + v2

‖u ⊕ v‖2 6 (‖u‖ + ‖v‖)2

‖u ⊕ v‖ 6 ‖u‖ + ‖v‖
�

16.3 Angle entre deux vecteurs

En partant de la définition géométrique du produit scalaire de deux vecteurs non nuls :

u · v = ‖u‖‖v‖ cos(u, v)

cos(u, v) =
u · v

‖u‖‖v‖
Dans un espace de métrique définie positive, à partir de l’inégalité de Cauchy-Schwarz :

|u · v| 6 ‖u‖‖v‖
|u · v|

‖u‖‖v‖ 6 1

−1 6 cos(u, v) 6 1

L’angle des deux vecteurs (u, v) existe, est unique et compris entre 0 et π. Si les vecteurs sont
définis par leurs composantes contravariantes :

cos(u, v) =
giju

ivj

√
gpqupuq

√
grsvrvs

(69)
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L’angle étant défini uniquement à partir de produits scalaires, il est invariant par changement
de coordonnées.

Théorème 16.3.1. On considère la base naturelle d’un système de coordonnées quelconque.
Soit G le tenseur métrique local. Si u et v sont les vecteurs tangents à deux familles de courbes,
alors ces familles sont mutuellement orthogonales ssi

giju
ivj = 0

Définition 16.3.1. Vecteur normal à une surface
Un vecteur est normal à une surface en un point P de cette surface, s’il est orthogonal
au vecteur tangent de toute courbe appartenant à la surface et passant par ce point P .

Dans un système de coordonnées (xi) d’un espace vectoriel euclidien, considérons l’hyper-
surface de coordonnée xα = cste. Tout vecteur T tangent à cette surface a sa composante tα

nulle :

tα =
dxα

dλ
= 0

où λ est un paramètre. Le vecteur N de composantes contravariantes

ni = giα

est normal à cette hyper-surface :

N · T = gijn
itj

= gijg
iαtj

= giαti

= tα

= 0

Nous en déduisons l’expression de l’angle θ entre les normales aux surfaces xα = cste et xβ = cste.
En appelant u (giα) et v

(
gjβ
)

les normales aux hyper-surfaces, la relation (69) p. 136 donne :

cos(θ) =
gijg

iαgjβ

√
gpqgpαgqα

√
grsgrβgsβ

=
gαβ

√
gαα

√
gββ

En conséquence en coordonnées orthogonales (curvilignes ou rectilignes), donc pour lesquelles
le cosinus de l’angle est nul, en tout point

∀i 6= j gij = 0

ou de façon équivalente

∀i 6= j gij = 0

Des exemples de coordonnées curvilignes orthogonales sont donnés en annexe 27.4 p. 375.
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Soit (xi) un système de coordonnées et xα(λ) = λ une ligne de coordonnée de paramètre λ,
les autres coordonnées étant nulles :

∀i = 1, . . . , n

{
i = α, xα = λ

i 6= α, xi = 0
⇒ ∀i = 1, . . . , n xi = λδi

α

Soit une autre ligne de coordonnées d’équation :

∀j = 1, . . . , n xj = λδj
β

La relation (69) p. 136 donne l’angle φ entre ces deux lignes de coordonnées :

cos(φ) =
gijλδi

αλδj
β√

gpqλδp
αλδq

α

√
grsλδr

βλδs
β

=
gαβ√

gαα
√

gββ

En général il est différent de l’angle θ trouvé précédemment.

Exemple 16.3.1. Soient u(1, 0, −2, −1, 0) et v(0, 0, 2, 2, 0) deux vecteurs de E5, alors :

u2 = 12 + 02 + (−2)2 + (−1)2 + 02 = 6

v2 = 02 + 02 + 22 + 22 + 02 = 8

u · v = 1 × 0 + 0 × 0 − 2 × 2 − 1 × 2 + 0 × 0 = −6

cos(u, v) =
−6√
6
√

8
= −

√
3

2

(u, v) =
5π

6

Exemple 16.3.2. En coordonnées polaires, cherchons la famille de courbes orthogonale
à la famille de courbes suivante :

θ = ρ − c

où c est une constante. Nous pouvons la paramétrer sous la forme :
{

ρ(t) = t

θ(t) = t − c

Le champ de vecteurs tangents à cette famille de courbes,

u =

(
uρ

uθ

)
=

(
dρ/dt

dθ/dt

)
=

(
1
1

)

est constant dans le système de coordonnées polaires. Nous cherchons la famille de courbes
de paramètre τ , c’est-à-dire ρ(τ) et θ(τ), dont le champ de vecteurs tangents

v =

(
vρ

vθ

)
=

(
dρ/dτ

dθ/dτ

)



Espaces vectoriels 139

est tel que le nominateur de la relation (69) p. 136 soit nul :

giju
ivj = 0

gρρuρvρ + gρθu
ρvθ + gθρuθvρ + gθθu

θvθ = 0

vρ + ρ2vθ = 0

dρ

dτ
+ ρ2 dθ

dτ
= 0

On résoud l’équation différentielle à variables séparables :
dρ

ρ2
= −dθ

ρ−1 = θ + c

ρ =
1

θ + c

où c est une constante.

Exemple 16.3.3. Soient deux courbes C1 et C2 sur une sphère de rayon a. Cherchons
la condition pour que ces courbes soient orthogonales. En coordonnées sphériques (r, θ, φ)
(voir la figure 7.4 p. 64). Les équations des courbes sont les suivantes :

C1 : φ = f(θ) et C2 : φ = g(θ)

Nous pouvons les paramétrer :

C1(t) :





r = a

θ = t

φ = f(t)
et C2(τ) :





r = a

θ = τ

φ = g(τ)

Les vecteurs tangents à ces courbes sont respectivement :

u = (0, 1, dtf(θ)) et v = (0, 1, dτg(θ))

D’après la relation (69) p. 136, ces courbes sont orthogonales au point d’intersection
(a, θ0, φ0) ssi le produit scalaire des vecteurs tangents est nul, giju

ivj = 0. En se servant
de la relation (16) p. 48 :

(
0 1 dtf (θ) |θ=θ0

)



1 0 0
0 a2 0
0 0 (a sin(θ)0)

2







0
1

dτ g (θ) |θ=θ0


 = 0

a2 + dtf (θ) |θ=θ0
(a sin(θ)0)

2 dτ g (θ) |θ=θ0
= 0

dtf (θ) |θ=θ0
dτ g (θ) |θ=θ0

= − sin−2 θ0
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Exemple 16.3.4. Soient en coordonnées cylindriques u (0, 1, 2bφ) et v (0, −2bφ, ρ2) deux
vecteurs, où b est une constante. Montrons qu’ils sont orthogonaux :

giju
ivj =

(
0 1 2bφ

)



1 0 0
0 ρ2 0
0 0 1







0
−2bφ

ρ2




=
(
0 1 2bφ

)



1
−2bφρ2

ρ2


 = 0

u est le champ de vecteurs tangents à la courbe paramétrique de paramètre t

C (t) : ρ = a, φ = t, z = bt2

car en dérivant on retrouve u :

dρ/dt = da/dt = 0, dφ/dt = dt/dt = 1, dz/dt = d(bt2)/dt = 2bt = 2bφ

D’après son équation paramétrique, C (t) est une hélice à pas variable sur le cylindre droit
de rayon a. De même, la courbe L (τ) de paramètre τ :

L (τ) : ρ = a,
dφ

dτ
= −2bφ,

dz

dτ
= a2

a pour champ de vecteurs tangents v. Cette courbe est orthogonale à la courbe C . La
courbe L s’écrit aussi :

ρ = a,
dφ

φ
= −2bdτ, z = a2τ + c1

Supposons qu’à τ = 0, z = 0 :

ρ = a, ln φ = −2bτ + c2, z = a2τ

ρ = a, φ = C exp
(
−2bz/a2

)

Cette solution n’inclue pas toutes les courbes orthogonales à C car certaines n’ont pas
pour champ de vecteurs tangents v.

Lorsque la métrique de l’espace est indéfinie, l’angle entre deux vecteurs (u, v) non nuls
donnés en composantes contravariantes s’écrit :

cos(u, v) =
u · v

‖u‖‖v‖

=
giju

ivj

√
ε1gpqupuq

√
ε2grsvrvs

Deux cas sont alors possibles :

(1) L’inégalité de Cauchy-Schwarz est valable :

|u · v| 6 ‖u‖‖v‖
|u · v|

‖u‖‖v‖ 6 1

−1 6 cos(u, v) 6 1

L’angle des deux vecteurs (u, v) existe, est unique et compris entre 0 et π.

(2) L’inégalité de Cauchy-Schwarz n’est pas valable :

|u · v| > ‖u‖‖v‖
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Nous avons alors

cos(u, v) = k (|k| > 1)

Il existe une infinité de solutions pour l’angle, toutes complexes. Par convention on
choisit :

(u, v) =





i ln
(
k +

√
k2 − 1

)
k > 1

π + i ln
(
−k +

√
k2 − 1

)
k < 1

avec les limites k → 1+ et k → −1−





17
Espaces ponctuels

Au paragraphe 3.2 p. 16, à chaque vecteur nous avons associé un couple de points. Nous
revenons ici sur cette correspondance.

Définition 17.0.1. Espace ponctuel pré-euclidien
On appelle espace ponctuel pré-euclidien, un espace ponctuel tel que l’espace vectoriel
associé soit un espace pré-euclidien.

Définition 17.0.2. Espace ponctuel euclidien
On appelle espace ponctuel euclidien, un espace ponctuel tel que l’espace vectoriel associé
soit un espace euclidien.

17.1 Repère et coordonnées d’un point

Définition 17.1.1. Repère d’un espace ponctuel pré-euclidien
On appelle repère (O, ei) d’un espace ponctuel En, l’ensemble d’un point O de En appelé
origine du repère, et d’une base (ei) de l’espace vectoriel En associé à l’espace ponctuel
En.
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Définition 17.1.2. Coordonnées d’un point
Dans un système de coordonnées rectilignes, les coordonnées d’un point M d’un espace
ponctuel En sont les n composantes contravariantes ui du vecteur u = OM dans le repère
normé (O, ei) de l’espace vectoriel associé En.

Soient deux points M et N de coordonnées respectives ui et vj, alors OM = uiei et
ON = viei. En utilisant les deux premiers axiomes de la définition 3.2.1 p. 16 :

MN = MO + ON

= ON − OM

=
(
vi − ui

)
ei (70)

(vi − ui) sont les composantes contravariantes du vecteur MN dans la base (ei).

17.2 Distance

Définition 17.2.1. Distance euclidienne
La distance euclidienne MN entre deux points M et N d’un espace ponctuel euclidien E ,
est la norme euclidienne du vecteur MN de l’espace vectoriel euclidien normé associé à
E :

MN = ‖MN‖

Définition 17.2.2. Distance
La distance MN entre deux points M et N d’un espace ponctuel pré-euclidien E , est la
pseudo-norme du vecteur MN de l’espace vectoriel pré-euclidien normé associé à E :

MN = ‖MN‖
Dans le repère (O, ei), si les points M et N ont respectivement pour coordonnées xi

M et
xi

N , d’après la définition 11.6.1 p. 94 de la norme d’un vecteur, et avec la relation (70)
p. 144 :

MN2 =
(
xi

M − xi
N

)
ei ·

(
xj

N − xj
M

)
ej

= gij

(
xi

N − xi
M

) (
xj

N − xj
M

)
(71)

Cette relation n’est valable que lorsque les gij ne sont pas des fonctions des coordonnées,
c’est-à-dire dans un espace pré-euclidien (euclidien ou pseudo-euclidien).

Supposons N infiniment proche de M et désignons par (xi + dxi) les coordonnées de M . Si
l’on note ds la distance infinitésimale MN , la relation (71) devient la forme quadratique (voir
5.0.8 p. 44) de différentielles, appelée forme quadratique fondamentale

ds2 = gij dxidxj (72)

où les coefficients gij sont fonction des coordonnées xi lorsque la base varie localement. Dans
ce cas soit l’espace est pré-euclidien mais le système de coordonnées n’est pas rectiligne, soit
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l’espace riemannien n’est pas pré-euclidien. Lorsque En est pré-euclidien, la méthode d’ortho-
normalisation de Gram-Schmidt p. 373 nous assure qu’il est toujours possible de trouver une
base orthonormale ou pseudo-orthonormale. Lorsque En est euclidien, les termes diagonaux du
tenseur métrique valent l’unité et les termes non diagonaux sont nuls. Il ne reste que les termes
carrés dxidxj, i = j, les termes rectangles dxidxj , i 6= j étant nuls :

ds2 =
(
dx1

)2
+
(
dx2

)2
+ · · · + (dxn)2

=
n∑

i=1

dxidxi

= δijdxidxj

La distance est alors positive, ou nulle si les points sont confondus. Cette expression généralise
à n dimensions le carré de la distance élémentaire de l’espace de la géométrie classique en
coordonnées rectangulaires (théorème de Pythagore).

Exemple 17.2.1. En coordonnées rectilignes obliques dans le plan :

∆s = gij∆xi∆xj

= g11

(
∆x1

)2
+ g12∆x1∆x2 + g21∆x2∆x1 + g22

(
∆x2

)2

= g11

(
∆x1

)2
+ 2g12∆x1∆x2 + g22

(
∆x2

)2

=
(
∆x1

)2
+ 2 cos(α)∆x1∆x2 +

(
∆x2

)2

On retrouve la formule de Pythagore pour le triangle quelconque.

Exemple 17.2.2. Coordonnées polaires (ρ, θ)
Le carré de la distance infinitésimale

ds2 = dρ2 + r2dθ2

est de signature (++). Le terme g11 (dx1)2 = dρ2 est la distance entre deux points sur la
ligne de coordonnée x1 = ρ, et g22 (dx2)2 = r2dθ2 est la distance entre deux points sur la
ligne de coordonnée x2 = θ. Le terme croisé 2g12dx1dx2 n’apparait pas car les coordonnées
polaires sont orthogonales.

Nous pouvons donner une nouvelle définition du système de coordonnées rectangulaire :
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Définition 17.2.3. Système de coordonnées rectangulaires
Dans un R-espace vectoriel de dimension n, un système de coordonnées (xi) est rectangu-
laire (rectiligne et orthogonal) si la distance entre deux points arbitraires P (x1

P , . . . , xn
P )

et Q
(
x1

Q, . . . , xn
Q

)
est donnée par une généralisation du théorème de Pythagore,

P Q =
√(

x1
P − x1

Q

)2
+ · · · +

(
xn

P − xn
Q

)2

=
√

δij∆xi∆xj

où ∆xi = xi
P − xi

Q.
En notation vectorielle :

d (P , Q) = ‖P − Q‖

=
√

(P − Q)T (P − Q)

Cherchons l’expression de la distance entre deux points lorsque l’on applique une trans-
formation linéaire u′ = Au inversible (det A 6= 0). Posons A−1 = B c’est-à-dire u = Bu′.
La transformation linéaire conserve les distances :

d (u′, v′) = d(u, v)

=
√

(u − v)T (u − v)

=
√

(Bu′ − Bv′)T (Bu′ − Bv′)

=
√

[B (u′ − v′)]T B (u′ − v′)

=
√

(u′ − v′)T BT B (u′ − v′)

On pose

G = BT B =
(
A−1

)T
A−1 =

(
AT
)−1

A−1 =
(
AAT

)−1

Les éléments de la matrice A étant des constantes, les éléments de G sont aussi des
constantes.

En permettant le calcul de la distance infinitésimale localement en chaque point et dans
toutes les directions, les gij caractérisent complètement la géométrie de l’espace considéré. Ils
définissent cette géométrie de manière intrinsèque sans qu’il soit nécessaire de considérer que
l’hypersurface est plongée dans un espace de dimension supérieure.

17.3 Exemple de la relativité restreinte

Définition 17.3.1. Référentiel, cas non relativiste
Un référentiel est un système de coordonnées et une horloge.

Lorsque l’on parle de référentiel on parle du référentiel dans lequel se trouve l’observateur,
pas de celui dans lequel se trouve le système observé. La définition non relativiste sous-entend
l’existence préalable d’un espace unique et d’un temps unique, identiques pour tous les obser-
vateurs. Un changement de référentiel n’est alors qu’un changement d’instruments de mesure
de cet espace et de ce temps.
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Les référentiels (les observateurs) se déplacent les uns par rapport aux autres d’un mouve-
ment relatif dont il faut tenir compte pour la description du système étudié.

En physique non relativiste l’espace et le temps sont absolus, mais n’ayant pas les mêmes
unités il n’y a pas à proprement parler d’espace-temps car on ne pourrait y définir une distance.
On note alors l’espace et le temps par le produit cartésien R3 × R.

En physique relativiste, le temps et l’espace n’ont pas d’existence intrinsèque, ils dépendent
du mouvement relatif entre l’observateur et le système observé. Il existe autant d’espaces et de
temps qu’il y a d’observateurs en mouvement relatif.

Définition 17.3.2. Référentiel, cas relativiste
Un référentiel est un espace muni d’un système de coordonnées et un temps mesuré par
des horloges fixes dans cet espace.

Les référentiels ne se déplacent pas dans un espace ou dans un temps qui préexisteraient,
ils emportent avec eux leur propre espace et leur propre temps.

En relativité restreinte, l’espace et le temps sont liés par la constante c, homogène à une
vitesse (un espace divisé par un temps), appelée vitesse limite ou constante de structure de
l’espace-temps. En multipliant le temps par cette constante on obtient une coordonnée homo-
gène à une dimension d’espace. On mesure alors le temps en mètres (ou l’espace en secondes),
ce qui ne pose pas de problème puisque l’on connait la valeur de la constante de passage c.
L’espace-temps devient de fait un espace métrique à quatre dimensions R4, et l’on cherche à y
définir une distance entre deux points (alors appelés évènements) qui soit invariante par chan-
gement de référentiel. À un changement de référentiel correspond un changement de temps et
d’espace, c’est-à-dire un changement de coordonnées, qui s’effectue par la transformation de
Lorentz-Poincaré.

Plaçons-nous dans le système de coordonnées rectangulaires, appelé système de coordonnées
galiléennes (t, x, y, z), la coordonnée temporelle étant prise « perpendiculaire » aux coordonnées
spatiales. La distance de carré c2t2 + x2 + y2 + z2 n’a pas d’intérêt car elle n’est pas invariante
par la transformation de Lorentz-Poincaré. En revanche l’intervalle d’espace-temps ou distance
d’univers, de carré

s2 = ±(c2t2 − x2 − y2 − z2)

= η00 t2 + η11 x2 + η22 y2 + η33 z2

est invariant par la transformation de spéciale de Lorentz (relation 29 p. 75), l’autre invariant
étant la constante de structure de l’espace-temps, c. Ces deux invariants relativistes remplacent
les invariants de la physique non relativiste, la distance entre deux points de l’espace et le
temps.

Pour « pseudo-normer » la base, c’est-à-dire pour avoir η00 = ±1, il suffit d’effectuer le
changement de variable t = ct, ce qui revient à poser c = 1. C’est ce que nous ferons, les unités
de temps et d’espace étant arbitraires, comme d’ailleurs toutes les unités de la physique. Le
système de coordonnées (ct, x, y, z) est appelé système de coordonnées galiléennes réduites (voir
(9) p. 24).
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En notant xα les composantes contravariantes d’un évènement et xα ses composantes cova-
riantes,

s2 = ηαβ xαxβ

= ηαα xαxα

= xαxα

où les indices grecs varient de 0 à 3. Le carré de l’intervalle entre deux évènements peut prendre
des valeurs positives, négatives ou nulle, selon la distance et le temps lumière qui séparent ces
deux évènements.

(1) Si l’on choisit la convention de signe suivante pour écrire l’intervalle

s2 = t2 − x2 − y2 − z2

le tenseur métrique s’écrit

ηαβ =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




ayant pour signature (+ − −−), de type hyperbolique normal, et pour déterminant :

η = −1

Dans un espace pseudo-euclidien, le déterminant peut être négatif. Pour les compo-
santes contravariantes xα, on adopte habituellement la notation suivante (avec t = t,
c’est-à-dire c = 1) :

x0 = t ; x1 = x ; x2 = y ; x3 = z

Le carré de l’intervalle s’écrit :

s2 = (x0)2 − (x1)2 − (x2)2 − (x3)2

Pour les composantes covariantes, xβ = ηαβ xα, nous avons :

x0 = t ; x1 = −x ; x2 = −y ; x3 = −z

(2) Si l’on choisit la convention de signe opposée pour écrire l’intervalle :

s2 = −t2 + x2 + y2 + z2

le tenseur métrique

ηαβ =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




a pour signature (− + ++), les composantes contravariantes s’écrivent de nouveau

x0 = t ; x1 = x ; x2 = y ; x3 = z

et le carré de l’intervalle :

s2 = −(x0)2 + (x1)2 + (x2)2 + (x3)2

Pour les composantes covariantes :

x0 = −t ; x1 = x ; x2 = y ; x3 = z
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(3) Le carré de l’intervalle élémentaire peut aussi s’écrire

s2 = (it)2 + x2 + y2 + z2 ou s2 = t2 + (ix)2 + (iy)2 + (iz)2

et le tenseur métrique devient :

ηαβ =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




où les indices grecs varient de 1 à 4. La métrique a une apparence euclidienne, de
signature (+ + ++). Les composantes covariantes et contravariantes sont confondues.
On adopte au choix une notation avec pour quatrième coordonnée une coordonnée
temporelle imaginaire (la coordonnée est imaginaire, le temps reste réel) :

x1 = x ; x2 = y ; x3 = z ; x4 = it

ou une notation avec des coordonnées spatiales imaginaires :

x1 = ix ; x2 = iy ; x3 = iz ; x4 = t

Dans ces deux cas, le carré de l’intervalle s’écrit :

s2 = (x1)2 + (x2)2 + (x3)2 + (x4)2

Le plan de coordonnées (x, it) ne doit pas être confondu avec le plan complexe
(x, t). Dans le premier cas le carré de la pseudo-norme d’un vecteur s’écrit x2 − t2 et il
peut être positif, négatif ou nul, alors que dans le second cas le carré de la norme d’un
vecteur s’écrit x2 + t2.

17.4 Dérivée et différentielle d’un vecteur et d’un point

Définition 17.4.1. Vecteur fonction d’une variable
Soit E un espace vectoriel euclidien, et soit t une variable scalaire variant dans un inter-
valle (a, b). Si à chaque valeur de t nous faisons correspondre un vecteur u de E, nous
dirons que le vecteur u est une fonction de la variable t, et nous noterons ce vecteur
variable u(t).

Définition 17.4.2. Vecteur tendant vers le vecteur nul
Soit E un espace vectoriel euclidien. Un vecteur variable u(t) de E tend vers le vecteur
nul, si le scalaire ‖u(t)‖ tend vers zéro quand t croît.

Définition 17.4.3. Vecteur fonction continue d’une variable
Le vecteur u(t) est une fonction continue de la variable t, si, la variable t ayant reçu un
accroissement ∆t, le vecteur :

∆u = u(t + ∆t) − u(t)

tend vers zéro quand ∆t tend vers zéro.
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Définition 17.4.4. Vecteur dérivé d’un vecteur
S’il existe un vecteur u̇(t) tel que,

u̇(t) − ∆u(t)
∆t

−−−→
∆t→0

0

nous dirons que u̇(t) est le vecteur dérivé de u(t) pour la variable t. Nous noterons :

u̇(t) = lim
∆t→0

∆u(t)
∆t

=
du
dt

Définition 17.4.5. Vecteur différentielle d’un vecteur
Nous appellerons différentielle du vecteur u(t), le vecteur :

du = u̇dt

Définition 17.4.6. Point fonction d’une variable
Soit E un espace ponctuel euclidien, et soit t une variable scalaire variant dans un in-
tervalle (a, b). Si à chaque valeur de t nous faisons correspondre un point M de E , nous
dirons que M est une fonction de la variable t, et nous noterons cette fonction M(t).

Soit M(t) une fonction de la variable t, et soit O un point fixe arbitraire d’un espace ponctuel
euclidien E : le vecteur OM est alors une fonction de t. Soit O′ un autre point fixe arbitraire
de E , alors, OO′ étant constant :

OM (t) = OO′ + O′M(t)

dOM(t)
dt

=
dOO′

dt
+

dO′M(t)
dt

dOM(t)
dt

=
dO′M (t)

dt
Le vecteur dérivée du vecteur OM est donc indépendant du point fixe O choisi, d’où les
notations suivantes :

Notation 14. Le vecteur dérivée par rapport au temps d’un point M fonction de la variable t
est noté :

dM

dt
≡ Ṁ

Le vecteur différentielle d’un point M fonction de la variable t (ou différentielle de M) est noté :

dM ≡ Ṁdt

Exemple 17.4.1. Vecteurs de la base naturelle du système de coordonnées (xi)
Ils sont notés :

ei =
∂M

∂xi
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Gradient

18.1 Définition

En un point donné d’un espace ponctuel E , soient (xi) et (xi′

) deux systèmes de coordon-
nées quelconques (rectiligne ou curviligne, orthogonal ou non). Soit une fonction scalaire des
coordonnées (une fonction qui prend en entrée des coordonnées et donne en sortie un scalaire).
En chaque point de l’espace, cette fonction associe un scalaire, par exemple la température en
chaque point d’un solide, et forme ainsi un champ de scalaires. On note cette fonction φ(xi) ou
φ(xi′

) selon les coordonnées employées. En un point donné, la différentielle de φ est la même
indépendamment de tout système de coordonnées :

dφ(xi′

) = dφ(xi)

∂φ

∂xi′
dxi′

=
∂φ

∂xi
dxi

=
∂φ

∂xi

∂xi

∂xi′
dxi′

∂φ

∂xi′
=

∂φ

∂xi

∂xi

∂xi′

Les dérivées partielles de φ par rapport aux coordonnées se transforment comme les composantes
covariantes d’un vecteur, on les note avec un indice inférieur :

∀i ∂i′φ =
∂xi

∂xi′
∂iφ (73)

Exemple 18.1.1. Soit (ρ, θ) et (x, y) deux systèmes de coordonnées au même point.

dφ(ρ, θ) = dφ(x, y)

∂φ

∂ρ
dρ +

∂φ

∂θ
dθ =

∂φ

∂x
dx +

∂φ

∂y
dy

{
x = x(ρ, θ)

y = y(ρ, θ)
⇒

{
dx = ∂ρx dρ + ∂θx dθ

dy = ∂ρy dρ + ∂θy dθ

∂φ

∂ρ
dρ +

∂φ

∂θ
dθ =

∂φ

∂x

(
∂x

∂ρ
dρ +

∂x

∂θ
dθ

)
+

∂φ

∂y

(
∂y

∂ρ
dρ +

∂y

∂θ
dθ

)



152 Gradient





∂φ

∂ρ
dρ =

∂φ

∂x

∂x

∂ρ
dρ +

∂φ

∂y

∂y

∂ρ
dρ

∂φ

∂θ
dθ =

∂φ

∂x

∂x

∂θ
dθ +

∂φ

∂y

∂y

∂θ
dθ

⇒





∂φ

∂ρ
=

∂φ

∂x

∂x

∂ρ
+

∂φ

∂y

∂y

∂ρ

∂φ

∂θ
=

∂φ

∂x

∂x

∂θ
+

∂φ

∂y

∂y

∂θ

Une réécriture de la différentielle de φ

dφ = ∂iφ dxi

sous forme d’un produit scalaire permet de faire apparaitre un vecteur « contravariant » (vecteur
exprimé en composantes contravariantes) suivant :

Définition 18.1.1. On appelle gradient de phi, noté grad φ, le vecteur tel que :

dφ , grad φ · dM

À chaque valeur prise par la fonction φ en chaque point de l’espace, l’opérateur différentiel
gradient associe le vecteur grad φ. Il prend en entrée un champ de scalaires φ et donne en sortie
un champ de vecteurs grad φ. Mettons en évidence la base naturelle du système de coordonnées
(xi) :

dφ = grad φ · ∂M

∂xi
dxi

∂iφdxi = grad φ · eidxi

Dans la base naturelle du système de coordonnées (xi), le vecteur gradient de phi a pour
coordonnées covariantes ∂iφ telles que :

∀i ∂iφ , grad φ · ei

Les coordonnées covariantes ∂iφ forment le covecteur

˜grad φ = (∂1φ, ∂2φ, . . . , ∂nφ)

où le tilde indique que les coordonnées entre parenthèses sont covariantes. Avec les relations
(48) p. 101 :

∀i ∂iφ = gij∂iφ

Les coordonnées contravariantes ∂iφ forment le vecteur

grad φ =
(
∂1φ, ∂2φ, . . . , ∂nφ

)

Exemple 18.1.2. En coordonnées rectangulaires en deux dimensions, donc dans un es-
pace vectoriel pré-euclidien E2, φ = φ(x, y), les coordonnées covariantes du vecteur gra-
dient phi sont les suivantes : {

∂xφ = grad φ · ex

∂yφ = grad φ · ey



Gradient 153

La base naturelle associée aux coordonnées rectangulaires étant orthonormée, les coordon-
nées contravariantes et covariantes du vecteur gradient sont confondues et l’on a :

grad φ = ∂xφ ex + ∂yφ ey

=

(
∂xφ
∂yφ

)

Lorsque la base n’est pas orthonormée on définit les coordonnées contravariantes du vecteur
gradient en passant par le tenseur métrique.

Exemple 18.1.3. Base oblique
Soit (x1, x2) un système de coordonnées rectangulaire de base naturelle orthonormée
(e1, e2). Soit

(
x1′

, x2′

)
un système de coordonnées rectilignes obliques. En s’aidant de

la figure 18.1 le changement de coordonnées est le suivant :




x1 = x1′

+ x2′

cos(α)

x2 = x2′

sin(α)

L’angle α étant constant, la transformation est linéaire.

M

e2 e2′

e1 = e1′O x1′

x2′

x1

x2

α

Fig. 18.1 – Base naturelle en coordonnées rectilignes obliques

Inversement : 



x1′

= x1 − x2′

cos(α)

x2′

=
x2

sin(α)

⇒





x1′

= x1 − x2

tan α

x2′

=
x2

sin(α)

OM = x1e1 + x2e2

=
(
x1′

+ x2′

cos(α)
)

e1 + x2′

sin(α) e2

Cette relation donne les vecteurs de la base naturelle (e1′ , e2′) du système de coordonnées
rectiligne oblique

(
x1′

, x2′

)
:





e1′ =
∂M

∂x1′

e2′ =
∂M

∂x2′

⇒
{

e1′ = e1

e2′ = cos(α) e1 + sin(α) e2
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Ils sont de norme unité, ‖e2′‖2 = cos(α)2 + sin(α)2 = 1.

On a bien

OM = x1e1 + x2e2

=
(
x1′

+ x2′

cos(α)
)

e1 + x2′

sin(α)

(
e2′ − cos(α) e1

sin(α)

)

= x1′

e1′ + x2′

e2′

Selon la base, les coordonnées covariantes du vecteur gradient phi s’écrivent :




grad φ · e1 = ∂φ/∂x1

grad φ · e2 = ∂φ/∂x2





grad φ · e1′ = ∂φ/∂x1′

grad φ · e2′ = ∂φ/∂x2′

Par exemple pour φ = x1 = x1′

+ x2′

cos(α) :
{

grad φ · e1 = 1

grad φ · e2 = 0

{
grad φ · e1′ = 1

grad φ · e2′ = cos(α)

Dans la base orthonormée (e1, e2) les composantes contravariantes et covariantes sont
confondues :

grad φ =
∂φ

∂x1
e1 +

∂φ

∂x2
e2

= e1

Dans la base primée (e1′, e2′) :

grad φ = e1′

Exemple 18.1.4. Soit φ = φ(ρ, θ) une fonction scalaire en coordonnées polaires. Dans
la base naturelle polaire (eρ, eθ) les coordonnées covariantes du vecteur gradient phi
s’écrivent : {

grad φ · eρ = ∂ρφ

grad φ · eθ = ∂θφ

Dans la base naturelle polaire, les composantes covariantes forment le covecteur :
˜grad φ = (∂ρφ, ∂θφ)

Avec les relations (48) p. 101 :

grad φ = gρρ∂ρφ eρ + gρθ∂θφ eρ + gθρ∂ρφ eθ + gθθ∂θφ eθ

Les coordonnées polaires étant orthogonales, les termes croisés sont nuls :

grad φ = gρρ∂ρφ eρ + gθθ∂θφ eθ

Avec l’inverse du tenseur métrique en polaire (53) p. 102, nous trouvons les coordonnées
contravariantes du vecteur gradient phi :

grad φ = ∂ρφ eρ +
1
ρ2

∂θφ eθ (74)

=

(
∂ρφ

∂θφ/ρ2

)
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Exemple 18.1.5. Dans un espace vectoriel pré-euclidien, soit la courbe C (λ) d’équations
paramétriques xi = xi(λ), et soit φ(xi) une fonction scalaire le long de C . Sa dérivée a
pour expression :

dφ

dλ
=

∂φ

∂xi

dxi

dλ
= ∂iφui

ui = dxi/dλ est un vecteur partout tangent à C . Il se transforme suivant les relations :

∀i dxi′

=
∂xi′

∂xi
dxi

∀i
dxi′

dλ
=

∂xi′

∂xi

dxi

dλ

∀i ui′

=
∂xi′

∂xi
ui

ui est contravariant. ∂iφ est le gradient de la fonction φ, il est covariant d’après (73)
p. 151. dφ/dλ est donc invariant par changement de coordonnées :

dφ(xi)
dλ

=
∂φ

∂xi

dxi

dλ

=
∂xi′

∂xi

∂φ

∂xi′

∂xi

∂xi′

dxi′

dλ

=
∂φ

∂xi′

dxi′

dλ

=
dφ(xi′

)
dλ

En effet dφ/dλ est le rapport de deux invariants. Le produit du covecteur ∂iφ par le vecteur
ui est appelé multiplication contractée.

Exemple 18.1.6. Prenons un exemple en relativité restreinte. Dans cette branche de la
physique, l’espace-temps est un espace mathématique à quatre dimensions. Les vecteurs
ayant tous quatre coordonnées sont appelés quadrivecteurs. En prenant un temps réel, le
quadrivecteur vitesse d’une particule s’écrit :

U =




U t

Ux

Uy

Uz


 =




dt/dτ
dx/dτ
dy/dτ
dz/dτ




où τ est le temps propre de la particule, et où les composantes sont contravariantes. Soit
φ(t, x, y, z) une fonction scalaire, sa différentielle s’écrit :

dφ(t, x, y, z) =
∂φ

∂t
dt +

∂φ

∂x
dx +

∂φ

∂y
dy +

∂φ

∂z
dz
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b

b

τ = 0

τ = 1

τ = 2

t

x

U

φ [t(τ), x(τ), y(τ), z(τ)]

Fig. 18.2 – Champ de scalaires le long d’une ligne d’univers

Si l’on prend un point sur la ligne d’univers de la particule (Fig. 18.2), les coordonnées
en entrée de φ sont toutes des fonctions du temps propre τ , et φ qui est une fonction
explicite des coordonnées, est aussi une fonction implicite du temps propre :

dφ [t(τ), x(τ), y(τ), z(τ)]
dτ

=
∂φ

∂t

dt

dτ
+

∂φ

∂x

dx

dτ
+

∂φ

∂y

dy

dτ
+

∂φ

∂z

dz

dτ

= ∂tφ U t + ∂xφ Ux + ∂yφ Uy + ∂zφ Uz

On peut réécrire cette égalité sous forme matricielle :

dφ

dτ
=
(
∂tφ ∂xφ ∂yφ ∂zφ

)



U t

Ux

Uy

Uz




∂tφ, ∂xφ, ∂yφ et ∂zφ étant des composantes covariantes, nous définissons le covecteur gra-
dient phi par :

d̃φ =
(
∂tφ ∂xφ ∂yφ ∂zφ

)

Pour chaque évènement (t, x, y, z) de la ligne d’univers de la particule, φ(t, x, y, z) étant
un scalaire, il en va de même de dφ/dτ , si bien que la multiplication contractée du co-
vecteur gradient par le quadrivecteur vitesse donne un champ de scalaires. Le covecteur
gradient est donc une forme, une application qui à un vecteur fait correspondre un sca-
laire.

Contrairement au produit scalaire, la contraction ne fait pas intervenir le tenseur mé-
trique. En effet, l’un des deux membres est déjà un covecteur.

Exemple 18.1.7. D’après l’exemple 17.3 p. 146, en prenant une métrique de signature
(+ − −−) et d’après les relations (43) p. 99, le covecteur quadrivitesse est donné par
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giju
j = ui :




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1







dt/dτ
dx/dτ
dy/dτ
dz/dτ


 =




dt/dτ
−dx/dτ
−dy/dτ
−dz/dτ




La notation du terme de droite sous forme de matrice colonne semble indiquer que les
composantes sont contravariantes alors qu’elles sont covariantes. Seul le signe négatif
permet la distinction. On note le covecteur en ligne,

ũ = (dt/dτ, −dx/dτ, −dy/dτ, −dz/dτ)

où les virgules entre les composantes indiquent qu’il ne s’agit pas d’un tableau mais d’un
ensemble ordonné de valeurs. On note aussi les composantes du covecteur explicitement
avec un indice en bas :

u1 = dt/dτ

u2 = −dx/dτ

u3 = −dy/dτ

u4 = −dz/dτ

D’après les relations (48) p. 101, le vecteur adjoint (ou associé, ou réciproque) du covec-
teur gradient de φ, c’est-à-dire le vecteur gradient de φ, s’écrit gij∂iφ = ∂jφ. Or gij = gij

d’après l’exercice 61 p. 106 :



1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1







∂tφ
∂xφ
∂yφ
∂zφ


 =




∂tφ
−∂xφ
−∂yφ
−∂zφ


 ⇒ grad φ =




∂tφ
−∂xφ
−∂yφ
−∂zφ




On voit que la notation n’est pas parfaite puisque l’indice de dérivation en bas semble
indiquer une covariance des composantes.

Notation 15. On peut trouver la notation suivante,

u
T =

(
x y z

)

pour le covecteur adjoint au vecteur u. Or le covecteur n’est la transposée du vecteur que dans un espace
vectoriel euclidien car le tenseur métrique est alors la matrice identité. En effet, l’exemple 17.3 p. 146
montre que dans l’espace-temps pseudo-euclidien de la relativité restreinte un signe négatif apparait.

18.2 Représentation

Il s’agit de représenter (de symboliser) un covecteur gradient en un point donné de l’espace,
en ayant à l’esprit que le covecteur gradient est l’archétype des covecteurs. Sa représentation
servira pour tous les covecteurs. On représente de petites tangentes aux courbes de niveau (non
représentées) localement autour du point (Fig. 18.3).
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b

Fig. 18.3 – Représentation d’un covecteur en un point

Plus les lignes parallèles sont rapprochées et plus la norme du covecteur est grande (plus le
gradient est fort). La contraction d’un covecteur et d’un vecteur est le nombre de segments de
droite traversés par le vecteur en ce point, ici environ 3, 4 (Fig. 18.4).

b

Fig. 18.4 – Contraction d’un covecteur et d’un vecteur

18.3 Base réciproque de la base naturelle

Soit (xi) un système de coordonnées curvilignes d’un espace ponctuel euclidien En, et soit
M un point de cet espace. Soit (ei) une base naturelle de l’espace vectoriel euclidien En associé
à En. Montrons que la base formée par les vecteurs grad xj est la base réciproque de la base
(ei).

Prenons la définition 18.1.1 p. 152 du vecteur gradient :

grad φ · dM = dφ

Posons φ = x1 :

dx1 = grad x1 · dM

= grad x1 ·
(
e1 dx1 + e2 dx2 + · · · + en dxn

)

Par conséquent : 



grad x1 · e1 = 1

grad x1 · ek = 0 ∀k = 2, . . . , n

De même pour grad x2, . . . , grad xn. Par conséquent,

∀i, j grad xj · ei = δj
i

qui montre que ces bases sont réciproques. En général, les vecteurs de base de la base réciproque
de la base naturelle ne sont pas de norme unité, comme on peut le constater dans l’exemple
18.1.3 p. 153.

Montrons que les vecteurs de base de la base réciproque sont perpendiculaires aux hyper-
surfaces de coordonnées. Dans le système de coordonnées (xi), considérons l’hypersurface de
coordonnée x1 = cste, sur laquelle la différentielle de x1 est nulle :

dx1 = grad x1 · dM

= 0
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grad x1 est donc perpendiculaire à dM , lui même tangent en M à l’hypersurface x1 = cste.
Par conséquent grad x1 est perpendiculaire en M à l’hypersurface x1 = cste.

Exemple 18.3.1. En coordonnées polaires

(1) En utilisant l’expression du gradient en coordonnées polaires (74) p. 154 :

{eρ = grad ρ

eθ = grad θ
⇒





eρ = ∂ρρ eρ +
1
ρ2

∂θρ eθ

eθ = ∂ρθ eρ +
1
ρ2

∂θθ eθ

⇒





eρ = eρ

eθ =
eθ

ρ2

(2) En utilisant l’expression du gradien en coordonnées rectangulaires :

{eρ = grad ρ

eθ = grad θ
⇒

{eρ = ρ,xex + ρ,yey

eθ = θ,xex + θ,yey

⇒





eρ =
x√

x2 + y2
ex +

y√
x2 + y2

ey

eθ =
−y

x2 + y2
ex +

x

x2 + y2
ey

⇒





eρ = cos(θ) ex + sin(θ) ey

eθ = −1
ρ

sin(θ) ex +
1
ρ

cos(θ) ey

⇒





eρ = eρ

eθ =
eθ

ρ2
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Transformation de coordonnées

19.1 Matrice jacobienne et jacobien

Soit T la transformation de l’ancien système de coordonnées (xi) vers le nouveau système
de coordonnées

(
xj′

)
, noté (xi) →

(
xj′

)
:

T : ∀j = 1, . . . , n xj′

= xj′
(
x1, x2, . . . , xn

)
(75)

Si cette transformation est bijective, c’est-à-dire si à tout vecteur de son domaine de définition
elle fait correspondre un unique vecteur de son ensemble d’arrivée, alors

(
x1′

, x2′

, . . . , xn′

)
est

aussi un système de coordonnées.
Les différentielles des nouvelles coordonnées en fonction des anciennes s’écrivent :




dx1′

=
∂x1′

∂x1
dx1 +

∂x1′

∂x2
dx2 + · · · +

∂x1′

∂xn
dxn

dx2′

=
∂x2′

∂x1
dx1 +

∂x2′

∂x2
dx2 + · · · +

∂x2′

∂xn
dxn

...

dxn′

=
∂xn′

∂x1
dx1 +

∂xn′

∂x2
dx2 + · · · +

∂xn′

∂xn
dxn

Définition 19.1.1. Matrice jacobienne d’une transformation
La matrice carrée n × n des dérivées partielles premières des nouvelles coordonnées par
rapport aux anciennes,

[J ] ,

[
∂xj′

∂xi

]

nn

=




∂x1
′

∂x1 · · · ∂x1
′

∂xn

...
...

∂xn′

∂x1 · · · ∂xn′

∂xn




est appelée matrice jacobienne de la transformation T .

En notation indicielle ligne-colonne :

∀j dxj′

=
∑

i

Jj′idxi
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où les Jj′i sont les éléments de la matrice [J ], le prime sur l’indice indiquant la nouvelle base.
En utilisant la convention de sommation sur les indices répétés en haut et en bas :

∀j dxj′

=
∂xj′

∂xi
dxi

= J j′

i dxi

Lorsque l’on utilise la convention de sommation il n’y a plus de notation indicielle ligne-colonne
car l’indice sur lequel on somme est toujours l’indice de colonne. Il dépend du terme qui suit.

Sous forme matricielle cette dernière égalité s’écrit :



dx′1

...
dx′n


 =




∂x1
′

∂x1 · · · ∂x1
′

∂xn

...
...

∂xn′

∂x1 · · · ∂xn′

∂xn







dx1

...
dxn




En prenant le déterminant de chaque membre de l’égalité :

dx′1 . . . dx′n = det[J ]dx1 . . . dxn

n∏

i=1

dx′i = det[J ]
n∏

i=1

dxi

Notation 16. dΩ est le produit des différentielles des coordonnées, il se confond avec l’hypervo-
lume élémentaire de l’espace en coordonnées rectangulaires.

dΩ′ = det[J ]dΩ (76)

Notation 17. dx′1 . . . dx′n est aussi noté dnx.

Définition 19.1.2. Jacobien d’une transformation
Le déterminant

J ,

∣∣∣∣∣∣∣∣∣

∂x1
′

∂x1 · · · ∂x1
′

∂xn

...
...

∂xn′

∂x1 · · · ∂xn′

∂xn

∣∣∣∣∣∣∣∣∣

= εi′j′...l′
∂xi′

∂x1

∂xj′

∂x2
. . .

∂xl′

∂xn

= εij...l ∂x1′

∂xi

∂x2′

∂xj
. . .

∂xn′

∂xl

est appelé jacobien de la transformation T .
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Définition 19.1.3. Transformation de coordonnées
Soit (x1, x2, . . . , xn) un système de coordonnées de l’espace ponctuel En. L’ensemble des
n équations (75) p. 161 est une transformation de coordonnées ou un changement de
coordonnées vers le nouveau système de coordonnées

(
x1′

, x2′

, . . . , xn′

)
de l’espace ponctuel

En, seulement si le jacobien de la transformation est non nul :

J 6= 0

En effet, T est bijective ssi son jacobien est non nul. Pour être une transformation de
coordonnées, la transformation doit de plus être de classe C2.

Le jacobien étant non nul, nous pouvons inverser la transformation

T −1 : ∀i = 1, . . . , n xi = xi
(
x1′

, x2′

, . . . , xn′
)

de matrice jacobienne :

[K] ,

[
∂xi

∂xj′

]

nn

=




∂x1

∂x1′ · · · ∂x1

∂xn′

...
...

∂xn

∂x1′ · · · ∂xn

∂xn′


 (77)

En notation indicielle :

∀i, j Ki
j′ =

∂xi

∂xj′

À partir des relations (3) p. 8,

∂xj′

∂xk

∂xk

∂xi′
= δj

i et
∂xj

∂xk′

∂xk′

∂xi
= δj

i

qui s’écrit sous forme matricielle :

[J ][K] = [K][J ] = I

où I est la matrice identité. La matrice [K] est aussi notée [J ]−1. La matrice jacobienne de la
transformation inverse est égale à l’inverse de la matrice jacobienne de la transformation.

Les matrices jacobiennes étant inverses l’une de l’autre, il s’en suit que les jacobiens sont
également inverses l’un de l’autre :

K = 1/J

Si la transformation a lieu entre repères rectilignes alors les ∂x
∂y

sont tous constants et le jacobien
est constant. En repères curvilignes le jacobien est fonction du point.

Exemple 19.1.1. La matrice jacobienne de la transformation des coordonnées polaires
en rectangulaires (ρ, θ) → (x, y) s’écrit :

[J ] ,
∂(x, y)
∂(ρ, θ)

,

[
∂ρx ∂θx
∂ρy ∂θy

]

=

[
cos(θ) −ρ sin(θ)
sin(θ) ρ cos(θ)

]

Elle a pour déterminant :

J = ρ cos2(θ) + ρ sin2(θ)

= ρ.
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Cette transformation est bijective pour J 6= 0, donc pour ρ 6= 0, c’est-à-dire pour le plan
privé du point origine.

La matrice jacobienne de la transformation inverse, des coordonnées rectangulaires aux
coordonnées polaires (x, y) → (ρ, θ), s’écrit :

[K] ,
(∂ρ, θ)
(∂x, y)

,

[
∂xρ ∂yρ
∂xθ ∂yθ

]

=

[
x (x2 + y2)−1/2

y (x2 + y2)−1/2

−y (x2 + y2)−1
x (x2 + y2)−1

]

=

[
cos(θ) sin(θ)
− sin(θ)

ρ
cos(θ)

ρ

]
(78)

Elle a pour déterminant :

K =
cos2(θ)

ρ
+

sin2(θ)
ρ

=
1
ρ

Exemple 19.1.2. Même démonstration que l’exemple 12.3.1 p. 100 en passant en coor-
données rectangulaires.

u′ =

[
cos(θ) −ρ sin(θ)
sin(θ) ρ cos(θ)

](
3/5

4/5ρ

)

=

(
3/5 cos(θ) − 4/5 sin(θ)
3/5 sin(θ) + 4/5 cos(θ)

)

‖u‖2 = δiju
iuj = (3/5 cos(θ) − 4/5 sin(θ))2 + (3/5 sin(θ) + 4/5 cos(θ))2

=
9
25

+
16
25

= 1

v′ =

[
cos(θ) −ρ sin(θ)
sin(θ) ρ cos(θ)

](
−4/5

3/5ρ

)

=

(
−4/5 cos(θ) − 3/5 sin(θ)
−4/5 sin(θ) + 3/5 cos(θ)

)

‖v‖2 = δijv
ivj = (−4/5 cos(θ) − 3/5 sin(θ))2 + (−4/5 sin(θ) + 3/5 cos(θ))2

=
16
25

+
9
25

= 1

u · v = giju
ivj = δiju

ivj

=
(

3
5

cos(θ) − 4
5

sin(θ)
) (

−4
5

cos(θ) − 3
5

sin(θ)
)

+
(

3
5

sin(θ) + 4
5

cos(θ)
) (

−4
5

sin(θ) + 3
5

cos(θ)
)

= −12
25

+ 12
25

= 0



Transformation de coordonnées 165

Exemple 19.1.3. Passer dans l’espace-temps de Poincaré-Minkowski revient à effectuer
la transformation suivante :

x1 = x

x2 = y

x3 = z

x4 = it

Le jacobien de cette transformation a pour expression :

J =

∣∣∣∣∣∣∣∣∣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i

∣∣∣∣∣∣∣∣∣
= i

19.2 Matrice changement de base

Toute transformation de coordonnées induit un changement de base naturelle, donc une
transformation des vecteurs de base. Lors d’une transformation de coordonnées, les vecteurs de
base sont les seuls à se transformer, les autres vecteurs restent identiques à eux mêmes lors de
la transformation.

Exemple 19.2.1. Le vecteur vitesse v d’une particule ne dépend pas du système de co-
ordonnées dans lequel on l’exprime.

v

e2 e2′

e1 = e1′

O

Fig. 19.1 – Changement de base

Dans le cas où ce vecteur est unitaire vertical dirigé vers le haut, il ne doit pas être
confondu avec le vecteur de base e2 qui lui subira un vrai changement pour devenir e2′.
Lors du changement de base les composantes du vecteur vitesse se transforment de ma-
nière à ce que le vecteur reste identique à lui-même.
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Définition 19.2.1. Matrice changement de base
Soient (ei) et (ej′) deux bases d’un espace vectoriel En où par convention les indices de
la nouvelle base sont primées, telles que :





e1′ = A1
1′ e1 + A2

1′ e2 + · · · + An
1′ en

e2′ = A1
2′ e1 + A2

2′ e2 + · · · + An
2′ en

...

en′ = A1
n′ e1 + A2

n′ e2 + · · · + An
n′ en

Nous appelons A la matrice changement de base (ei) → (ej′)

A ,




A1
1′ . . . An

1′

...
...

A1
n′ . . . An

n′




,




(e1′)ei

(e2′)ei

...
(en′)ei




où (ej′)ei
est le vecteur ej′ exprimé dans la base (ei). Nous avons




e1′

...
en′


 = A




e1
...

en


 (79)

où les éléments des vecteurs sont eux-mêmes des vecteurs. En utilisant la convention de
sommation sur les indices répétés en haut et en bas :

∀j ej′ = Ai
j′ei (80)

Remarque 27. La matrice jacobienne et la matrice changement de base ne sont pas des tenseurs,
elles ne se transforment pas lors d’un changement de base. Leurs indices ne sont pas des indices de
variance, nous pouvons les placer en haut ou en bas pour utiliser la convention de sommation.

Définition 19.2.2. Matrice de passage
On appelle matrice de passage la matrice :

P ,
[
(e1′)ei

(e2′)ei
. . . (en′)ei

]

où (ej′)ei
est le vecteur ej′ exprimé dans la base (ei). C’est la transposée de A :

P , AT =




A1′

1 . . . An′

1
...

...
A1′

n . . . An′

n




La matrice de passage donne la transformation des coordonnées des vecteurs autres que les
vecteurs de bases, de la nouvelle base vers l’ancienne base. Par exemple pour le vecteur vitesse



Transformation de coordonnées 167

en deux dimensions :

v = v′

v1e1 + v2e2 = v1′

e1′ + v2′

e2′

= v1′

(A1
1′e1 + A2

1′e2) + v2′

(A1
2′e1 + A2

2′e2)

=
(
v1′

A1
1′ + v2′

A1
2′

)
e1 +

(
v1′

A2
1′ + v2′

A2
2′

)
e2

(
v1

v2

)
=

(
A1

1′ A1
2′

A2
1′ A2

2′

)(
v1′

v2′

)

= AT

(
v1′

v2′

)

Le changement de base inverse s’écrit :




e1 = B1′

1 e1′ + B2′

1 e2′ + · · · + Bn′

1 en′

e2 = B1′

2 e1′ + B2′

2 e2′ + · · · + Bn′

2 en′

...

en = B1′

n e1′ + B2′

n e2′ + · · · + Bn′

n en′

En notation matricielle,



e1
...

en


 = B




e1′

...
en′




et en notation indicielle,

∀i ei = Bj′

i ej′ (81)

Les matrices A et B sont inverses l’une de l’autre :



e1′

...
en′


 = A




e1
...

en


 = AB




e1′

...
en′




D’où :

AB = I

Faisons la même démonstration en notation indicielle. En changeant les indices muets,




∀j ej′ = Ai
j′ei

∀i ei = Bk′

i ek′

d’une part,

∀j ej′ = Ai
j′ei

= Ai
j′Bk′

i ek′

= Bk′

i Ai
j′ek′

et d’autre part :

∀j ej′ = δk′

j′ ek′
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Par conséquent :

∀k, j Bk′

i Ai
j′ = δk′

j′ (82)

19.3 Transformation de la base naturelle

En physique la transformation des vecteurs de base est due à un changement de coordonnées
ou à un déplacement de l’origine de la base dans un système de coordonnées curviligne. Nous
nous placerons toujours dans la base naturelle du système de coordonnées.

∀j ej′ =
∂M

∂xj′

=
∂M

∂xi

∂xi

∂xj′

∀j ej′ =
∂xi

∂xj′
ei (83)

Cette relation n’est valable que pour un changement de base naturelle à base naturelle. Cette
relation et les relations (80) p. 166 donnent l’expression des éléments de la matrice changement
de base entre deux bases naturelles :

∀i, j Ai
j′ =

∂xi

∂xj′





e1′ =
∂x1

∂x1′
e1 +

∂x2

∂x1′
e2 + · · · +

∂xn

∂x1′
en

e2′ =
∂x1

∂x2′
e1 +

∂x2

∂x2′
e2 + · · · +

∂xn

∂x2′
en

...

en′ =
∂x1

∂xn′
e1 +

∂x2

∂xn′
e2 + · · · +

∂xn

∂xn′
en




e1′

...
en′


 =




∂x1

∂x1′ · · · ∂xn

∂x1′

...
...

∂x1

∂xn′ · · · ∂xn

∂xn′







e1
...

en




C’est la transposée de l’inverse de la matrice jacobienne (77) p. 163 :



e1′

...
en′


 = KT




e1
...

en




Cette relation et la relation (79) p. 166 montrent que pour des bases naturelles les matrices A
et K sont transposées l’une de l’autre :

A = KT

Les transformations inverses s’écrivent :

∀i ei =
∂M

∂xi

=
∂M

∂xj′

∂xj′

∂xi
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∀i ei =
∂xj′

∂xi
ej′ (84)

Les relations (81) p. 167 donnent l’expression des éléments de la matrice B en bases naturelles :

∀i, j Bj′

i =
∂xj′

∂xi

Nous avons aussi

B = JT

Exemple 19.3.1. Rotation d’une base
Soit (e1, e2) une base orthonormée du plan. Une rotation d’angle α du système de coor-
données transforme cette base en une nouvelle base orthonormée du plan, (e1′ , e2′) :.

e1

e2

e1′

e2′

O
α

Fig. 19.2 – Rotation d’une base

Déterminons la nouvelle base en fonction de l’ancienne :
{

e1′ = cos(α) e1 + sin(α) e2

e2′ = − sin(α) e1 + cos(α) e2

(
e1′

e2′

)
=

[
cos(α) sin(α)

− sin(α) cos(α)

](
e1

e2

)

= [A]

(
e1

e2

)

On en déduit les coefficients Ai
j′ = ∂xi/∂xj′

:

A1
1′ = cos(α) A2

1′ = sin(α) A1
2′ = − sin(α) A2

2′ = cos(α)

Le determinant de [A] vaut l’unité :

A =

∣∣∣∣∣
cos(α) sin(α)

− sin(α) cos(α)

∣∣∣∣∣

= cos2 α + sin2 α = 1

Déterminons l’ancienne base en fonction de la nouvelle. On trouve directement :
{

e1 = cos(α) e1′ − sin(α) e2′

e2 = sin(α) e1′ + cos(α) e2′

On peut aussi multiplier par cosinus et sinus :




cos(α) e1′ = cos2 α e1 + cos(α) sin(α) e2

sin(α) e2′ = − sin2 α e1 + sin(α) cos(α) e2

⇒ e1′ = cos(α) e1 − sin(α) e2
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



sin(α) e1′ = sin(α) cos(α) e1 + sin2 α e2

cos(α) e2′ = cos(α) sin(α) e1 + cos2 α e2

⇒ e2′ = sin(α) e1 + cos(α) e2

ou calculer l’inverse de [A]. Puisque le déterminant vaut l’unité, l’inverse est égale à sa
transposée :

[B] =

[
cos(α) − sin(α)
sin(α) cos(α)

]

Le déterminant étant égal à un, on en déduit les coefficients Bj′

i = ∂xj′

/∂xi :

B1′

1 = cos(α) B2′

1 = − sin(α) B1′

2 = sin(α) B2′

2 = cos(α)

19.4 Changement de repère

Soient (O, ei) et (O′, ej′) deux repères de l’espace ponctuel. Les bases étant reliées par les
relations (83) et (84) p. 169, quelles sont les relations entre les coordonnées d’un point M
exprimées dans chacun de ces repères ?

Nous avons, 



OO′ = αiei

O′O = αj′

ej′

et





OM = xiei

O′M = xj′

ej′

OM = OO′ + O′M

xiei = αiei + xj′

ej′

= αiei + xj′ ∂xi

∂xj′
ei

=

(
αi + xj′ ∂xi

∂xj′

)
ei

∀i xi = αi + xj′ ∂xi

∂xj′

Par symétrie :

∀j xj′

= αj′

+ xi ∂xj′

∂xi

19.5 Transformation des composantes d’un vecteur

19.5.1 Transformation des composantes contravariantes

Les vecteurs ont une signification absolue indépendante de la base dans laquelle on les
exprime, mais les nombres (les composantes) qui les décrivent dépendent de la base utilisée :

uj′

ej′ = uiei
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À partir du changement de base naturelle (84) p. 169 :

uj′

ej′ = ui ∂xj′

∂xi
ej′

Les composantes contravariantes se transforment par changement de base naturelle selon les
relations :

∀j uj′

=
∂xj′

∂xi
ui (85)

Cette transformation est linéaire et homogène. Nous avons suivi la notation 2 p. 5 du prime
sur l’indice, bien qu’il ne s’agisse pas de l’indice j′ mais de la je composante du vecteur dans
la base primée.





u1′

=
∂x1′

∂x1
u1 +

∂x1′

∂x2
u2 + · · · +

∂x1′

∂xn
un

u2′

=
∂x2′

∂x1
u1 +

∂x2′

∂x2
u2 + · · · +

∂x2′

∂xn
un

...

un′

=
∂xn′

∂x1
u1 +

∂xn′

∂xn
un + · · · +

∂xn′

∂xn
un




u1′

...
un′


 =




∂x1
′

∂x1 . . . ∂x1
′

∂xn

...
...

∂xn′

∂x1 . . . ∂xn′

∂xn







u1

...
un




= J




u1

...
un




En composantes contravariantes dans la base naturelle :

u′ = Ju (86)

Par changement de base naturelle, les composantes contravariantes se transforment comme les
différentielles des coordonnées, par la matrice jacobienne J , et de façon « contraire » (transposée
de la matrice inverse de A) aux vecteurs de base (79) p. 166. À partir du changement de base
naturelle (83) p. 168 :

uiei = uj′

ej′

= uj′ ∂xi

∂xj′
ei

∀i ui =
∂xi

∂xj′
uj′

(87)

En notation matricielle, en composantes contravariantes :

u = Ku′

Remarque 28. u
′ n’est autre que u (exprimé dans la base primée). Le prime désigne ici le même

objet. Par contre e
′

i (noté ei′) n’est pas ei. Le prime désigne ici deux objets différents.
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Remarque 29. Dans les expressions (83) p. 168 et (87) p. 171, respectivement ∂xi

∂xj′ ei et ∂xi

∂xj′ uj′

,
les matrices de dérivées partielles sont transposées l’une de l’autre. La sommation se faisant sur l’indice
répété, elle dépend du terme qui suit.

19.5.2 Transformation des composantes covariantes

À partir du changement de base naturelle (83) p. 168 :

∀j uj′ = OM · ej′

= OM · ∂xi

∂xj′
ei

=
∂xi

∂xj′
(OM · ei)

Par changement de base naturelle, les composantes covariantes se transforment selon :

∀j uj′ =
∂xi

∂xj′
ui





u1′ =
∂x1

∂x1′
u1 +

∂x2

∂x1′
u2 + · · · +

∂xn

∂x1′
un

u2′ =
∂x1

∂x2′
u1 +

∂x2

∂x2′
u2 + · · · +

∂xn

∂x2′
un

...

un′ =
∂x1

∂xn′
u1 +

∂x2

∂xn′
un + · · · +

∂xn

∂xn′
un




u1′

...
un′


 =




∂x1

∂x1′ . . . ∂xn

∂x1′

...
...

∂x1

∂xn′ . . . ∂xn

∂xn′







u1
...

un




= A




u1
...

un




En composantes covariantes :

u′
cov = Aucov (88)

Les composantes covariantes se transforment comme les vecteurs de base, relations (79) p. 166.
De même :

∀i ui = OM · ei

= OM · ∂xj′

∂xi
ej′

=
∂xj′

∂xi
(OM · ej′)

∀i ui =
∂xj′

∂xi
uj′ (89)
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En notation matricielle, en composantes covariantes :

ucov = Bu′
cov

19.5.3 Exemples

Exemple 19.5.1. Soient (e1, e2) et (e1′ , e2′) deux bases normées quelconques (Fig. 19.3).

M

e1

e2

e1′

e2′

O u1

u2

u1′

u2′

Fig. 19.3 – Transformation des composantes contravariantes

Écrivons l’expression du vecteur OM en composantes contravariantes dans chaque base :

u1′

e1′ + u2′

e2′ = u1e1 + u2e2

= u1
(
B1′

1 e1′ + B2′

1 e2′

)
+ u2

(
B1′

2 e1′ + B2′

2 e2′

)

=
(
u1B1′

1 + u2B1′

2

)
e1′ +

(
u1B2′

1 + u2B2′

2

)
e2′

Par conséquent : 



u1′

= B1′

1 u1 + B1′

2 u2

u2′

= B2′

1 u1 + B2′

2 u2

(
u1′

u2′

)
=

[
B1′

1 B1′

2

B2′

1 B2′

2

](
u1

u2

)
= BT

(
u1

u2

)
= J

(
u1

u2

)

De même :

u1e1 + u2e2 = u1′

e1′ + u2′

e2′

= u1′
(
A1

1′e1 + A2
1′e2

)
+ u2′

(
A1

2′e1 + A2
2′e2

)

=
(
u1′

A1
1′ + u2′

A1
2′

)
e1 +

(
u1′

A2
1′ + u2′

A2
2′

)
e2

par conséquent : 



u1 = A1
1′u1′

+ A1
2′u2′

u2 = A2
1′u1′

+ A2
2′u2′
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(
u1

u2

)
=

[
A1

1′ A1
2′

A2
1′ A2

2′

](
u1′

u2′

)

= AT

(
u1′

u2′

)

= K

(
u1′

u2′

)

Exemple 19.5.2. Soit le vecteur OM = u1e1 + u2e2, déterminons ses composantes
contravariantes dans la nouvelle base (e1′, e2′) définie dans l’exercice 19.3.1 p. 169 de
rotation d’une base. En utilisant les coefficients ∂xi′

/∂xj déjà calculés :




u1′

= B1′

1 u1 + B1′

2 u2

u2′

= B2′

1 u1 + B2′

2 u2
⇒





u1′

= cos(α) u1 + sin(α) u2

u2′

= − sin(α) u1 + cos(α) u2

Nous pouvons aussi les déterminer en remplaçant les vecteurs de l’ancienne base :

OM = u1e1 + u2e2

= u1 (cos(α) e1′ − sin(α) e2′) + u2 (sin(α) e1′ + cos(α) e2′)

=
(
cos(α) u1 + sin(α) u2

)
e1′ +

(
− sin(α) u1 + cos(α) u2

)
e2′

= u1′

e1′ + u2′

e2′

Exemple 19.5.3. Dans le système de coordonnées (x1, x2), soit u un champ de vecteurs
de composantes contravariantes (u1 = x2, u2 = x1). Quelles sont ses composantes contra-
variantes (u1′

, u2′

) lors du changement de coordonnées :




x1′

=
(
x2
)2

x2′

= x1x2

(1) Méthode indicielle

u1′

=
∂x1′

∂x1
u1 +

∂x1′

∂x2
u2

= 2x2u2

= 2x2x1

u2′

=
∂x2′

∂x1
u1 +

∂x2′

∂x2
u2

= x2u1 + x1u2

=
(
x2
)2

+
(
x1
)2

(2) Méthode matricielle
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La définition 19.1.1 p. 161, J ,
[

∂xi′

∂xj

]

22
, et la relation (86) p. 171, u′ = Ju,

donnent : (
u1′

u2′

)
=

[
0 2x2

x2 x1

](
x2

x1

)

det J 6= 0 implique x2 6= 0 donc x1′ 6= 0.
(

u1′

u2′

)
=

(
2x1x2

(x2)2 + (x1)2

)

Par exemple, si u est un vecteur de composantes contravariantes (1, 1) :
(

u1′

u2′

)
=

(
2
2

)

Exemple 19.5.4. Soient (e1, e2) et (e1′ , e2′) deux bases normées quelconques (Fig. 19.4).
En partant de l’expression des composantes covariantes :

{
u1′ = OM · e1′

u2′ = OM · e2′

M

e1

e2

e1′

e2′

O u1

u2

u1′

u2′

Fig. 19.4 – Transformation des composantes covariantes





u1′ = OM · (A1
1′e1 + A2

1′e2)

u2′ = OM · (A1
2′e1 + A2

2′e2)
⇒





u1′ = A1
1′ OM · e1 + A2

1′ OM · e2

u2′ = A1
2′ OM · e1 + A2

2′ OM · e2



u1′ = A1
1′ u1 + A2

1′ u2

u2′ = A1
2′ u1 + A2

2′ u2

(
u1′

u2′

)
=

[
A1

1′ A2
1′

A1
2′ A2

2′

](
u1

u2

)
= A

(
u1

u2

)

De même : (
u1

u2

)
= B

(
u1′

u2′

)
= A−1

(
u1′

u2′

)
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Dans une base non normée ou non orthogonale, les composantes covariantes et contrava-
riantes (selon comment on projette le vecteur sur la base) ne se transforment pas de la même
manière par changement de base.

Exemple 19.5.5. Dans la base orthonormée (ex, ey, ez), on considère les deux vecteurs
u (u1, u2, u3) et v (v1, v2, v3) de E3. La base étant orthonormée les composantes contrava-
riantes et covariantes sont confondues. Effectuons le changement de base qui passe à la
nouvelle base {e1′ (1, 1, 1) , e2′ (0, 1, 1) , e3′ (0, 0, 1)}, et déterminons les nouvelles compo-
santes de u et v.
Pour les composantes contravariantes :

u1ex + u2ey + u3ez = u1′

e1′ + u2′

e2′ + u3′

e3′

= u1′

(ex + ey + ez) + u2′

(ey + ez) + u3′

ez

= u1′

ex +
(
u1′

+ u2′
)

ey +
(
u1′

+ u2′

+ u3′
)

ez





u1 = u1′

u2 = u1′

+ u2′

u3 = u1′

+ u2′

+ u3′

⇒





u1′

= u1

u2′

= u2 − u1

u3′

= u3 − u2

De même pour v : 



v1′

= v1

v2′

= v2 − v1

v3′

= v3 − v2

Pour les composantes covariantes, en utilisant la définition 11.4.1 p. 92 :




u1′ = u · e1′

u2′ = u · e2′

u3′ = u · e3′

⇒





u1′ = (u1, u2, u3) · (1, 1, 1)

u2′ = (u1, u2, u3) · (0, 1, 1)

u3′ = (u1, u2, u3) · (0, 0, 1)

⇒





u1′ = u1 + u2 + u3

u2′ = u2 + u3

u3′ = u3

De même pour v : 



v1′ = v1 + v2 + v3

v2′ = v2 + v3

v3′ = v3

Une seconde méthode consiste à passer des composantes contravariantes dans la nouvelle
base aux composantes covariantes en utilisant le tenseur métrique, relations (43) p. 99 :




u1′ =
(
u1′

e1′ + u2′

e2′ + u3′

e3′

)
· e1′

u2′ =
(
u1′

e1′ + u2′

e2′ + u3′

e3′

)
· e2′

u3′ =
(
u1′

e1′ + u2′

e2′ + u3′

e3′

)
· e3′

⇒





u1′ = u1′

e1′ · e1′ + u2′

e2′ · e1′ + u3′

e3′ · e1′

u2′ = u1′

e1′ · e2′ + u2′

e2′ · e2′ + u3′

e3′ · e2′

u3′ = u1′

e1′ · e3′ + u2′

e2′ · e3′ + u3′

e3′ · e3′

⇒





u1′ = u1′

g11 + u2′

g21 + u3′

g31

u2′ = u1′

g12 + u2′

g22 + u3′

g32

u3′ = u1′

g13 + u2′

g23 + u3′

g33

⇒





u1′ = u1 + u2 + u3

u2′ = u2 + u3

u3′ = u3

Déterminons le produit scalaire de u et v. Dans la base d’origine :

u · v = u1v1 + u2v2 + u3v3
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Dans la nouvelle base :

u · v = ui′vi′

= u1′v1′

+ u2′v2′

+ u3′v3′

= (u1 + u2 + u3) v1 + (u2 + u3) (v2 − v1) + u3 (v3 − v2)

= u1v1 + u2v2 + u3v3

ou bien,

u · v = ui′

vi′

= u1′

v1′ + u2′

v2′ + u3′

v3′

= u1 (v1 + v2 + v3) + (u2 − u1) (v2 + v3) + (u3 − u2) v3

= u1v1 + u2v2 + u3v3

et le produit scalaire est bien invariant.

Exemple 19.5.6. Dans le système de coordonnées (x1, x2), soit u un champ de vecteurs
de composantes covariantes (u1 = x2, u2 = x1). Quelles sont ses composantes covariantes
(u1′, u2′) lors du changement de coordonnées :





x1′

=
(
x2
)2

x2′

= x1x2

(1) Méthode indicielle
On pose ǫ = ±1.

u1′ =
∂x1

∂x1′
u1 +

∂x2

∂x1′
u2 =

−ǫx2′

2
(√

x1′

)3

(
ǫ
√

x1′

)
+

ǫ

2
√

x1′

ǫx2′

√
x1′

= − x2′

2x1′
+

x2′

2x1′
= 0

u2′ =
∂x1

∂x2′
u1 +

∂x2

∂x2′
u2 =

ǫ√
x1′

(
ǫ
√

x1′

)
+ 0 × ǫx2′

√
x1′

= 1

(2) Méthode matricielle

(a) Première méthode

D’après 88 p. 172, u′
cov = (J−1)T u, avec J−1 ,

[
∂xi

∂xj′

]
22

. On inverse le
système d’équations du changement de coordonnées :





x2 = ǫ
√

x1′

x1 =
x2′

x2
=

ǫx2′

√
x1′

(
u1′

u2′

)
=




−ǫx2
′

2

(√
x1′

)3

ǫ

2
√

x1′

ǫ√
x1′

0







ǫ
√

x1′

ǫx2
′√

x1′


 =

(
0
1

)

(b) Seconde méthode



178 Transformation de coordonnées

On inverse J donné dans l’exemple 19.5.3 p. 174 puis on prend la transposée.
Nous obtenons (J−1)T en fonction de x1 et x2 :

(
u1′

u2′

)
=

[ −x1

2(x2)2

1
2x2

1
x2 0

](
x2

x1

)
=

(
0
1

)

Exemple 19.5.7. Au point de coordonnées polaires (3, 30◦), la base polaire a pour expres-
sion : (

eρ

eθ

)
=

[
cos 30◦ sin 30◦

−3 sin 30◦ 3 cos 30◦

](
ex

ey

)
=

[√
3/2 1/2

−3/2 3
√

3/2

](
ex

ey

)

M

eρ

eθ

O x

y

ρ

θ

Fig. 19.5 – Base naturelle en coordonnées polaires (ρ, θ)

Remarque 30. On note que ‖eρ‖ = 1 et ‖eθ‖ = 3.

Exemple 19.5.8. Dans le système de coordonnées rectangulaires (x, y), soit u un vecteur
de composantes contravariantes (ux, uy). Quelles sont ses composantes contravariantes(
uρ, uθ

)
lors de la transformation en coordonnées polaires (ρ, θ) ?

(1) En notation indicielle, les relations (85) p. 171 donnent :




uρ =
∂ρ

∂x
ux +

∂ρ

∂y
uy = ux cos(θ) + uy sin(θ)

uθ =
∂θ

∂x
ux +

∂θ

∂y
uy =

−ux sin(θ) + uy cos(θ)
ρ

(2) En notation matricielle, la relation (86) p. 171 donne :

u′ = Ju
(

uρ

uθ

)
=

[
cos(θ) sin(θ)
− sin(θ)

ρ
cos(θ)

ρ

](
ux

uy

)
=

(
ux cos(θ) + uy sin(θ)

(−ux sin(θ) + uy cos(θ)) /ρ

)
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Si u (ux = 1, uy = 1) alors au point de coordonnées polaires (3, 30◦) :
(

uρ

uθ

)
=

[√
3/2 1/2

−1/6
√

3/6

](
1
1

)
=

( √
3+1
2

−1+
√

3
6

)

M

eρ

eθ

O x

y

ρ

θ

u

u

Si u(x, y) est le vecteur position alors :
(

uρ

uθ

)
=

(
ρ cos(θ) cos(θ) + ρ sin(θ) sin(θ)

(−ρ cos(θ) sin(θ) + ρ sin(θ) cos(θ)) /ρ

)
=

(
ρ
0

)

Exemple 19.5.9. Dans le système de coordonnées rectangulaires (x, y), soit u un vecteur
de composantes covariantes (ux, uy). Quelles sont ses composantes covariantes (uρ, uθ)
lors de la transformation en coordonnées polaires (ρ, θ) :

T :

{
x (ρ, θ) = ρ cos(θ)

y (ρ, θ) = ρ sin(θ)
ρ > 0 et 0 6 θ < 2π

D’après (78) p. 164 :

J =

[
cos(θ) sin(θ)
− sin(θ)

ρ
cos(θ)

ρ

]

La relation (88) p. 172 donne :

u′
cov =

(
J−1

)T
u

(
uρ

uθ

)
=

[
cos(θ) sin(θ)

−ρ sin(θ) ρ cos(θ)

](
ux

uy

)
=

(
ux cos(θ) + uy sin(θ)

−uxρ sin(θ) + uyρ cos(θ)

)

Par exemple si u (ux = 1, uy = 1) alors au point de coordonnées polaires (3, 30◦) :
(

uρ

uθ

)
=

[√
3/2 1/2

−3/2 3
√

3/2

](
1
1

)
=

( √
3+1
2

−3+3
√

3
2

)

On vérifie que l’on a bien :




uρ = u · eρ = ‖u‖‖eρ‖ cos (û, eρ) =
√

2 ×
√

2 +
√

3
2

=

√
3 + 1
2

uθ = u · eθ = ‖u‖‖eθ‖ cos (û, eθ) = 3
√

2 ×
√

3 − 1
2
√

2
=

−3 + 3
√

3
2
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19.6 Cas des bases réciproques

19.6.1 Transformation des composantes contravariantes

Soient (ei) et (ej′) deux bases naturelles d’un espace vectoriel, associées à deux systèmes de
coordonnées (xi) et (xj′

). Chacune de ses bases a une base réciproque. Avec les relations (66)
p. 121 et (89) p. 172 :

∀i ui = ui

=
∂xj′

∂xi
uj′

=
∑

j

∂xj′

∂xi
uj′

(90)

Les composantes contravariantes dans la base réciproque se transforment de façon identique
aux composantes covariantes dans la base d’origine.

19.6.2 Transformation des composantes covariantes

Soient (ei) et (ej′) deux bases naturelles d’un espace vectoriel. Avec les relations (68) p. 122
et (87) p. 171 :

∀i ui = ui

=
∂xi

∂xj′
uj′

=
∑

j

∂xi

∂xj′
uj′

Les composantes covariantes dans la base réciproque se transforment de façon identique aux
composantes contravariantes dans la base d’origine.

19.6.3 Transformation des vecteurs de base

Soient (ǫi) la base réciproque de la base (ei) et soit (ǫj′) la base réciproque de la base (ej′).
Soit A la matrice changement de base de la base d’origine (ei) vers la nouvelle base (ej′), et
soit A

′

la matrice changement de base de la nouvelle base (ej′) vers la base d’origine (ei). Avec
les relations (90) p. 180,

ui′

ǫi′ = ujǫj

=
∑

j

(∑

i

∂xi′

∂xj
ui′

)
ǫj

∀i ǫi′ =
∑

j

∂xi′

∂xj
ǫj

∀i ei′

=
∂xi′

∂xj
ej (91)
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En utilisant les relations (82) p. 168 :

∀k
∂xk

∂xi′
ei′

=
∂xk

∂xi′

∂xi′

∂xj
ej

= δk
j ej

∀k ek =
∂xk

∂xi′
ei′

(92)

Les vecteurs de base de la base réciproque se transforment de façon « contraire » (par la matrice
inverse de la transposée) aux vecteurs de base de la base d’origine, relations (80) p. 166.





20
Algèbre tensorielle

20.1 Introduction

Les lois de la géométrie et de la physique ont une existence intrinsèque indépendante du
système de coordonnées dans lequel on les exprime. Il est donc naturel d’essayer de se débarasser
des systèmes de coordonnées et de raisonner sur des objets géométriques ou physiques. On a
d’abord fait correspondre à ses objets des éléments simples euclidiens sur lesquels on a défini
des opérations dont on a étudié les propriétés. Ce procédé a conduit au Calcul vectoriel, puis
au Calcul tensoriel. Cependant, le choix d’un système de coordonnées est resté nécessaire, et
les vecteurs et tenseurs, bien qu’indépendants de tout système de coordonnées, sont donnés par
leurs coordonnées, sans que cela soit contradictoire. Plutôt que de particulariser un système de
coordonnées en en choisissant un, on écrit les équations sous une forme valable dans n’importe
quel système de coordonnées.

Il existe en physique des quantités intrinsèques qui, comme les vecteurs, existent en elles-
mêmes indépendamment de la base dans laquelle on les exprime. Par exemple la matrice inertie
ou la matrice rotation d’un solide. Ces matrices carrées particulières sont appelées des tenseurs.
Toute combinaison linéaire de deux tenseurs donne un tenseur, les tenseurs sont donc des
vecteurs d’après la définition 3.1.2 p. 15. Les matrices de Mn,p(K) sont aussi des vecteurs et
Mn,p(K) est un K-espace vectoriel. En effet, toute combinaison linéaire de deux matrices de
Mn,p(K) donne une matrice de Mn,p(K). Elles sont de plus invariantes par changement de base
de Mn,p(K). Les tenseurs sont des matrices particulières car ils sont invariants par changement
de base lié au changement de coordonnées de l’espace-temps physique. Un changement de
coordonnées de l’espace-temps induit un changement de base de l’espace vectoriel des forces,
des vitesses, des accélérations, des tenseurs en général, mais pas de celui des matrices. Les
tenseurs ont donc un sens physique que n’ont pas les matrices.

Un tenseur avec p indices contravariants est dit contravariant d’ordre p, avec q indices
covariants il est dit covariant d’ordre q. S’il est les deux il est dit d’ordre p + q. L’ordre d’un
tenseur n’a donc rien à voir avec l’ordre d’une matrice qui est de combien varie ses indices.

Habituellement on appelle « vecteurs » uniquement les tenseurs d’ordre un alors que tous
les tenseurs sont des vecteurs, quel que soit leur ordre. En physique, nous utiliserons cet abus
de langage pour dire que les vecteurs appartiennent à une catégorie plus grande d’objets ma-
thématiques, les tenseurs. Les scalaires sont alors des tenseurs d’ordre zéro.

Les tenseurs d’ordre deux sont souvent représentés par des matrices carrées dont les éléments
sont leurs composantes. Nous avons vu que cette représentation n’est valable que dans les
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espaces pré-euclidiens, les composantes covariantes et contravariantes étant confondues. De
plus, pour les tenseur d’ordre trois la multiplication des matrices 3D n’est pas définie. Il faut
alors abandonner la représentation matricielle des tenseurs et n’utiliser que la représentation
indicielle.

Toutes les équations de la physique doivent être invariantes de forme par changement de
coordonnées (donc par changement de base), elles sont dites covariantes. C’est le principe de
covariance des équations de la physique (cette covariance n’a pas de rapport avec la covariance
des composantes). Or, pour les vecteurs comme pour les tenseurs, les composantes de même
variance se transforment de la même façon. Toutes les équations de la physique doivent donc
être écrites sous la forme d’une égalité entre tenseurs de même ordre et de même variance. Pour
assurer cette invariance des tenseurs, leurs composantes doivent se transformer d’une façon bien
précise que nous allons déterminer. Cette propriété d’invariance par changement de base est
fondamentale puisqu’elle peut servir de définition des tenseurs.

Dans un second temps, de même que nous avons défini les vecteurs et les espaces vectoriels
uniquement à partir de leurs propriétés opératoires, nous définirons les tenseurs et les espaces
tensoriels uniquement à partir de leurs propriétés opératoires.

Exemple 20.1.1. Une façon simple de former un nouveau vecteur (dans le sens d’une
quantité indépendante de la base dans laquelle on l’exprime), consiste à multiplier les
composantes de deux vecteurs dans un ordre déterminé. Soient u (u1, u2) et v (v1, v2) deux
vecteurs de l’espace vectoriel E2, le nouveau vecteur T a quatre composantes et appartient
à l’espace vectoriel E4 (les dimensions des espaces vectoriels de départ se multiplient) :

T =
(
u1v1, u1v2, u2v1, u2v2

)

Notation 18. En notation indicielle, si u = ui
ei et v = vi

ei alors

∀i, j tij = uivj

où l’ordre des indices i et j compte car en général u1v2 6= u2v1 donc tij 6= tji.

En utilisant cette notation :

T =
(
t11, t12, t21, t22

)

T est un tenseur, appelé produit tensoriel de u et v, noté ⊗. On le défini comme suit :

u ⊗ v =
(
u1e1 + u2e2

)
⊗
(
v1e1 + v2e2

)

= u1e1 ⊗ v1e1 + u1e1 ⊗ v2e2 + u2e2 ⊗ v1e1 + u2e2 ⊗ v2e2

= u1v1e1 ⊗ e1 + u1v2e1 ⊗ e2 + u2v1e2 ⊗ e1 + u2v2e2 ⊗ e2

= t11e1 ⊗ e1 + t12e1 ⊗ e2 + t21e2 ⊗ e1 + t22e2 ⊗ e2

= T
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Soient e1 = (1, 0) et e2 = (0, 1) les vecteurs de base d’une base orthonormée de E2 :

e1 ⊗ e1 = (1 × 1, 1 × 0, 0 × 1, 0 × 0)

= (1, 0, 0, 0)

e1 ⊗ e2 = (1 × 0, 1 × 1, 0 × 0, 0 × 1)

= (0, 1, 0, 0)

e2 ⊗ e1 = (0 × 1, 0 × 0, 1 × 1, 1 × 0)

= (0, 0, 1, 0)

e2 ⊗ e2 = (0 × 0, 0 × 1, 1 × 0, 1 × 1)

= (0, 0, 0, 1)

En écriture matricielle nous retrouvons le produit de Kronecker du chapitre 15 :

u ⊗ v =

(
u1

u2

)
⊗
(

v1

v2

)

=




u1

(
v1

v2

)

u2

(
v1

v2

)




=




(
u1v1

u1v2

)

(
u2v1

u2v2

)




=




(
t11

t12

)

(
t21

t22

)




= T

Notez qu’ici T a deux composantes et non quatre.

20.2 Composantes deux fois contravariantes

Par changement de base naturelle, les composantes du tenseur T, produit tensoriel des
vecteurs u et v, se tranforment de la façon suivante :

∀i, j ti′j′

= ui′

vj′

=
∂xi′

∂xk
uk ∂xj′

∂xl
vl

=
∂xi′

∂xk

∂xj′

∂xl
ukvl

=
∂xi′

∂xk

∂xj′

∂xl
tkl (93)

Les tij sont les composantes deux fois contravariantes du tenseur T.

Le produit tensoriel des vecteurs des bases naturelles est défini de façon à assurer l’inva-
riance du vecteur T par changement de base naturelle grâce aux relations (80) p. 166 :

∀i, j (ei ⊗ ej)
′ = ei′ ⊗ ej′

=
∂xk

∂xi′
ek ⊗ ∂xl

∂xj′
el

=
∂xk

∂xi′

∂xl

∂xj′
(ek ⊗ el) (94)
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T est alors indépendant de la base naturelle dans laquelle on l’exprime :

(u ⊗ v)′ =
(
uiei ⊗ vjej

)′

=
(
uivjei ⊗ ej

)′

= ti′j′

(ei ⊗ ej)
′

=
∂xi′

∂xk

∂xj′

∂xl
tkl ∂xk

∂xi′

∂xl

∂xj′
(ek ⊗ el)

= tklek ⊗ el

= ukek ⊗ vlel

= u ⊗ v

Exemple 20.2.1. On considère deux vecteurs u = 4e1 + 3e2 et v = e1 + 5e2 de E2.
Déterminons les composantes contravariantes du produit tensoriel de u par v.

T = u ⊗ v

= (4e1 + 3e2) ⊗ (e1 + 5e2)

= 4 e1 ⊗ e1 + 20 e1 ⊗ e2 + 3 e2 ⊗ e1 + 15 e2 ⊗ e1

Nous avons :

t11 = 4 t12 = 20 t21 = 3 t22 = 15

En reprenant l’exercice 19.3.1 p. 169 de rotation d’une base, déterminons les composantes
contravariantes du produit tensoriel dans la nouvelle base naturelle. Par changement
de base naturelle, les composantes de T se tranforment selon (93) p. 185 avec Bj′

i =
∂xj′

/∂xi :

B1′

1 = cos(α) B2′

1 = − sin(α) B1′

2 = sin(α) B2′

2 = cos(α)

Nous avons alors :




t1′1′

= B1′

1 B1′

1 t11 + B1′

1 B1′

2 t12 + B1′

2 B1′

1 t21 + B1′

2 B1′

2 t22

t1′2′

= B1′

1 B2′

1 t11 + B1′

1 B2′

2 t12 + B1′

2 B2′

1 t21 + B1′

2 B2′

2 t22

t2′1′

= B2′

1 B1′

1 t11 + B2′

1 B1′

2 t12 + B2′

2 B1′

1 t21 + B2′

2 B1′

2 t22

t2′2′

= B2′

1 B2′

1 t11 + B2′

1 B2′

2 t12 + B2′

2 B2′

1 t21 + B2′

2 B2′

2 t22





t1′1′

= 4 cos2 α + 17 cos(α) sin(α) + 15 sin2 α

t1′2′

= 11 sin(α) cos(α) + 20 cos2 α − 3 sin2 α

t2′1′

= 11 sin(α) cos(α) − 20 sin2 α + 3 cos2 α

t2′2′

= 4 sin2 α − 23 sin(α) cos(α) + 15 cos2 α

20.3 Produit tensoriel

Dans ce paragraphe nous formalisons ce que nous venons de voir en introduction.
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20.3.1 Produit tensoriel de deux vecteurs

Soient En et Fp deux espaces vectoriels de dimensions respectives n et p, et soit En × Fp

un espace à q = n × p dimensions. ∀u ∈ En, ∀v ∈ Fp, au couple de vecteurs (u, v) nous
faisons correspondre l’élément noté u ⊗ v de l’espace En × Fp, la loi de composition ⊗ ayant
les propriétés suivantes :

(1) ∀(u, u1, u2) ∈ En, ∀(v, v1, v2) ∈ Fp, la loi ⊗ est distributive à droite et à gauche par
rapport à l’addition vectorielle (notée +) :

u ⊗ (v1 + v2) = u ⊗ v1 + u1 ⊗ v2

(u1 + u2) ⊗ v = u1 ⊗ v + u2 ⊗ v

(2) Soit α un scalaire. La loi ⊗ est associative par rapport à la multiplication par un
scalaire :

α (u ⊗ v) = αu ⊗ v

= u ⊗ αv

Définition 20.3.1. Élément produit tensoriel de deux vecteurs
La loi de composition ⊗ est appelée multiplication tensorielle. L’élément u ⊗ v est appelé
produit tensoriel des vecteurs u et v ou produit dyadique.

Définition 20.3.2. Espace produit cartésien
L’espace produit cartésien En×Fp est l’ensemble des produits tensoriels de tous les vecteurs
des espaces vectoriels En et Fp. Ce n’est pas un espace vectoriel car une combinaison
linéaire de ses éléments ne donne pas nécessairement un élément de cet espace.

Définition 20.3.3. Espace produit tensoriel
L’espace vectoriel Gq = En ⊗ Fp est appelé produit tensoriel des espaces vectoriels En et
Fp. C’est l’espace de toutes les combinaisons linéaires des éléments de En × Fp.

La loi de composition ⊗ a également la propriété suivante :

(3) Soit (ei) une base de En et soit (fα) une base de Fp. Les np éléments,

ei ⊗ fα

forment une base de Gq.

Remarque 31. L’espace En ⊗ Fp se distingue de l’espace Gq en ce qu’il est muni de la loi ⊗. Nous
dirons que Gq constitue le support de En ⊗ Fp.
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20.3.2 Expression analytique du produit tensoriel

Théorème 20.3.1. Les espaces En, Fp, et En ⊗Fp étant rapportés à des bases associées par
les relations ei ⊗fα = ǫiα, la seule loi de composition satisfaisant aux propriétés du paragraphe
20.3.1 p. 187 est celle qui aux vecteurs u = uiei et v = vαfα fait correspondre le vecteur uivαǫiα

de En ⊗ Fp.

Démonstration. Soient (ei)i=1,...,n, (fα)α=1,...,p, et (ǫiα)i=1,...,n ; α=1,...,p des bases respec-
tives de En, Fp et de En ⊗ Fp. Alors :

∀u ∈ En, ∀v ∈ Fp, u ⊗ v = uiei ⊗ vαfα

Supposons n = 2 et p = 3 :

u ⊗ v =
(
u1e1 + u2e2

)
⊗
(
v1f 1 + v2f2 + v3f 3

)

En utilisant l’axiome (1) :

u ⊗ v = u1e1 ⊗ v1f1 + u1e1 ⊗ v2f 2 + u1e1 ⊗ v3f 3 + u2e2 ⊗ v1f1 + u2e2 ⊗ v2f 2 + u2e2 ⊗ v3f3

En utilisant l’axiome (2) :

u ⊗ v = u1v1e1 ⊗ f1 + u1v2e1 ⊗ f 2 + u1v3e1 ⊗ f 3 + u2v1e2 ⊗ f1 + u2v2e2 ⊗ f 2 + u2v3e2 ⊗ f3

En généralisant à n et p quelconques :

u ⊗ v = uivαei ⊗ fα

et avec l’axiome (3) :

u ⊗ v = uivαǫiα (95)

Les trois axiomes du paragraphe 20.3.1 p. 187 impliquent que les composantes du produit
tensoriel u ⊗ v s’écrivent sous la forme uivα dans la base ǫiα.

L’expression analytique (95) de la loi de composition ⊗, implique-t-elle à son tour ces trois
axiomes ?

Pour retrouver l’axiome (1), posons v1 + v2 = v3 :

u ⊗ (v1 + v2) = u ⊗ v3

= uivα
3 ei ⊗ fα

= ui (vα
1 + vα

2 ) ei ⊗ fα

=
(
uivα

1 + uivα
2

)
ei ⊗ fα

= uivα
1 ei ⊗ fα + uivα

2 ei ⊗ fα

= uiei ⊗ vα
1 fα + uiei ⊗ vα

2 fα

= u ⊗ v1 + u ⊗ v2

Pour retrouver l’axiome (2) à partir de la relation (95) p. 188, posons w = αu :

w ⊗ v = wivβei ⊗ fβ

(αu) ⊗ v =
∑

i

[(
αui

)
vβei ⊗ fβ

]

= α
(
uivβei ⊗ fβ

)

= αu ⊗ v

La relation (95) p. 188 est elle compatible avec l’axiome (3) p. 187 ?
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Soit (ei) une base de En et soit (fα) une base de Fp, le produit tensoriel (ei) ⊗ (fα) forme
une base de En ⊗ Fp par hypothèse. Soit (ej′) une autre base de En et soit

(
fβ′

)
une autre

base de Fp, le produit tensoriel (ej′) ⊗
(
fβ′

)
est-t-il une base de En ⊗ Fp ?

Soient ∂xj′

/∂xi et Bβ′

α les matrices changement de base :




∀i ei =
∂xj′

∂xi
ej′

∀α fα = Bβ′

α fβ′

Les éléments T s’écrivent sous la forme :

T = u ⊗ v

= uivαei ⊗ fα

= tiαei ⊗ fα (96)

Effectuons le changement de base :

T = tiα ∂xj′

∂xi
ej′ ⊗ Bβ′

α fβ′

= tiα ∂xj′

∂xi
Bβ′

α ej′ ⊗ fβ′ (97)

Les ei⊗fα formant une base par hypothèse, d’après la relation (96), si T = 0 alors ∀i, ∀α, tiα =
0. Cette implication restant vraie pour la relation (97), les éléments ej′ ⊗ fβ′ sont linéairement

indépendants, et constituent donc une base de l’espace En ⊗ Fp. Nous dirons que (ej′) ⊗
(
fβ′

)

est la base associée aux bases (ej′) et
(
fβ′

)
. �

20.3.3 Éléments d’un espace produit tensoriel

Tous les éléments de l’espace En ⊗ Fp sont-ils des produits tensoriels ?
Soit T un élément de l’espace En ⊗ Fp :

T = tiαei ⊗ fα

Peut-on toujours l’écrire sous la forme :

T = uivαei ⊗ fα

où u = uiei est un vecteur de En et v = vαfα un vecteur de Fp ? Raisonnons par l’absurde et
supposons que, quel que soit tiα, l’on ait :

∀i, α tiα = uivα

Prenons le cas où n = p = 2, alors :

T(t11, t12, t21, t22) = T(u1v1, u1v2, u2v1, u2v2)

soit,

u1v1 = t11 ; u1v2 = t12 ; u2v1 = t21 ; u2v2 = t22

par conséquent :

v1

v2
=

t11

t12
et

v1

v2
=

t21

t22

soit :
t11

t12
=

t21

t22
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ce qui a priori n’est pas toujours vrai, les composantes de l’élément T étant quelconques. Nous
en concluons qu’il existe des éléments de l’espace En ⊗Fp qui ne sont pas des produits tensoriels
de deux vecteurs.

Exemple 20.3.1. Le tenseur T suivant est-il le produit tensoriel de deux vecteurs ?

T = 11e1 ⊗ e1 + 8e1 ⊗ e2 + 20e2 ⊗ e1 + 12e2 ⊗ e2

Si T est le produit tensoriel de deux vecteurs alors il est de la forme

T = uivj(ei ⊗ ej)

et l’on a :

u1v1 = 11, u1v2 = 8, u2v1 = 20, u2v2 = 12

En faisant les rapports des deux premières expressions puis celui des deux dernières :

v1

v2
=

11
8

v1

v2
=

20
12

Ces valeurs étant différentes, T n’est pas le produit tensoriel de deux vecteurs.

20.3.4 Produit tensoriel de deux espaces identiques

En pratique on a très souvent à effectuer le produit tensoriel de vecteurs appartenant à des
espaces vectoriels identiques. Soient (ei) une base de En, et soient u = uiei et v = viei deux
vecteurs de cet espace. Le produit tensoriel des vecteurs u et v s’écrit :

T = u ⊗ v

= uivj (ei ⊗ ej)

= tij (ei ⊗ ej)

Le produit tensoriel de En par lui-même est noté En ⊗ En ou encore E(2)
n . D’après l’axiome (3)

p. 187, les vecteurs ǫij = ei ⊗ ej constituent une base de E(2)
n .

20.3.5 Non commutativité du produit tensoriel

Le produit tensoriel d’un espace vectoriel En avec lui-même, En ⊗ En, a pour vecteurs de
base les produits tensoriels ei ⊗ ej . Par exemple, les vecteurs (e1 ⊗ e2) et (e2 ⊗ e1) sont chacun
des vecteurs de base, et ne peuvent donc pas être confondus. Le produit tensoriel des vecteurs
ei et ej n’est donc pas commutatif. Il en va de même pour tout produit tensoriel de vecteurs.

Exemple 20.3.2. Soient u = uiei et v = viei deux vecteurs de l’espace vectoriel E2 :

u ⊗ v = uivj (ei ⊗ ej)

= u1v1 (e1 ⊗ e1) + u1v2 (e1 ⊗ e2) + u2v1 (e2 ⊗ e1) + u2v2 (e2 ⊗ e2)

= T
(
u1v1, u1v2, u2v1, u2v2

)

et :

v ⊗ u = vjui (ej ⊗ ei)

= v1u1 (e1 ⊗ e1) + v1u2 (e1 ⊗ e2) + v2u1 (e2 ⊗ e1) + v2u2 (e2 ⊗ e2)

= Z
(
u1v1, u2v1, u1v2, u2v2

)
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Par suite :
u ⊗ v 6= v ⊗ u

20.3.6 Associativité du produit tensoriel

Soient u, v, w, trois vecteurs appartenant respectivement aux espaces vectoriels En, Fp, Gq.
Nous pouvons multiplier tensoriellement l’élément u ⊗ v de En ⊗ Fp par le vecteur w de Gq.
Nous obtenons alors l’élément (u ⊗ v) ⊗ w de l’espace vectoriel Hnpq = (En ⊗ Fp) ⊗ Gq.

Nous posons comme nouvel axiome que le produit tensoriel des espaces vectoriels est asso-
ciatif :

Hnpq = (En ⊗ Fp) ⊗ Gq

= En ⊗ Fp ⊗ Gq

Cela revient à poser l’associativité des vecteurs de base :

(ei ⊗ fα) ⊗ gβ = ei ⊗ fα ⊗ gβ (98)

Pour les éléments résultants, nous avons :

(u ⊗ v) ⊗ w = (uiei ⊗ vαfα) ⊗ wβgβ

En utilisant le théorème 20.3.1 p. 188

(u ⊗ v) ⊗ w =
(
uivαǫiα

)
⊗ wβgβ

= uivαwβǫiα ⊗ gβ

= uivαwβ (ei ⊗ fα) ⊗ gβ

et, en utilisant l’axiome (98) :

(u ⊗ v) ⊗ w = uivαwβei ⊗ fα ⊗ gβ

= uiei ⊗
(
vαwβfα ⊗ gβ

)

= uiei ⊗
(
vαfα ⊗ wβgβ

)

= u ⊗ (v ⊗ w)

(u ⊗ v) ⊗ w = u ⊗ v ⊗ w

20.3.7 Produit tensoriel de plusieurs espaces

Étant donné un nombre fini r d’espaces vectoriels En, Fp, Gq, . . . , la définition par récurrence
du produit tensoriel de ces r espaces résulte du paragraphe précédent. D’après le paragraphe
20.3.3 p. 189, tout élément de En ⊗Fp ⊗Gq ⊗ . . . n’étant pas nécessairement le produit tensoriel
de r vecteurs appartenant respectivement à En, Fp, Gq, . . . , nous sommes conduit à la définition
suivante :
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Définition 20.3.4. Tenseur
On appelle tenseur construit sur les espaces de base En, Fp, Gq, . . . , tout élément de l’es-
pace vectoriel En ⊗ Fp ⊗ Gq ⊗ . . .

Soit T un tenseur « contravariant d’ordre p » et « covariant d’ordre q », et soit U un tenseur
« contravariant d’ordre r » et « covariant d’ordre s ». Le produit tensoriel de ces deux tenseurs
donne un tenseur V « contravariant d’ordre p + r » et « covariant d’ordre q + s » :

T ⊗ U =t
i1 i2 ... ip

j1 j2 ... jq

(
ei1

⊗ ei2
⊗ · · · ⊗ eip

⊗ ej1 ⊗ ej2 ⊗ · · · ⊗ ejq

)

⊗ uk1 k2 ... kr

l1 l2 ... ls

(
ek1

⊗ ek2
⊗ · · · ⊗ ekr

⊗ el1 ⊗ el2 ⊗ · · · ⊗ els
)

=t
i1 i2... ip

j1 j2 ... jq
uk1 k2 ... kr

l1 l2 ... ls

(
ei1

⊗ ei2
⊗ · · · ⊗ eip

⊗ ej1 ⊗ ej2 ⊗ · · · ⊗ ejq

⊗ ek1
⊗ ek2

⊗ · · · ⊗ ekr
⊗ el1 ⊗ el2 ⊗ · · · ⊗ els

)

=V

Remarque 32. Les tenseurs ont un ordre mais pas de variance. Parler d’un tenseur contra-
variant d’ordre p et covariant d’ordre q est un abus de langage pour parler d’un tenseur d’ordre
p + q dont p composantes sont contravariantes et q sont covariantes.

20.4 Produit scalaire

20.4.1 Produit scalaire d’un produit tensoriel par un vecteur de base

Définition 20.4.1. Produit scalaire d’un produit tensoriel par un vecteur de base
Soient u = uiei et v = viei deux vecteurs d’un espace vectoriel euclidien En. Le produit
scalaire du produit tensoriel u ⊗ v par un vecteur de base (ei ⊗ ej) de E(2)

n s’écrit :

∀i, j (u ⊗ v) · (ei ⊗ ej) , uivj

Par conséquent :

∀i, j ukvl(ek ⊗ el) · (ei ⊗ ej) = ukvlgkiglj

∀i, j, k, l (ei ⊗ ej) · (ek ⊗ el) = gikgjl (99)

Exemple 20.4.1. Soit {e1(2, 0, 0), e2(1, 3, 0), e3(1, 1, 1)} une base de l’espace euclidien E3.
Déterminons les composantes du tenseur métrique de l’espace produit tensoriel E3 ⊗ E3.
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Les vecteurs de base s’écrivent :



e1 ⊗ e1 = (4, 0, 0, 0, 0, 0, 0, 0, 0)

e1 ⊗ e2 = (2, 6, 0, 0, 0, 0, 0, 0, 0)

e1 ⊗ e3 = (2, 2, 2, 0, 0, 0, 0, 0, 0)

e2 ⊗ e1 = (2, 0, 0, 6, 0, 0, 0, 0, 0)

e2 ⊗ e2 = (1, 3, 0, 3, 9, 0, 0, 0, 0)

e2 ⊗ e3 = (1, 1, 1, 3, 3, 3, 0, 0, 0)

e3 ⊗ e1 = (2, 0, 0, 2, 0, 0, 2, 0, 0)

e3 ⊗ e2 = (1, 3, 0, 1, 3, 0, 1, 3, 0)

e3 ⊗ e3 = (1, 1, 1, 1, 1, 1, 1, 1, 1)

Leur produit scalaire donne 81 composantes dont voici les premières :




(e1 ⊗ e1) · (e1 ⊗ e1) = 16

(e1 ⊗ e1) · (e1 ⊗ e2) = 8

(e1 ⊗ e1) · (e1 ⊗ e3) = 8

(e1 ⊗ e1) · (e2 ⊗ e1) = 8

(e1 ⊗ e1) · (e2 ⊗ e2) = 4

(e1 ⊗ e1) · (e2 ⊗ e3) = 4

(e1 ⊗ e1) · (e3 ⊗ e1) = 8

(e1 ⊗ e1) · (e3 ⊗ e2) = 4

(e1 ⊗ e1) · (e3 ⊗ e3) = 4





(e1 ⊗ e2) · (e1 ⊗ e1) = 8

(e1 ⊗ e2) · (e1 ⊗ e2) = 40

(e1 ⊗ e2) · (e1 ⊗ e3) = 16

(e1 ⊗ e2) · (e2 ⊗ e1) = 4

(e1 ⊗ e2) · (e2 ⊗ e2) = 20

(e1 ⊗ e2) · (e2 ⊗ e3) = 8

(e1 ⊗ e2) · (e3 ⊗ e1) = 4

(e1 ⊗ e2) · (e3 ⊗ e2) = 20

(e1 ⊗ e2) · (e3 ⊗ e3) = 8

. . .

On retrouve le résultat précédent en utilisant la relation (99) p. 192. Le tenseur métrique
de E3 a pour composantes :

G



4 2 2
2 10 4
2 4 3








(e1 ⊗ e1) · (e1 ⊗ e1) = g11g11 = 16

(e1 ⊗ e1) · (e1 ⊗ e2) = g11g12 = 8

(e1 ⊗ e1) · (e1 ⊗ e3) = g11g13 = 8

(e1 ⊗ e1) · (e2 ⊗ e1) = g12g11 = 8

(e1 ⊗ e1) · (e2 ⊗ e2) = g12g12 = 4

(e1 ⊗ e1) · (e2 ⊗ e3) = g12g13 = 4

(e1 ⊗ e1) · (e3 ⊗ e1) = g13g11 = 8

(e1 ⊗ e1) · (e3 ⊗ e2) = g13g12 = 4

(e1 ⊗ e1) · (e3 ⊗ e3) = g13g13 = 4





(e1 ⊗ e2) · (e1 ⊗ e1) = g11g21 = 8

(e1 ⊗ e2) · (e1 ⊗ e2) = g11g22 = 40

(e1 ⊗ e2) · (e1 ⊗ e3) = g11g23 = 16

(e1 ⊗ e2) · (e2 ⊗ e1) = g12g21 = 4

(e1 ⊗ e2) · (e2 ⊗ e2) = g12g22 = 20

(e1 ⊗ e2) · (e2 ⊗ e3) = g12g23 = 8

(e1 ⊗ e2) · (e3 ⊗ e1) = g13g21 = 4

(e1 ⊗ e2) · (e3 ⊗ e2) = g13g22 = 20

(e1 ⊗ e2) · (e3 ⊗ e3) = g13g23 = 8

. . .

20.4.2 Composantes deux fois covariantes d’un tenseur d’ordre deux

Notation 19. Si ui = u · ei, vj = v · ej, et T = u ⊗ v alors

∀i, j tij = uivj
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Pour tout tenseur T = u⊗v d’un espace vectoriel euclidien E(2)
n , avec la relation (99) p. 192

et la défintion 20.4.1 p. 192, le produit scalaire de ce tenseur par un vecteur de base s’écrit :

∀i, j (u ⊗ v) · (ei ⊗ ej) = (ukek ⊗ vlel) · (ei ⊗ ej)

∀i, j uivj = ukvl(ek ⊗ el) · (ei ⊗ ej)

∀i, j tij = tklgkiglj

Les tij sont les composantes deux fois covariantes du tenseur d’ordre deux T.

20.4.3 Produit scalaire de deux tenseurs contravariants d’ordre deux

Soient U et V deux tenseurs deux fois contravariants de l’espace vectoriel euclidien E(2)
n :

U · V =
[
uij (ei ⊗ ej)

]
·
[
vkl(ek ⊗ el)

]

= uijvkl (ei ⊗ ej) · (ek ⊗ el)

= uijvkl(ei · ek)(ej · el)

= uijvklgikgjl

= uijvij

20.5 Base

20.5.1 Base duale d’un espace produit tensoriel

Soit (e1, e2, . . . , en) la base duale de la base (e1, e2, . . . , en) de l’espace vectoriel En. D’après
le paragraphe 20.3.4 p. 190 les vecteurs ǫij = ei ⊗ ej constituent une base de E(2)

n . D’après le
paragraphe 13.6 p. 117, les vecteurs ej forment une base de En. Par conséquent, les vecteurs
ǫ

j
i = ei ⊗ ej , les vecteurs ǫi

j = ei ⊗ ej , et les vecteurs ǫij = ei ⊗ ej, sont trois bases de E(2)
n .

Remarque 33. L’écriture ǫ
j
i avec les indices l’un sous l’autre ne permet pas de distinguer ei ⊗ e

j de
e

j ⊗ei. Or d’après le paragraphe 20.3.5 p. 190 le produit tensoriel n’est pas commutatif, ei ⊗e
j 6= e

j ⊗ei,
autrement dit ǫ

j
i 6= ǫ

j
i.

20.5.2 Composantes mixtes

Soit (ej) la base duale de la base (ei). La décomposition du tenseur T sur la base mixte
ei ⊗ ej s’écrit :

T = ti
jei ⊗ ej

Les ti
j sont les composantes mixtes du tenseur T, une fois contravariante et une fois covariante.

T = ti
jei ⊗ ej

tikei ⊗ ek = ti
jg

jkei ⊗ ek

∀i, k tik = ti
jg

jk
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Notation 20. D’après la notation 18 p. 184, l’ordre des indices compte. Par conséquent, en
indices mixtes il faut garder cet ordre en décalant les indices : ti

j 6= t i
j . Cependant, si le tenseur est

symétrique les composantes ti
j et t i

j sont égales, on les note alors simplement ti
j .

Exemple 20.5.1. D’après (51) p. 102 :

∀i, j gi
j = gikgkj

= δi
j

Les composantes mixtes gi
j sont donc identiques dans tous les systèmes de coordonnées.

Quel que soit le tenseur A :

Aig
i
j = Aj

Aigj
i = Aj

gi
j est un opérateur de substitution d’indice. Les trois ensembles de composantes gi

j, gik, gkj

forment un groupe. Ils définissent le tenseur fondamental d’ordre deux G.

20.5.3 Changement de base

Soient (ei) et (ep′) deux bases d’un espace vectoriel En. Prenons le cas d’un espace tensoriel
E(3)

n dont la base associée à (ei) est (ej ⊗ ek ⊗ el), et celle associée à (ep′) est (eq′ ⊗ er′ ⊗ es′).
D’après (94) p. 185 :





∀j, k, l ej ⊗ ek ⊗ el =
∂xq′

∂xj

∂xr′

∂xk

∂xs′

∂xl
(eq′ ⊗ er′ ⊗ es′)

∀q, r, s eq′ ⊗ er′ ⊗ es′ =
∂xj

∂xq′

∂xr

∂xr′

∂xl

∂xs′
(ej ⊗ ek ⊗ el)

Soient (ej) la base duale de (ei), et soit (eq′

) la base duale de (ep′). Le changement de base
duale est donné par les relations (91) et (92) p. 180 :

∀j ej =
∂xj

∂xq′
eq′

et ∀q eq′

=
∂xq′

∂xj
ej

Soient (ej ⊗ ek ⊗ el) et
(
eq′ ⊗ er′ ⊗ es′

)
deux bases de E(3)

n . Nous avons les relations suivantes :





∀j, k, l ej ⊗ ek ⊗ el =
∂xj

∂xq′

∂xr′

∂xk

∂xs′

∂xl

(
eq′ ⊗ er′ ⊗ es′

)

∀q, r, s eq′ ⊗ er′ ⊗ es′ =
∂xq′

∂xj

∂xr

∂xr′

∂xl

∂xs′

(
ej ⊗ ek ⊗ el

)
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20.6 Transformation des composantes d’un tenseur

20.6.1 Transformation des composantes contravariantes

Soit T un tenseur de l’espace tensoriel E(2)
n :

ti′j′

(ei′ ⊗ ej′) = tpq (ep ⊗ eq)

= tpq ∂xi′

∂xp

∂xj′

∂xq
(ei′ ⊗ ej′)

=
∂xi′

∂xp

∂xj′

∂xq
tpq (100)

=
∂xi′

∂xp
tpq ∂xj′

∂xq

T′ = JTJT (101)

Les ti′j′

sont appelées composantes contravariantes du tenseur T. Les tenseurs deux fois contra-
variants généralisent à l’ordre deux les vecteurs ordinaires (contravariants).

Généralisons à un produit tensoriel d’espace supérieur à deux. Soit T un tenseur de l’espace
tensoriel En ⊗ En ⊗ En ⊗ . . . tel que

ti′j′k′... (ei′ ⊗ ej′ ⊗ ek′ ⊗ . . . ) = tpqr... (ep ⊗ eq ⊗ er ⊗ . . . )

= tpqr... ∂xi′

∂xp

∂xj′

∂xq

∂xk′

∂xr
. . . (ei′ ⊗ ej′ ⊗ ek′ ⊗ . . . )

∀i, j, k, . . . ti′j′k′... =
∂xi′

∂xp

∂xj′

∂xq

∂xk′

∂xr
. . . tpqr...

Inversement,

tpq (ep ⊗ eq) = ti′j′

(ei′ ⊗ ej′)

= ti′j′ ∂xp

∂xi′

∂xq

∂xj′
(ep ⊗ eq)

∀p, q tpq =
∂xp

∂xi′

∂xq

∂xj′
ti′j′

=
∂xp

∂xi′
ti′j′ ∂xq

∂xj′

T = J−1T′
(
J−1

)T

On trouve cette relation directement à partir de (101) p 196 :

J−1T′ = J−1JTJT

J−1T′
(
JT
)−1

= TJT
(
JT
)−1

= T

En généralisant :

∀p, q, r, . . . tpqr... =
∂xp

∂xi′

∂xq

∂xj′

∂xr

∂xk′
. . . ti′j′k′...
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Exemple 20.6.1. Dans le système de coordonnées (x1, x2), soit T un tenseur de compo-
santes contravariantes (t11 = 1, t12 = 1, t21 = −1, t22 = 2). Quelles sont ses composantes
contravariantes ti′j′

lors du changement de coordonnées :




x1′

=
(
x2
)2

x2′

= x1x2

(1) Méthode indicielle

t1′1′

=
∂x1′

∂x1

∂x1′

∂x1
t11 +

∂x1′

∂x1

∂x1′

∂x2
t12 +

∂x1′

∂x2

∂x1′

∂x1
t21 +

∂x1′

∂x2

∂x1′

∂x2
t22

= 2x2 × 2x2 × t22 = 8
(
x2
)2

t1′2′

=
∂x1′

∂x1

∂x2′

∂x1
t11 +

∂x1′

∂x1

∂x2′

∂x2
t12 +

∂x1′

∂x2

∂x2′

∂x1
t21 +

∂x1′

∂x2

∂x2′

∂x2
t22

= 2x2 × x2 × t21 + 2x2 × x1 × t22 = −2
(
x2
)2

+ 4x1x2

t2′1′

=
∂x2′

∂x1

∂x1′

∂x1
t11 +

∂x2′

∂x1

∂x1′

∂x2
t12 +

∂x2′

∂x2

∂x1′

∂x1
t21 +

∂x2′

∂x2

∂x1′

∂x2
t22

= x2 × 2x2 × t12 + x1 × 2x2 × t22 = 2
(
x2
)2

+ 4x1x2

t2′2′

=
∂x2′

∂x1

∂x2′

∂x1
t11 +

∂x2′

∂x1

∂x2′

∂x2
t12 +

∂x2′

∂x2

∂x2′

∂x1
t21 +

∂x2′

∂x2

∂x2′

∂x2
t22

= x2x2 × t11 + x2x1 × t12 + x1x2 × t21 + x1x1 × t22 =
(
x2
)2

+ 2
(
x1
)2

(2) Méthode matricielle
La relation (101) p. 196, T′ = JTJT , donne :

[
t1′1′

t1′2′

t2′1′

t2′2′

]
=

[
0 2x2

x2 x1

] [
1 1

−1 2

] [
0 x2

2x2 x1

]

=

[
−2x2 4x2

x2 − x1 x2 + 2x1

] [
0 2x2

x2 x1

]

=

[
8(x2)2 −2(x2)2 + 4x1x2

2(x2)2 + 4x1x2 (x2)2 + 2(x1)2

]

Par exemple au point de coordonnées (x1 = 1, x2 = −2), le tenseur a pour composantes :

T′ =

[
32 −16
0 6

]
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20.6.2 Transformation des composantes covariantes

Soit T un tenseur de l’espace tensoriel E(2)
n tel que

T · (ei′ ⊗ ej′) = T ·
[

∂xp

∂xi′

∂xq

∂xj′
(ep ⊗ eq)

]

∀i, j ti′j′ =
∂xp

∂xi′

∂xq

∂xj′
T · (ep ⊗ eq)

=
∂xp

∂xi′

∂xq

∂xj′
tpq (102)

=
∂xp

∂xi′
tpq

∂xq

∂xj′

T′
cov =

(
J−1

)T
TcovJ−1 (103)

Les ti′j′ sont appelées composantes covariantes du tenseur T. Les tenseurs deux fois covariants
(les tenseurs d’ordre deux exprimés en composantes deux fois covariantes, voir la remarque
26 p. 107) généralisent à l’ordre deux les vecteurs de type gradient (qui sont exprimés en
composantes covariantes).

On généralise à un produit tensoriel d’espace supérieur à deux. Soit T un tenseur de l’espace
tensoriel En ⊗ En ⊗ En ⊗ . . . tel que,

∀i, j, k, . . . ti′j′k′... = T · (ei′ ⊗ ej′ ⊗ ek′ ⊗ . . . )

= T ·
[

∂xp

∂xi′

∂xq

∂xj′

∂xr

∂xk′
. . . (ep ⊗ eq ⊗ er ⊗ . . . )

]

=
∂xp

∂xi′

∂xq

∂xj′

∂xr

∂xk′
TT . . . T · (ep ⊗ eq ⊗ er ⊗ . . . )

=
∂xp

∂xi′

∂xq

∂xj′

∂xr

∂xk′
. . . tpqr...

Inversement :

∀p, q tpq = T · (ep ⊗ eq)

= T ·
[

∂xi′

∂xp

∂xj′

∂xq
(ei′ ⊗ ej′)

]

=
∂xi′

∂xp

∂xj′

∂xq
T · (ei′ ⊗ ej′)

=
∂xi′

∂xp

∂xj′

∂xq
ti′j′

=
∂xi′

∂xp
ti′j′

∂xj′

∂xq

Tcov = JT T′
covJ

On trouve cette relation directement à partir de (103) p. 198 :

T′
covJ =

(
J−1

)T
TcovJ−1J

JT T′
covJ = JT

(
J−1

)T
Tcov

= Tcov
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En généralisant :

∀p, q, r, . . . tpqr... =
∂xi′

∂xp

∂xj′

∂xq

∂xk′

∂xr
. . . ti′j′k′...

Pour le tenseur métrique :

G = JT G′J

En particulier si le nouveau système de coordonnées (primé) est rectangulaire alors G′ = I et
dans l’ancien système de coordonnées le tenseur métrique s’écrit :

G = JT J (104)

20.6.3 Transformation des composantes mixtes

Soit T un tenseur de l’espace tensoriel E(2)
n tel que,

t j′

i′

(
ei′ ⊗ ej′

)
= t q

p (ep ⊗ eq)

= t q
p

∂xp

∂xi′

∂xj′

∂xq

(
ei′ ⊗ ej′

)

∀i, j t j′

i′ =
∂xp

∂xi′

∂xj′

∂xq
t q
p (105)

=
∂xp

∂xi′
t q
p

∂xj′

∂xq

T′ =
(
J−1

)T
TJT (106)

Les t j′

i′ sont appelées composantes mixtes du tenseur T. On généralise à un produit tensoriel
d’espace supérieur à deux. Soit T un tenseur de l’espace tensoriel En ⊗ En ⊗ En ⊗ . . . tel que,

t
j′

1
j′

2
...

i′

1
i′

2
...

(
ei′

1 ⊗ ei′

2 ⊗ · · · ⊗ ej′

1
⊗ ej′

2
⊗ . . .

)
= t q1q2...

p1p2... (ep1 ⊗ ep2 ⊗ ee . . . eq1
⊗ eq2

. . . )

= t q1q2...
p1p2...

∂xp1

∂xi′

1

∂xp2

∂xi′

2

. . .
∂xj′

1

∂xq1

∂xj′

2

∂xq2

. . .
(
ei′

1 ⊗ ei′

2 ⊗ · · · ⊗ ej′

1
⊗ ej′

2
⊗ . . .

)

t
j′

1
j′

2
...

i′

1
i′

2
... =

∂xp1

∂xi′

1

∂xp2

∂xi′

2

. . .
∂xj′

1

∂xq1

∂xj′

2

∂xq2

. . . t q1q2...
p1p2...

Les indices i′ et j′ étant muets

t j′

i′

(
ei′ ⊗ ej′

)
= t i′

j′

(
ej′ ⊗ ei′

)

En revanche, ti′

j′

(
ei′ ⊗ ej′

)
est la transposée de t j′

i′

(
ei′ ⊗ ej′

)
(la notion de transposée n’a pas

de sens pour les tenseurs d’ordre supérieur à deux) :

ti′

j′

(
ei′ ⊗ ej′

)
= tp

q (ep ⊗ eq)

= tp
q

∂xi′

∂xp

∂xq

∂xj′

(
ei′ ⊗ ej′

)

∀i, j ti′

j′ =
∂xi′

∂xp

∂xq

∂xj′
tp

q

=
∂xi′

∂xp
tp

q

∂xq

∂xj′

T
′T = JTT J−1
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On obtient directement le résultat en prenant la transposé de la relation (106) p. 199 :

T
′T =

[(
J−1

)T
TJT

]T

=
(
TJT

)T
J−1

= JTT J−1

Inversement,

t q
p (ep ⊗ eq) = t j′

i′

(
ei′ ⊗ ej′

)

= t j′

i′

∂xi′

∂xp

∂xq

∂xj′
(ep ⊗ eq)

∀p, q t q
p =

∂xi′

∂xp

∂xq

∂xj′
t j′

i′

=
∂xi′

∂xp
t j′

i′

∂xq

∂xj′

T = JT T′
(
J−1

)T

La transposée s’écrit,

tp
q (ep ⊗ eq) = ti′

j′

(
ei′ ⊗ ej′

)

= ti′

j′

∂xp

∂xi′

∂xj′

∂xq
(ep ⊗ eq)

∀p, q tp
q =

∂xp

∂xi′

∂xj′

∂xq
ti′

j′

=
∂xp

∂xi′
ti′

j′

∂xj′

∂xq

TT = J−1 (T′)T
J

En généralisant :

∀p1, p2, . . . , q1, q2, . . . t q1q2...
p1p2... =

∂xi′

1

∂xp1

∂xi′

2

∂xp2

. . .
∂xq1

∂xj′

1

∂xq2

∂xj′

2

. . . t
j′

1
j′

2
...

i′

1
i′

2
...

20.6.4 Exemples

Exemple 20.6.2. À partir du changement de coordonnées sphériques en rectangulaires,
cherchons l’expression du tenseur métrique euclidien en coordonnées sphériques.





x = r sin(θ) cos(φ)

y = r sin(θ) sin(φ)

z = r cos(θ)

r > 0, 0 6 θ < π, 0 6 φ < 2π
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D’après la relation (104) p. 199,

G = JT J

=




sin θ cos φ sin θ sin φ cos θ
r cos θ cos φ r cos θ sin φ −r sin θ

−r sin θ sin φ r sin θ cos φ 0






sin θ cos φ r cos θ cos φ −r sin θ sin φ
sin θ sin φ r cos θ sin φ r sin θ cos φ

cos θ −r sin θ 0




=



1 0 0
0 r2 0
0 0 r2 sin2(θ)




Exemple 20.6.3. Soit le système de coordonnées (x1, x2), défini à partir des coordonnées
rectangulaires (x1′

, x2′

) : 



x1 = x1′

x2 = exp
(
x2′ − x1′

)

Cherchons l’expression du tenseur métrique euclidien dans ce système de coordonnées.
Nous devons inverser le système d’équations pour avoir la matrice jacobienne de la trans-
formation xi′

= xi′

(x1, x2) : 



x1′

= x1

x2′

= x1 + ln x2
(107)

D’après la relation (104) p. 199,

G = JT J

=

[
1 1
0 (x2)−1

] [
1 0
1 (x2)−1

]

=

[
2 (x2)−1

(x2)−1 (x2)−2

]

Calculons la longueur de la courbe :

C (λ) :





x1 = 3λ

x2 = eλ
(0 6 λ 6 2)

Le carré de la dérivée de la distance élémentaire s’écrit :
(

ds

dλ

)2

= gij
dxi

dλ

dxj

dλ

= 2

(
dx1

dλ

)2

+ 2
(
x2
)−1 dx1

dλ

dx2

dλ
+
(
x2
)−2

(
dx2

dλ

)2

= 2 × 9 + 2e−λ × 3eλ + e−2λe2λ

= 25
ˆ 2

0

√√√√
(

ds

dλ

)2

dλ = 5
ˆ 2

0

dλ

Γ = 10
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Nous pouvons effectuer le même calcul en coordonnées rectangulaires. En nous servant
du changement de variable (107), l’équation de la courbe devient en coordonnées rectan-
gulaires (x1′

, x2′

),

C (λ) :





x1′

= 3λ

x2′

= 3λ + λ = 4λ
(0 6 λ 6 2)

C’est l’équation de la droite

x2′

= 4
3

x1′

qui passe au point (0, 0) en λ = 0, et au point (6, 8) en λ = 2. La distance entre ces points
vaut

√
62 + 82 = 10.

20.7 Définition d’un tenseur

Au paragraphe 20.5.3 p. 195, nous avons vu comment se transforment les composantes d’un
tenseur lors d’un changement de base.

Réciproquement, donnons nous n3 quantités que nous rattachons à une base ei ⊗ ej ⊗ ek.
Si, lors d’un changement de base, vers une nouvelle base ep′ ⊗ eq′ ⊗ er′, les n3 quantités se
transforment selon les formules (100), alors on peut faire correspondre un tenseur à ces n3

quantités, dont elles constituent les composantes contravariantes. De même, si les n3 quantités
se transforment selon les formules (102) ou (105) alors elles constituent respectivement les
composantes covariantes ou mixtes d’un tenseur. Ce résultat se généralise à np quantités. Nous
pouvons énoncer le théorème suivant :

Théorème 20.7.1. Pour que np quantités rapportées à une base d’un espace vectoriel E(p)
n

soient les composantes d’un tenseur, il faut et il suffit que ces quantités se transforment par
changement de base selon les formules du paragraphe 20.5.3 p. 195.

Exemple 20.7.1. Soit E un invariant par changement de base.

E ′ = E

∀i
∂E ′

∂xi′
=

∂E

∂xi′

=
∂E

∂xj

∂xj

∂xi′

Les invariants sont des tenseur.

Exemple 20.7.2. Soit f(x1, x2, . . . , xn) une fonction dérivable par rapport aux n coor-
données xi. Montrons que les dérivées partielles de f sont les composantes d’un tenseur
d’ordre un.
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Soit la transformation de coordonnées xi′

(x1, x2, . . . xn) et soit xi(x1′

, x2′

, . . . xn′

) la trans-
formation inverse. La dérivation partielle de f s’écrit :

∀i ∂i′f =
∂xj

∂xi′

∂jf

D’après les relations (83) p. 168, les dérivées partielles se transforment comme les vec-
teurs de la base naturelle. Ce sont donc les composantes covariantes d’un tenseur d’ordre
un, justifiant la notation ∂if et f,i avec l’indice en bas.

Exemple 20.7.3. Soit u un vecteur de composantes covariantes ui. Montrons que les
dérivées partielles ∂jui des composantes covariantes ne sont pas les composantes d’un
tenseur. Les composantes covariantes d’un vecteur se transforment selon les relations
(89) p. 172,

∀i ui =
∂xk′

∂xi
uk′

La dérivation partielle de cette expression nous donne :

∀i, j ∂jui =
∂2xk′

∂xj∂xi
uk′ +

∂xk′

∂xi
∂juk′

=
∂2xk′

∂xj∂xi
uk′ +

∂xk′

∂xl′

∂xi∂xj
∂l′uk′

Le premier terme est nul si les coordonnées xk′

sont des fonctions affines des coordon-
nées xj, c’est-à-dire si xj et xk′

sont des coordonnées rectilignes. Pour autant, pour être
un tenseur la loi de transformation des composantes doit être valable quel que soit le
changement de coordonnées.

Exemple 20.7.4. Montrons que les différentielles des composantes covariantes dui ne
sont pas les composantes d’un tenseur :

∀i ui =
∂xk′

∂xi
uk′

dui = d

(
∂xk′

∂xi

)
uk′ +

∂xk′

∂xi
duk′

Le premier terme est nul si les coordonnées xk′

sont des fonctions affines des coordon-
nées xj, c’est-à-dire si xj et xk′

sont des coordonnées rectilignes. Pour autant, pour être
un tenseur la loi de transformation des composantes doit être valable quel que soit le
changement de coordonnées.
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Exemple 20.7.5. Déterminons les formules de transformation du rotationnel d’un vec-
teur lors d’un changement de coordonnées curvilignes.

∀i, j rotij u = ∂jui − ∂iuj

=

(
∂2xk′

∂xj∂xi
uk′ +

∂xk′

∂xl′

∂xi∂xj
∂l′uk′

)
−
(

∂2xk′

∂xi∂xj
uk′ +

∂xk′

∂xl′

∂xj∂xi
∂l′uk′

)

où les indices k et l sont muets. Or

∀i, j, k
∂2xk′

∂xj∂xi
=

∂2xk′

∂xi∂xj

donc :

∀i, j rotij u =
∂xk′

∂xl′

∂xi∂xj
∂l′uk′ − ∂xm′

∂xn′

∂xj∂xi
∂n′um′

=
∂xk′

∂xl′

∂xi∂xj
∂l′uk′ − ∂xl′∂xk′

∂xj∂xi
∂k′ul′

∂jui − ∂iuj =
∂xk′

∂xl′

∂xi∂xj
(∂l′uk′ − ∂k′ul′)

C’est la formule de transformation des composantes deux fois covariantes d’un tenseur
d’ordre deux.

Examinons l’autre possibilité pour l’expression du rotationnel. Supposons u de compo-
santes contravariantes ui. Dans la base naturelle :

∀i ui =
∂xi

∂xk′
uk′

∀i, j ∂ju
i =

∂2xi

∂xj∂xk′
uk′

+
∂xi

∂xk′
∂ju

k′

=
∂2xi

∂xj∂xk′
uk′

+
∂xi∂xl′

∂xk′∂xj
∂l′u

k′

∀i, j ∂ju
i − ∂iu

j =

(
∂2xi

∂xj∂xk′
uk′

+
∂xi∂xl′

∂xk′∂xj
∂l′u

k′

)
−
(

∂2xj

∂xi∂xk′
uk′

+
∂xj∂xl′

∂xk′∂xi
∂l′u

k′

)

Ce ne sont pas les composantes mixtes d’un tenseur d’ordre deux car

∀i 6= j
∂xi

∂xj
6= ∂xj

∂xi
⇒ ∀i 6= j

∂2xi

∂xj∂xk′
6= ∂2xj

∂xi∂xk′

20.8 Le tenseur métrique

À partir de la définition du tenseur métrique 12.1.1 p. 97 :

∀i, j gij = ei · ej

=
∂xk′

∂xi
ek′ · ∂xl′

∂xj
el′

=
∂xk′

∂xi

∂xl′

∂xj
ek′ · el′

=
∂xk′

∂xi

∂xl′

∂xj
gk′l′ (108)
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Les gij sont les composantes deux fois covariantes d’un tenseur d’ordre deux. Cette condition
est nécessaire et suffisante pour que la forme quadratique associée à la matrice G soit invariante
par changement de coordonnées. En effet :

∀i, j gi′j′ = gpq
∂xp

∂xi′

∂xq

∂xj′

et l’on a :

gi′j′ dxi′

dxj′

= gpq
∂xp

∂xi′

∂xq

∂xj′

∂xi′

∂xr
dxr ∂xj′

∂xs
dxs

= gpq δp
r δq

s dxrdxs

= gpq dxpdxq

De même,

∀i, j gij = ei · ej

=
∂xi

∂xk′
ek′ · ∂xi

∂xk′
el′

=
∂xi

∂xk′

∂xi

∂xk′
ek′ · el′

=
∂xi

∂xk′

∂xi

∂xk′
gk′l′

Les gij sont les composantes d’un tenseur deux fois contravariant. Formons le déterminant des
matrices figurant de part et d’autre de cette égalité :

1
g

= J2 1
g′

g′ = J2g (109)

Exemple 20.8.1. Soit le changement de base d’un espace vectoriel E2 défini par :
{

e1′ = 3e1 + e2

e2′ = −e1 + 2e2

Déterminons les nouvelles composantes du tenseur métrique gk′l′ en fonction des an-
ciennes gij.

(1) En partant de la définition du tenseur métrique :

gk′l′ = ek′ · el′





g1′1′ = (3e1 + e2) · (3e1 + e2)

g1′2′ = (3e1 + e2) · (−e1 + 2e2)

g2′1′ = (−e1 + 2e2) · (3e1 + e2)

g2′2′ = (−e1 + 2e2) · (−e1 + 2e2)

⇒





g1′1′ = 9g11 + 6g12 + g22

g1′2′ = −3g11 + 5g12 + 2g22

g2′1′ = −3g11 + 5g12 + 2g22

g2′2′ = g11 − 4g12 + 4g22

(2) En utilisant la formule de changement de base d’un tenseur d’ordre deux :

∀k, l gk′l′ =
∂xi

∂xk′

∂xi

∂xk′
gij

Pour déterminer les ∂xi/∂xk′

on utilise les relations (80) p. 166 :

∀k ek′ =
∂xi

∂xk′
ei
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



e1′ = A1
1′e1 + A2

1′e2

e2′ = A1
2′e1 + A2′

2e2

⇒ A1
1′ = 3 ; A2

1′ = 1 ; A1
2′ = −1 ; A2′

2 = 2





g1′1′ = A1
1′A1

1′g11 + A2
1′A1

1′g21 + A1
1′A2

1′g12 + A2
1′A2

1′g22

g1′2′ = A1
1′A1

2′g11 + A2
1′A1

2′g21 + A1
1′A2′

2g12 + A2
1′A2′

2g22

g2′1′ = A1
2′A1

1′g11 + A2′

2A
1
1′g21 + A1

2′A2
1′g12 + A2′

2A
2
1′g22

g2′2′ = A1
2′A1

2′g11 + A2′

2A
1
2′g21 + A1

2′A2′

2g12 + A2′

2A
2′

2g22

⇒





g1′1′ = 9g11 + 6g12 + g22

g1′2′ = −3g11 + 5g12 + 2g22

g2′1′ = −3g11 + 5g12 + 2g22

g2′2′ = g11 − 4g12 + 4g22

20.9 Opérations sur les tenseurs

20.9.1 Addition de deux tenseurs

Pour être additionnés, les tenseurs doivent être du même ordre et être rapportés à une
même base (leurs composantes ont alors même variance). Dans un espace vectoriel E(2)

n , soient
U = uijei ⊗ ej et V = vijei ⊗ ej deux tenseurs d’ordre deux. L’addition tensorielle leur fait
correspondre le tenseur de même ordre T de E(2)

n , tel que :

T = U + V

tijei ⊗ ej = uijei ⊗ ej + vijei ⊗ ej

=
(
uij + vij

)
ei ⊗ ej

∀i, j tij = uij + vij

L’addition des tenseurs a les propriétés suivantes :
a) Commutativité : ∀i, j uij + vij = vij + uij

b) Associativité : ∀i, j uij + (vij + wij) = (uij + vij) + wij = uij + vij + wij

c) Il existe un tenseur nul N tel que ∀i, j nij = 0, et tel que ∀T, T + N = T

d) Quel que soit U un tenseur, il existe un tenseur V, appelé opposé de U, tel que :
∀i, j uij + vij = 0 c’est-à-dire ∀i, j vij = −uij . V est noté −U.

20.9.2 Multiplication d’un tenseur par un scalaire

Dans un espace vectoriel E(2)
n , soient λ et µ deux scalaires, et soit U = uijei ⊗ej un tenseur

d’ordre deux. La multiplication du tenseur U par le scalaire λ fait correspondre le tenseur de
même ordre V de E(2)

n , tel que :

V = λ U

vijei ⊗ ej = λ uijei ⊗ ej

∀i, j vij = λ uij

La multiplicaton par un scalaire a les propriétés suivantes :
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a) Associativité : ∀i, j λ (µ uij) = (λ µ) uij

b) Distributivité par rapport à l’addition des scalaires : ∀i, j (λ + µ) uij = λ uij + µ uij

c) Distributivité par rapport à l’addition tensorielle : ∀i, j λ (uij + vij) = λ uij + λ vij

d) Il existe un élément neutre : ∀i, j 1 × uij = uij

20.9.3 Combinaison linéaire de tenseurs

Soient uij et vij les composantes deux fois contravariantes de deux tenseurs. Soit tij leur
combinaison linéaire :

∀i, j tij = uij + λvij

Par changement de base :

∀i, j tij =

(
∂xi

∂xk′

∂xj

∂xl′
uk′l′

)
+ λ

(
∂xi

∂xk′

∂xj

∂xl′
vk′l′

)

=

(
∂xi

∂xk′

∂xj

∂xl′

)(
uk′l′ + λvk′l′

)

=
∂xi

∂xk′

∂xj

∂xl′
tk′l′

D’après le théorème 20.7.1 p. 202, les quantités tij constituent les composantes deux fois contra-
variantes d’un tenseur. La combinaison linéaire de deux tenseurs du même ordre donne un
tenseur du même ordre.

Exemple 20.9.1. Soit tij un tenseur, montrer que tij −tji est également un tenseur. Com-
mençons par montrer que si tij est un tenseur deux fois contravariant alors sa transposée
tji est aussi un tenseur deux fois contravariant :

∀i, j ti′j′

=
∂xi′

∂xk

∂xj′

∂xl
tkl ⇒ ∀i, j tj′i′

=
∂xj′

∂xk

∂xi′

∂xl
tkl

Par conséquent tji est un tenseur deux fois covariant, ainsi que tij − tji d’après le para-
graphe 20.9.1 p. 206.

Exemple 20.9.2. Soit T un tenseur mixte, montrons que sa transposée est un tenseur.
Les composantes mixtes de T se transforment par changement de base selon :

∀i, j ti′

j′ = ti
j

∂xi′

∂xi

∂xj

∂xj′
⇒ ∀i, j tj′

i′ = tj
i

∂xi

∂xj′

∂xi′

∂xj

Par conséquent TT est un tenseur.
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20.9.4 Classification des tenseurs

L’addition tensorielle et la multiplication par un scalaire sont des lois de composition de
E(2)

n dans E(2)
n . Les tenseurs suivent donc la définition 3.1.2 p. 15 d’un espace vectoriel, et

sont par conséquent des vecteurs d’un espace vectoriel Hn,p,q,... muni d’une structure de produit
tensoriel. Les espaces produits tensoriels deviennent pré-euclidiens lorsqu’on les munit d’un
produit scalaire.

Afin d’unifier la classification, les espaces élémentaires E(1) non munis d’une structure de
produit tensoriel ont pour éléments des tenseurs d’ordre un, que l’on appellera vecteurs. Comme
vu précédemment, les tenseurs d’ordre zéro sont appelés des scalaires.

20.9.5 Multiplication tensorielle

Les produits tensoriels d’espaces vectoriels sont des espaces vectoriels. Ils peuvent à leur
tour former de nouveaux espaces vectoriels par multiplication tensorielle.

Soit U = uijei ⊗ ej un tenseur de E(2)
n , et soit V = vijkei ⊗ ej ⊗ ek un tenseur de E(3)

n . La
multiplication tensorielle leur fait correspondre le tenseur T d’ordre cinq, de l’espace E(5)

n =
E(2)

n ⊗ E(3)
n , tel que :

T = U ⊗ V

tijklmei ⊗ ej ⊗ ek ⊗ el ⊗ em = (uijei ⊗ ej) ⊗ (vklmek ⊗ el ⊗ em)

= uij vklm(ei ⊗ ej ⊗ ek ⊗ el ⊗ em)

∀i, j, k, l, m tijklm = uijvklm

Notation 21. Le produit tensoriel est aussi noté :

T = [UV]

20.9.6 Contraction des indices

La contraction des indices d’un tenseur consiste à égaler l’un de ses indices contravariants
avec l’un de ses indices covariants. À partir d’un tenseur mixte d’ordre q, elle permet d’obtenir
de nouveaux tenseurs d’ordre q − 2, le tenseur initial étant amputé d’une covariance et d’une
contravariance.

Exemple 20.9.3. Soient u et v deux vecteurs de En de composantes contravariantes ui

et vj, et soit T leur produit tensoriel :

T = u ⊗ v

ti
j(ei ⊗ ej) = uiei ⊗ vje

j

∀i, j ti
j = uivj

En posant i = j nous additionnons les composantes et formons le produit scalaire des
vecteurs u et v :

∀i ti
i = uivi

= t1
1 + t2

2 + t3
3 + . . .

L’opération de contraction des indices fait passer un tenseur mixte d’ordre deux à un
scalaire ou tenseur d’ordre zéro. Par contraction répétée des indices d’un tenseur d’ordre
pair on déduit donc un invariant.
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Exemple 20.9.4. Soit U un tenseur d’ordre trois de composantes mixtes uij
k. La contrac-

tion des indices j et k donne les quantités suivantes :

∀i uij
j = vi

Par exemple v1 = u11
1 + u12

2 + u13
3. Montrons qu’elles constituent les composantes d’un

vecteur. Par changement de base :

∀i uij
j =

∂xi

∂xk′

∂xj

∂xm′

∂xn′

∂xj
uk′m′

n′

=
∂xi

∂xk′
δn′

m′uk′m′

n′

=
∂xi

∂xk′
uk′m′

m′

∀i vi =
∂xi

∂xk′
vk′

Les vi se transforment comme les composantes contravariantes d’un tenseur. L’opéra-
tion de contraction des indices fait passer un tenseur mixte d’ordre trois à un vecteur ou
tenseur d’ordre un.

20.9.7 Multiplication contractée

Définition 20.9.1. Multiplication contractée
La multiplication tensorielle suivie de la contraction des indices s’appelle la multiplication
contractée ou multiplication mixte.

En particulier, appliquée à deux tenseurs du premier ordre de variances différentes, elle
donne un invariant uiv

i appelé produit intérieur de U par V, analogue du produit scalaire du
calcul vectoriel. (voir l’exemple 18.1.5 p. 155).

Notation 22. La multiplication contractée de U par V est notée :

T = UV

Elle donne un critère de tensorialité.

(1) Si

uiv
i = E

est un invariant pour tout vecteur de composantes contravariantes vi, alors les ui sont
les composantes covariantes d’un vecteur (tenseur d’ordre un). En effet, E étant un
invariant,

E = E ′

uiv
i = uj′vj′

= uj′vk ∂xj′

∂xk

= uj′vi ∂xj′

∂xi
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relation vraie quelles que soient les vi, donc :

∀i ui = uj′

∂xj′

∂xi

(2) Si les

∀j tiju
i = vj

sont les composantes covariantes d’un vecteur pour tout vecteur de composantes contra-
variantes ui, alors les tij sont les composantes deux fois covariantes d’un tenseur d’ordre
deux. En effet,

∀j vj′ = vk
∂xk

∂xj′

∀j t′
iju

i′

= tlkul ∂xk

∂xj′

= tlkum′ ∂xl

∂xm′

∂xk

∂xj′

= tlkui′ ∂xl

∂xi′

∂xk

∂xj′

∀i, j t′
ij = tlk

∂xl

∂xi′

∂xk

∂xj′

Les composantes covariantes t′
ij sont notées ti′j′.

(3) Si

tiju
ivj = E

est un invariant pour tous vecteurs contravariants ui et vi, alors les tij sont les compo-
santes deux fois covariantes d’un tenseur d’ordre deux. En effet, d’après (1), les tiju

i

sont les composantes covariantes d’un vecteur, et par conséquent d’après (2) les tij

sont les composantes deux fois covariantes d’un tenseur d’ordre deux.

(4) Si les tij sont symétriques et si

tijv
ivj = E

est un invariant pour tout vecteur de composantes contravariantes vi, alors les tij sont
les composantes deux fois covariantes d’un tenseur d’ordre deux. En effet, soit ui les
composantes contravariantes d’un autre vecteur, alors wi = ui +vi est aussi un vecteur
contravariant. Alors,

tijw
iwj = tij

(
ui + vi

) (
uj + vj

)

= tiju
iuj + tijv

iuj + tiju
ivj + tijv

ivj

= tiju
iuj + tijv

ivj + 2tiju
ivj

où le terme de gauche et les deux premiers termes de droite sont des invariants par
hypothèse. Par conséquent tiju

ivj doit aussi être un invariant, et d’après (3), les tij

sont les composantes deux fois covariantes d’un tenseur d’ordre deux.

La généralisation des exemples (1), (2) et (3) permet d’énoncer le théorème suivant :

Théorème 20.9.1. Critère général de tensorialité
Si le produit contracté d’une suite de quantités avec un tenseur donne un tenseur alors cette

suite de quantités constitue les composantes d’un tenseur.
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Exemple 20.9.5. Reprenons l’exemple 20.7.2 p. 202. Soit f (v1, v2, . . . , vn) une fonction
dérivable par rapport aux n variables vi. Montrons que les dérivées partielles de f sont
les composantes d’un tenseur d’ordre un.
La différentielle de f s’écrit :

df = f,i dui

C’est le produit contracté du vecteur gradient de f avec le vecteur différentiel dM dont
les composantes sont contravariantes d’après (10) p. 29. Or df est un scalaire donc les
dérivées partielles sont les composantes covariantes d’un tenseur d’ordre un.

Exemple 20.9.6. Montrons que les n2 quantités gij sont les composantes covariantes d’un
tenseur. Le produit tensoriel des gij avec les composantes contravariantes d’un vecteur
quelconque v donne gijv

k. La contraction sur les indices j et k donne les composantes
covariantes du vecteur v :

∀i gijv
j = vi

Selon le critère général de tensorialité, les n2 quantités gij sont donc les composantes
deux fois covariantes d’un tenseur d’ordre deux.

20.9.8 Produit complètement contracté

Soit une suite de n3 quantités uij
k attachées à une base ei ⊗ ej ⊗ ek :

u11
1e1 ⊗ e1 ⊗ e1 + u11

2e1 ⊗ e1 ⊗ e2 + · · · + u11
ne1 ⊗ e1 ⊗ en + u12

1e1 ⊗ e2 ⊗ e1 + . . .

Ces quantités sont-elles les composantes d’un tenseur ?
Soient x = xiei, y = yjej , et z = zkek trois vecteurs. Si la suite des n3 quantités uij

k

constitue les composantes d’un tenseur alors le produit complètement contracté,

uij
kxiyjz

k = α

donne un scalaire (quantité invariante par changement de base).
Réciproquement, si le produit contracté uij

kxiyjz
k est un scalaire, alors il est invariant

ul′m′

n′xl′ym′zn′

= uij
kxiyjz

k

= uij
k

∂xl′

∂xi

∂xm′

∂xj

∂xk

∂xn′
xl′ym′zn′

est une relation vraie quels que soient les vecteurs x, y, z donc,

∀l, m, n ul′m′

n′ = uij
k

∂xl′

∂xi

∂xm′

∂xj

∂xk

∂xn′

et les n3 quantités uij
k sont les composantes mixtes d’un tenseur d’ordre trois.

Théorème 20.9.2. Critère de tensorialité
Pour qu’un ensemble de np+q quantités ayant p indices supérieurs et q indices inférieurs

soit un tenseur, il faut et il suffit que leur produit complètement contracté par les composantes
contravariantes de p vecteurs quelconques et par les composantes covariantes de q vecteurs
quelconques donne un scalaire.
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Exemple 20.9.7. Démontrons que le produit contracté des tenseurs U et V est invariant
par changement de base :

∀j uj′

=
∂xj′

∂xi
ui ; ∀l vl′ =

∂xk

∂xl′
vk

Le produit des composantes donne :

∀j, l uj′

vl′ =
∂xj′

∂xi

∂xk

∂xl′
uivk

Contractons des indices j et l :

uj′

vj′ =
∂xj′

∂xi

∂xk

∂xj′
uivk

= δk
i uivk

= ukvk

ukvk est invariant par changement de base. C’est le produit scalaire des vecteurs U et V.

20.10 Équations tensorielles

20.10.1 Changement de système de coordonnées

Une équation tensorielle vraie dans un système de coordonnées est vraie dans tout système
de coordonnées.

Exemple 20.10.1. Soit T un tenseur deux fois covariant, nul dans un système de coor-
donnée :

∀i, ∀j, tij = 0

Alors, par changement de coordonnée :

∀k, l tk′l′ =
∂xk′

∂xi

∂xl′

∂xj
tij

= 0

et le tenseur T est nul dans tout système de coordonnées.

Exemple 20.10.2. Soit l’équation suivante,

∀i, j rijksk = 3tkl
i ujkvl + wij

qui peut toujours s’écrire :

rijksk − 3tkl
i ujkvl − wij = 0

Si l’on peut montrer que les

zij = rijksk − 3tkl
i ujkvl − wij
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sont les composantes (covariantes) d’un tenseur d’ordre deux, alors d’après l’exemple
précédent cette équation tensorielle est vraie dans tout système de coordonnées.

20.10.2 Règles sur les indices

(1) Indice muet
Dans tout monome tensoriel, on peut inverser les positions haut et bas de tout

indice muet :

Ai
jBi = gikAkjgilB

l

= gikgilAkjB
l

= δk
l AkjB

l

= AljB
l

= AijB
i

(2) Indice libre
Si dans tous les termes d’une équation tensorielle figure un même indice libre, on

a une équation équivalente en élevant ou en abaissant partout cet indice :

∀λ, µ Sλµ = χQλµ

∀ν, µ gλνSλµ = gλνχQλµ

∀ν, µ Sν
µ = χQν

µ

∀λ, µ Sλ
µ = χQλ

µ

Si nous appliquons cette règle une seconde fois :

∀λ, ξ gµξSλ
µ = gµξχQλ

µ

∀λ, ξ Sλξ = χQλξ

∀λ, µ Sλµ = χQλµ





21
Espace euclidien en coordonnées curvilignes

21.1 Élément linéaire de l’espace euclidien

Définition 21.1.1. Élément linéaire d’espace
Soit En un espace ponctuel euclidien rapporté à un système de coordonnées curvilignes
(xi). Le carré de la distance entre deux points infiniment voisins, noté ds2, est égal au
carré de la norme euclidienne du vecteur infinitésimal dM . En utilisant la relation (72)
p. 144, nous avons :

ds2 , dM · dM

ds2 = gij dxidxj

ds est appelé élément linéaire d’espace, ou distance élémentaire ou encore métrique de
l’espace.

ds = ‖dM‖ est aussi l’abscisse curviligne du point M exprimée dans la base infiniment
proche. D’après le théorème d’orthonormalisation de Gram-Schmidt 12.8.1 p. 106, dans tout
espace euclidien il existe un système de coordonnées rectangulaires dans lequel le tenseur mé-
trique est égal à la matrice unité. Réciproquement, s’il existe un système de coordonnées rectan-
gulaires alors l’espace est euclidien, et dans ce système le tenseur métrique est égal à la matrice
unité. C’est le seul cas ou tenseur métrique et système de coordonnées sont liés. Dans les autres
cas d’espaces non-euclidiens, le tenseur métrique et le système de coordonnées curvilignes utilisé
pour le décrire sont complètement indépendants.

L’élément linéaire le long d’une courbe paramétrée de paramètre λ, est une fonction de ce
paramètre : ds = ds(λ). Il est souvent avantageux de faire apparaitre explicitement le paramètre
λ dans sa définition :

(
ds

dλ

)2

= gij
dxi

dλ

dxj

dλ
(110)

Exemple 21.1.1. Déterminons l’expression du carré de l’élément linéaire d’espace en
coordonnées sphériques de trois façons différentes.
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(1) Cherchons l’expression de dM en coordonnées sphériques, dans la base rectan-
gulaires. Le vecteur position s’écrit :

OM = xex + yey + zez

= r sin(θ) cos(φ) ex + r sin(θ) sin(φ) ey + r cos(θ) ez

Or,

dM = M ,r dr + M ,θ dθ + M ,φ dφ

avec : 



M ,r = sin(θ) cos(φ) ex + sin(θ) sin(φ) ey + cos(θ) ez

M ,θ = r cos(θ) cos(φ) ex + r cos(θ) sin(φ) ey − r sin(θ) ez

M ,φ = −r sin(θ) sin(φ) ex + r sin(θ) cos(φ) ey

Soit :

dM = (sin(θ) cos(φ) ex + sin(θ) sin(φ) ey + cos(θ) ez) dr

+ (r cos(θ) cos(φ) ex + r cos(θ) sin(φ) ey − r sin(θ) ez) dθ

+ (−r sin(θ) sin(φ) ex + r sin(θ) cos(φ) ey) dφ

= (sin(θ) cos(φ) dr + r cos(θ) cos(φ) dθ − r sin(θ) sin(φ) dφ)ex

+ (sin(θ) sin(φ) dr + r cos(θ) sin(φ) dθ + r sin(θ) cos(φ) dφ)ey

+ (cos(θ) dr − r sin(θ) dθ)ez

dont le produit scalaire avec lui-même donne l’expression cherchée :

dM · dM =
(
sin2(θ) cos2 φ + sin2(θ) sin2 φ + cos2(θ)

)
dr2

+ r2
(
cos2(θ) cos2 φ + cos2(θ) sin2 φ + sin2(θ)

)
dθ2

+
(
sin2(θ) sin2 φ + sin2(θ) cos2 φ

)
dφ2

ds2 = dr2 + r2dθ2 + r2 sin2(θ)dφ2

(2) Cherchons l’expression de dM en coordonnées sphériques, dans la base naturelle.
Le vecteur position s’écrit :

OM = rer

Sa différentielle vaut :

dM = drer + rder

Or d’après les relations (7) p. 23 :

er = sin(θ) cos(φ) ex + sin(θ) sin(φ) ey + cos(θ) ez

der = er,θdθ + er,φdφ

= (cos(θ) cos(φ) ex + cos(θ) sin(φ) ey − sin(θ) ez)dθ

+ (− sin(θ) sin(φ) ex + sin(θ) cos(φ) ey)dφ
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Les vecteurs er et der étant perpendiculaires, et le vecteur er étant de norme
unité :

dM · dM = dr2‖er‖2 + r2‖der‖2

= dr2 + r2[(cos2(θ) cos2 φ + cos2(θ) sin2 φ + sin2(θ))dθ2

+ (sin2(θ) sin2 φ + sin2(θ) cos2 φ)dφ2]

= dr2 + r2dθ2 + r2 sin2(θ)dφ2

(3) En utilisant le tenseur métrique en coordonnées sphériques :

ds2 = gij duiduj

= g11 du1du1 + g12 du1du2 + g13 du1du3

+ g21 du2du1 + g22 du2du2 + g23 du2du3

+ g31 du3du1 + g32 du3du2 + g33 du3du3

= g11 (du1)2 + 2g12 du1du2 + 2g13 du1du3 + g22 (du2)2 + 2g23 du2du3 + g33 (du3)2

Pour un système de coordonnées orthogonales le tenseur métrique est diagonal :

ds2 = g11 (du1)2 + g22 (du2)2 + g33 (du3)2

En coordonnées sphériques :

ds2 = grr dr2 + gθθ dθ2 + gφφ dφ2

= er · er dr2 + eθ · eθ dθ2 + eφ · eφ dφ2

= ‖er‖2dr2 + ‖eθ‖2dθ2 + ‖eφ‖2φ2

Le paragraphe 8 p. 23 donne les normes des vecteurs de la base naturelle en
coordonnées sphériques,





‖er‖ = 1

‖eθ‖ = r

‖eφ‖ = r sin(θ)

et l’on a :

ds2 = dr2 + r2dθ2 + r2 sin2(θ)dφ2

21.2 Equation d’une droite

Il existe plusieurs définitions équivalentes d’une droite. Par exemple, c’est le chemin le plus
court entre deux points (segment de droite), donc tel que la variation première de la longueur de
ce chemin soit nulle. Dans un espace ponctuel rapporté à un système de coordonnées curviligne
(xi), une courbe xi = xi(λ) est une droite ssi :

δ

ˆ b

a

√

gij
dxi

dλ

dxj

dλ
dλ = 0
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Si l’intégrale d’une fonction est extrémale il en va de même de l’intégrale du carré de cette
fonction :

δ

ˆ b

a

gij
dxi

dλ

dxj

dλ
dλ = 0

Prenons pour paramètre le temps pour utiliser la notation de Newton du point pour la dérivation
temporelle :

δ

ˆ b

a

gij ẋ
iẋjdt = 0

En posant le lagrangien

L = gij ẋiẋj

nous avons

δ

ˆ b

a

L
(
ẋi
)

dt = 0

D’après le principe de Hamilton cette relation donne le système des n équations d’Euler-
Lagrange :

∀i
d

dt

(
∂L

∂ẋi

)
− ∂L

∂xi
= 0

d

dt

(
2gij ẋj

)
− ∂

∂xi

(
gjk ẋj ẋk

)
= 0

d

dt

(
gij ẋj

)
− 1

2
∂igjk ẋj ẋk = 0

Exemple 21.2.1. Cherchons le système d’équations paramétriques pour une droite en
coordonnées polaires. Le lagrangien a pour expression :

L(ρ̇, θ̇) = gρρ ρ̇2 + 2gρθ ρ̇θ̇ + gθθ θ̇2

= ρ̇2 + ρ2 θ̇2

Les équations d’Euler-Lagrange s’écrivent :




d

dt

(
∂L

∂ρ̇

)
− ∂L

∂ρ
= 0

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0

⇒





ρ̈ − ρθ̇2 = 0

d

dt

(
ρ2θ̇

)
= 0

Ce sont respectivement les termes d’accélération en eρ et eθ. Nous verrons p. 266 qu’une
droite peut aussi être définie comme la trajectoire d’un point ayant une accélération nulle.

Montrons que ce système d’équations différentielles donne bien une droite. En coordonnées
rectangulaires, l’équation d’une droite y = ax + b peut aussi s’écrire :

ax + by = c

En passant en coordonnées polaires :

aρ cos(θ) + bρ sin(θ) = c

ρ (a cos(θ) + b sin(θ)) = c

En dérivant par rapport au temps :

ρ̇ (a cos(θ) + b sin(θ)) + ρθ̇(−a sin(θ) + b cos(θ)) = 0
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En dérivant à nouveau :

ρ̈ (a cos(θ) + b sin(θ)) + ρ̇θ̇(−a sin(θ) + b cos(θ)) + ρ̇θ̇(−a sin(θ) + b cos(θ))

+ ρθ̈(−a sin(θ) + b cos(θ)) + ρθ̇2 (−a cos(θ) − b sin(θ)) = 0
(
ρ̈ − ρθ̇2

)
(a cos(θ) + b sin(θ)) +

(
2ρ̇θ̇ + ρθ̈

)
(−a sin(θ) − b cos(θ)) = 0

(
ρ̈ − ρθ̇2

)
(a cos(θ) + b sin(θ)) +

1
ρ

d

dt

(
ρ2θ̇

)
(−a sin(θ) − b cos(θ)) = 0

On retrouve bien 



ρ̈ − ρθ̇2 = 0

d

dt

(
ρ2θ̇

)
= 0

21.3 Volume élémentaire de l’espace euclidien

Pour construire un volume élémentaire, nous prenons une variation

δM = M ,i dxi

le long de chaque coordonnée xi pour former un parallélépipède. Soit E3 un espace vectoriel
euclidien, construisons d’abord une surface élémentaire orientée dA :

dA = M ,2 dx2 × M ,3 dx3

= e2dx2 × e3dx3

= e2 × e3 dx2dx3

où l’opérateur × est le produit vectoriel. Construisons un élément de volume :

dV = e1dx1 · (e2 × e3 dx2dx3)

dV = e1 · e2 × e3 dx1dx2dx3

Exemple 21.3.1. En coordonnées sphériques, avec les relations du paragraphe 8 p. 23 :

dV = er · eθ × eφ drdθdφ

=




sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)


 ·




r cos(θ) cos(φ)
r cos(θ) sin(φ)

−r sin(θ)


×




−r sin(θ) sin(φ)
r sin(θ) cos(φ)

0


 drdθdφ

=




sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)


 ·




r2 sin2(θ) cos(φ)
r2 sin2(θ) sin(φ)
r2 cos(θ) sin(θ)


 drdθdφ

=
[
r2 sin3 θ cos2 φ + r2 sin3 θ sin2 φ + r2 cos2(θ) sin(θ)

]
drdθdφ

=
[
r2 sin3 θ + r2 cos2(θ) sin(θ)

]
drdθdφ

= r2 sin(θ) drdθdφ
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On peut exprimer le volume élémentaire grâce au tenseur métrique. En coordonnées sphé-
riques, le tenseur métrique a pour composantes

G




1 0 0
0 r2 0
0 0 r2 sin2(θ)




Son déterminant vaut :

g = r4 sin2(θ)
√

g = r2 sin(θ)

Si bien que :

dV =
√

g drdθdφ

Théorème 21.3.1. Soit En un espace ponctuel pré-euclidien rapporté à un système de
coordonnées curvilignes (ui). Le volume élémentaire de l’espace est le volume du parallé-
lépipède construit sur les vecteurs ei dui :

dV =
√

|g| du1 du2 . . . dun (111)

On déduit par intégration la mesure d’un volume fini de l’espace :

V =
ˆ √

|g|
n∏

i=1

dui

Démonstration. Dans un espace ponctuel euclidien E3 :

e1 · e2 × e3 = ∂1M · ∂2M × ∂3M

=




∂1x
∂1y
∂1z


 ·




∂2x
∂2y
∂2z


×




∂3x
∂3y
∂3z




=




∂1x
∂1y
∂1z


 ·




∂2y∂3z − ∂2z∂3y
∂2z∂3x − ∂2x∂3z
∂2x∂3y − ∂2y∂3x




= ∂1x(∂2y∂3z − ∂2z∂3y)

+ ∂1y(∂2z∂3x − ∂2x∂3z)

+ ∂1z(∂2x∂3y − ∂2y∂3x)

= det



∂1x ∂2x ∂3x
∂1y ∂2y ∂3y
∂1z ∂2z ∂3z




Le déterminant de toute matrice est égal au déterminant de sa transposée :

(e1 · e2 × e3)2 = det



∂1x ∂1y ∂1z
∂2x ∂2y ∂2z
∂3x ∂3y ∂3z


× det



∂1x ∂2x ∂3x
∂1y ∂2y ∂3y
∂1z ∂2z ∂3z



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Quelles que soient [A] et [B] deux matrices, det[A] × det[B] = det([A][B]) :

(e1 · e2 × e3)2 =

det



(x,1)2 + (y,1)2 + (z,1)2 x,1x,2 + y,1y,2 + z,1z,2 x,1x,3 + y,1y,3 + z,1z,3

x,2x,1 + y,2y,1 + z,2z,1 (x,2)2 + (y,2)2 + (z,2)2 x,2x,3 + y,2y,3 + z,2z,3

x,3x,1 + y,3y,1 + z,3z,1 x,3x,2 + y,3y,2 + z,3z,2 (x,3)2 + (y,3)2 + (z,3)2




= det



e1 · e1 e1 · e2 e1 · e3

e2 · e1 e2 · e2 e2 · e3

e3 · e1 e3 · e2 e3 · e3




= g

d’où :

e1 · e2 × e3 =
√

g

�

21.4 Les symboles de Christoffel

Nous avons vu au chapitre 19 p. 161 que lorsque le système de coordonnées est curviligne,
qu’il soit orthogonal ou non, nous ne pouvons plus lui associer de base globale. Nous avons alors
définit une base locale, la base naturelle, dont les vecteurs de base sont fonction des coordonnées
du point où l’on se trouve. Nous avons effectuer des changements de base en restant au même
point, par changement de coordonnées.

Nous nous intéressons maintenant au changement de base lorsque l’on passe d’un point à
un autre infiniment proche, en restant dans le même système de coordonnées. Les vecteurs de
la nouvelle base naturelle locale tournent et changent de norme en passant d’un point à un
autre. Ils sont bien entendu exprimés dans l’ancienne base naturelle locale, seule base connue
a priori. Pour rester dans l’ancienne base naturelle locale, nous utiliserons le calcul différentiel
au voisinage de l’origine de cette ancienne base.

21.4.1 Le problème fondamental de l’analyse tensorielle

Supposons qu’en tout point M d’un espace ponctuel euclidien En, nous attachions un ten-
seur défini par ses composantes relatives au repère naturel en M du système de coordonnées
curvilignes (xi). Nous dirons que nous nous sommes donné un champ de tenseur dans le système
(ui). Le tenseur métrique gij

(
xk
)

fournit un tel exemple de champ de tenseurs. Pour pouvoir
comparer ces tenseurs, il convient d’étudier comment le repère naturel varie quand on passe
d’un point M à un point infiniment voisin.

Problème. L’espace ponctuel euclidien En étant rapporté à un système de coordonnées
curvilignes (xj), pour lequel l’élément linéaire de l’espace est

ds2 = gijdxidxj

déterminer, par rapport au repère naturel (M, ej), le repère naturel infiniment voisin (M +
dM , ej + dej).
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Autrement dit, cherchons l’expression des vecteurs infinitésimaux dM et dej . Le premier
est donné par la relation (10) p. 29 :

dM = dxjej

Pour le second, appelons ωi les composantes contravariantes (cherchées) du vecteur dej :

∀j dej = ωi
jei (112)

Tout vecteur dej est fonction du vecteur déplacement dM . Les ωi
j sont donc des infiniment

petits du même ordre que les dxj , et ils doivent s’annuler en même temps qu’eux. Par conséquent
ils sont une combinaison linéaires des différentielles dxk (ceci devient évident avec l’exemple
21.4.1 p. 223)

∀i, j ωi
j = Γi

jk dxk (113)

où les Γi
jk désignent n3 (chacun des trois indices i, j, k varie de 1 à n) fonctions des coor-

données
(
xk
)

du point M . Notre problème se trouve ainsi ramené à la détermination des n3

fonctions Γi
jk à partir des n(n + 1)/2 fonctions gij. Avec les deux relations précédentes :

∀i dej = Γi
jk dxkei (114)

Définition 21.4.1. Symboles de Christoffel de deuxième espèce
Les n3 quantités Γi

jk

(
xk
)

sont appelées symboles de Christoffel de deuxième espèce.

Nous avons, ∀j :

dej = Γi
jk dxkei

∂kej dxk = Γi
jk dxkei

∀j, k ∂kej = Γi
jk ei (115)

ej,k étant un vecteur, il s’écrit comme combinaison linéaire des vecteurs de base ei. Γi
jk est la

i ème composante de ce vecteur.

Appelons ωij les composantes covariantes du vecteur dej :

∀i, j ωij = dej · ei

Remarque 34. Les ωij ne sont pas symétriques :

ωij 6= ωji

par exemple ω12 = de2 · e1 et ω21 = de1 · e2. Par conséquent

ωi
j 6= ω i

j

Les ωij sont aussi des combinaisons linéaires des différentielles dxk :

∀i, j ωij = Γijk dxk

Notation 23. La notation des indices de gamma dans l’ordre ijk est arbitraire mais un choix
est nécessaire. Nous avons choisi d’écrire en premier l’indice de la composante, en deuxième l’indice
du vecteur et en dernier l’indice de la différentielle.
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Définition 21.4.2. Symboles de Christoffel de première espèce
Les n3 quantités Γijk

(
xk
)

sont appelées symboles de Christoffel de première espèce.

Exemple 21.4.1. Symboles de Christoffel en coordonnées polaires
Étudions le problème de la variation du repère naturel en coordonnées polaires. En déri-
vant les relations (5) p. 22 :





eρ,ρ = 0

eρ,θ = − sin(θ) ex + cos(θ) ey

eθ,ρ = − sin(θ) ex + cos(θ) ey

eθ,θ = −ρ cos(θ) ex − ρ sin(θ) ey

⇒





eρ,ρ = 0

eρ,θ = eθ/ρ

eθ,ρ = eθ/ρ

eθ,θ = −ρ eρ

Les différentielles des vecteurs de la base naturelle polaire s’écrivent :
{

deρ = eρ,ρ dρ + eρ,θ dθ

deθ = eθ,ρ dρ + eθ,θ dθ
⇒

{
deρ = eθ dθ/ρ

deθ = eθ dρ/ρ − ρeρ dθ
(116)

En identifiant avec




deρ = Γρ
ρρ dρ eρ + Γρ

ρθ dθ eρ + Γθ
ρρ dρ eθ + Γθ

ρθ dθ eθ

deθ = Γρ
θρ dρ eρ + Γρ

θθ dθ eρ + Γθ
θρ dρ eθ + Γθ

θθ dθ eθ

les symboles de Christoffel de deuxième espèce s’écrivent :

Γρ
ρρ = 0

Γρ
θρ = 0

Γρ
ρθ = 0

Γρ
θθ = −ρ

Γθ
ρρ = 0

Γθ
θρ = 1/ρ

Γθ
ρθ = 1/ρ

Γθ
θθ = 0

21.4.2 Relations entre symboles de Christoffel de première et seconde espèce

Les composantes covariantes ωij et contravariantes ωi
j du vecteur dej sont liées par la

relation, ∀i, j :

ωij = gihωh
j

Γijk dxk = gihΓh
jk dxk

∀i, j, k Γijk = gihΓh
jk (117)

Le tenseur métrique abaisse l’indice haut, celui de la composante, qui passe de contravariante
à covariante. C’est pourquoi dans la notation 23 p. 222 choisie, nous laissons une espace entre
gamma est le premier indice. De même, nous écrirons :

∀i, j, k Γi
jk = gihΓhjk (118)

La connaissance des n3 fonctions Γi
jk est donc équivalente à celle des n3 fonctions Γijk.
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21.4.3 Symétrie des symboles de Christoffel par rapport aux indices

Écrivons les conditions d’intégrabilité de l’équation (10) p. 29. Pour que dM soit intégrable,
autrement dit pour que dM soit une différentielle totale exacte, les dérivées secondes de M

doivent être symétriques par rapport à leurs indices de dérivation (condition de Schwarz). En
utilisant la définition 3.2.8 p. 21 puis les relations (115) p. 222. ∀j, k :

∂2M

∂xk∂xj
=

∂

∂xk

(
∂M

∂xj

)

∂kjM = ∂kej

M ,kj = Γi
jk ei (119)

Inversons l’ordre de dérivation. ∀j, k :

M ,kj = M ,jk

Γi
jk ei = Γi

kj ei (120)

∀i, j, k Γi
jk = Γi

kj (121)

Les symboles de Christoffel de deuxième espèce sont symétriques par rapport à leurs indices
inférieurs. De même ∀h, j, k :

Γh
jk = Γh

kj

ghiΓijk = ghiΓikj

∀i, j, k Γijk = Γikj

Dans la notation 23 p. 222 choisie, les symboles de Christoffel de première espèce sont symé-
triques par rapport à leurs derniers indices. Ce dernier système est équivalent au système (121).

Pour chacune des n valeurs de l’indice de gauche i de Γi
jk, l’indice j varie de 1 à n, ainsi

que l’indice k. Parmi les n2 équations fournies par les indices j et k, on compte n égalités du
type Γi

jj = Γi
jj qui ne servent à rien. Parmi les n2 − n égalités restantes, se trouve l’égalité

Γi
12 = Γi

21, et plus loin, Γi
21 = Γi

12. Les indices j et k founissent par conséquent (n2 − n)/2
égalités distinctes. Au total, le système (121) permet d’établir le nombre suivant d’équations :

n × 1
2
(n2 − n) = 1

2
n2(n − 1)

Notation 24. Les symboles de Christoffel sont aussi notés comme suit :

Γi
jk =

{
i

jk

}
= {jk, i} et Γijk = [jk, i]

21.4.4 Symboles de Christoffel en fonction du tenseur métrique

À partir de la définition 12.1.1 p. 97 du tenseur métrique, ∀i, j :

gij = ei · ej

dgij = ei · dej + ej · dei

= ei · ωk
jek + ej · ωk

iek

∂kgij dxk = gikωk
j + gjkωk

i (122)

= gihΓh
jk dxk + gjhΓh

ik dxk

∀i, j, k gij,k = Γijk + Γjik (123)
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D’après la relation (35) p. 82, les gij étant au nombre de n(n+1)/2, le système (123) comprend
n2(n+1)/2 équations. Avec les équations de symétries des symboles de Christoffel, nous avons :

1
2
n2(n + 1) + 1

2
n2(n − 1) = n3

équations, pour les n3 inconnues Γijk. Ce système sera soluble si les conditions d’intégrabilité
des vecteurs ei sont satisfaites. Pour trouver les conditions d’intégrabilité des équations (10)
p. 29, nous avons implicitement supposé que les équations (112) p. 222 l’étaient, puisque nous
les avons utilisées pour écrire les relations (120) p. 224. L’intégrabilité des équations (112) est
donc nécessaire à celle des équations (10). Pour que dei soit intégrable, les dérivées secondes de
ei doivent être symétriques par rapport à leurs indices de dérivation. Avec les relations (115)
p. 222, nous avons, ∀i, k, l :

∂l (∂kei) = ∂k (∂lei)

∂l

(
Γj

ik ej

)
= ∂k

(
Γj

il ej

)

∂lΓ
j
ik ej + Γj

ik ∂lej = ∂kΓj
il ej + Γj

il ∂kej

∂lΓ
j
ik ej + Γj

ik Γm
jl em = ∂kΓj

il ej + Γj
il Γm

jk em

∂lΓ
j
ik ej + Γm

ik Γj
ml ej = ∂kΓj

il ej + Γm
il Γj

mk ej
(
∂lΓ

j
ik − ∂kΓj

il

)
+
(
Γm

ik Γj
ml − Γm

il Γj
mk

)
= 0

En remplaçant les symboles de Christoffel par leurs expressions en fonction du tenseur métrique,
(voir plus loin les relations (127) p. 225), on obtient les conditions nécessaires auxquelles doivent
satisfaire les fonctions gij pour résoudre notre problème.

En appliquant deux fois la permutation circulaire des indices i → j, j → k, k → i aux
relations (123) p. 224, nous obtenons deux autres ensembles de relations, ∀i, j, k :

Γijk + Γjik = gij,k

Γjki + Γkji = gjk,i (124)

Γkij + Γikj = gki,j (125)

En additionnant les relations (123) et (125), et en soustrayant (124), nous obtenons les symboles
de Christoffel de première espèce, ∀i, j, k :

2Γijk = gij,k + gki,j − gjk,i

Γijk = 1
2

(gij,k + gki,j − gjk,i) (126)

Avec les relations (118) p. 223, les symboles de deuxième espèce ont pour expression, ∀i, j, k :

Γi
jk = 1

2
gih (ghj,k + gkh,j − gjk,h) (127)

21.4.5 Symboles de Christoffel de deuxième espèce contractés

Dans le cas particulier où k = i :

Γi
ij = 1

2
gih (ghj,i + gih,j − gji,h)

Or,

gihghj,i = ghighj,i

= gihgij,h

= gihgji,h
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Il reste

Γi
ij = 1

2
gihgih,j (128)

Avec la relation (58) p. 104 :

∀k Γi
ik =

∂kg

2g

=
1√
|g|

∂k

√
|g| (129)

= ∂k ln
√

|g|

Exemple 21.4.2. Symboles de Christoffel de deuxième espèce contractés, pour la métrique
de Schwarzschild
D’après (56) p. 103 son déterminant s’écrit :

g = −eν+λr4 sin2(θ)

Notons par un point la dérivation par rapport à ct et par un prime celle par rapport à r :




Γi
i0 =

∂0g

2g

Γi
i1 =

∂1g

2g

Γi
i2 =

∂2g

2g

Γi
i3 =

∂3g

2g

⇒





Γi
i0 =

−(ν̇ + λ̇)eν+λr4 sin2 θ

−2eν+λr4 sin2 θ

Γi
i1 =

− [4r3 + (ν ′ + λ′)r4] eν+λ sin2 θ

−2eν+λr4 sin2 θ

Γi
i2 =

−2eν+λr4 sin θ cos θ

−2eν+λr4 sin2 θ

Γi
i3 = 0

⇒





Γi
i0 =

1
2

(ν̇ + λ̇)

Γi
i1 =

2
r

+
1
2

(ν ′ + λ′)

Γi
i2 = cot θ

Γi
i3 = 0

21.4.6 Symboles de Christoffel en coordonnées rectilignes

En coordonnées rectilignes les symboles de Christoffel sont tous nuls car les vecteurs de base
ne tournent pas :

∀i, j gij = cste ⇒ ∀i, j, k gij,k = 0 ⇒
{∀i, j, k Γijk = 0

∀i, j, k Γi
jk = 0

Les coordonnées rectilignes ne sont possibles que dans les espaces plats, pré-euclidiens. Par
conséquent dans les espaces plats les symboles de Christoffel sont nuls.

Remarque 35. Si les symboles de Christoffel étaient des tenseurs ils auraient même valeur dans
tous les systèmes de coordonnées. Or ils sont nuls dans les systèmes de coordonnées rectilignes et non
nuls dans les systèmes de coordonnées curvilignes. Par conséquent, ce ne sont pas des tenseurs. Pour les
mêmes raisons les ωi

j ne sont pas les composantes d’un tenseur.
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21.4.7 Symboles de Christoffel en coordonnées orthogonales

(1) Symboles de première espèce
En coordonnées orthogonales le tenseur métrique est diagonal, les relations (59)

p. 105, ∀i 6= j gij = 0 permettent de simplifier les symboles de Christoffel de première
espèce (126) p. 225 :




∀i = j = k, Γiii = 1
2

(gii,i + gii,i − gii,i)

∀i = j 6= k, Γiik = 1
2

(gii,k + gki,i − gik,i)

∀i 6= j = k, Γijj = 1
2

(gij,j + gji,j − gjj,i)

∀i = k 6= j, Γiji = 1
2

(gij,i + gii,j − gji,i)

i, j, k 6=, Γijk = 0

⇒





Γiii = 1
2

gii,i

Γiij = 1
2

gii,j

Γijj = −1
2

gjj,i

Γiji = 1
2

gii,j

Γijk = 0

Avec la symétrie des symboles :




Γiii = 1
2

gii,i

Γiij = Γiji = 1
2

gii,j

Γijj = −1
2

gjj,i

(130)

(2) Symboles de deuxième espèce

À partir des relations (118) p. 223 et de nouveau avec ∀i 6= j gij = 0 :




Γi
ii = gijΓjii

Γi
ij = gikΓkij

Γi
jj = gikΓkjj

Γi
ji = gikΓkji

Γi
jk = gihΓhjk

⇒





Γi
ii = giiΓiii sans sommer sur i

Γi
ij = giiΓiij sans sommer sur i

Γi
jj = giiΓijj sans sommer sur i

Γi
ji = giiΓiji sans sommer sur i

Γi
jk = 0

Avec les relations (60) p. 105, ∀i gii = (gii)−1, et avec les relations (130) :

⇒





Γi
ii = Γiii/gii

Γi
ij = Γiij/gii

Γi
jj = Γijj/gii

Γi
ji = Γiji/gii

Γi
jk = 0

⇒





Γi
ii = gii,i/(2gii)

Γi
ij = gii,j/(2gii)

Γi
jj = −gjj,i/(2gii)

Γi
ji = gii,j/(2gii)

Γi
jk = 0

Avec la symétrie des symboles :




Γi
ii = gii,i/(2gii)

Γi
ij = gii,j/(2gii)

Γi
jj = −gjj,i/(2gii)

⇒





Γi
ii = 1

2
∂i ln gii

Γi
ij = 1

2
∂j ln gii

Γi
jj = −gjj,i/(2gii)

(131)

Exemple 21.4.3. Symboles de Christoffel en coordonnées cylindriques (ρ, φ, z) dans un
espace euclidien, on a le tenseur métrique (38) p. 97, gρρ = 1, gφφ = ρ2, gzz = 1. Les
dérivées partielles des gij sont nulles sauf gφφ,ρ = 2ρ.
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(1) Pour les symboles de première espèce nous utilisons les relations (130) p. 227 :




Γφφρ = Γφρφ = 1
2

gφφ,ρ

Γρφφ = −1
2

gφφ,ρ

⇒
{

Γφφρ = Γφρφ = ρ

Γρφφ = −ρ

(2) Pour les symboles de deuxième espèce nous utilisons les relations (131) p. 227 :




Γφ
φρ = Γφ

ρφ = Γφφρ/gφφ

Γρ
φφ = Γρφφ/gρρ

⇒




Γφ
φρ = Γφ

ρφ = 1/ρ

Γρ
φφ = −ρ

Avec les relations (114) p. 222 :

de1 = Γ1
11 e1 dx1 + Γ2

11 e2 dx1 + Γ3
11 e3 dx1

+ Γ1
12 e1 dx2 + Γ2

12 e2 dx2 + Γ3
12 e3 dx2

+ Γ1
13 e1 dx3 + Γ2

13 e2 dx3 + Γ3
13 e3 dx3

deρ = Γρ
ρρ eρ dρ + Γφ

ρρ eφ dρ + Γz
ρρ ez dρ

+ Γρ
ρφ eρ dφ + Γφ

ρφ eφ dφ + Γz
ρφ ez dφ

+ Γρ
ρz eρ dz + Γφ

ρz eφ dz + Γz
ρz ez dz

= ρ−1eφ dφ

De même,

de2 = Γ1
21 e1 dx1 + Γ2

21 e2 dx1 + Γ3
21 e3 dx1

+ Γ1
22 e1 dx2 + Γ2

22 e2 dx2 + Γ3
22 e3 dx2

+ Γ1
23 e1 dx3 + Γ2

23 e2 dx3 + Γ3
23 e3 dx3

deφ = Γρ
φρ eρ dρ + Γφ

φρ eφ dρ + Γz
φρ ez dρ

+ Γρ
φφ eρ dφ + Γφ

φφ eφ dφ + Γz
φφ ez dφ

+ Γρ
φz eρ dz + Γφ

φz eφ dz + Γz
φz ez dz

= ρ−1eφ dρ − ρeρ dφ

et :

de3 = Γ1
31 e1 dx1 + Γ2

31 e2 dx1 + Γ3
31 e3 dx1

+ Γ1
32 e1 dx2 + Γ2

32 e2 dx2 + Γ3
32 e3 dx2

+ Γ1
33 e1 dx3 + Γ2

33 e2 dx3 + Γ3
33 e3 dx3

dez = Γρ
zρ eρ dρ + Γφ

zρ eφ dρ + Γz
zρ ez dρ

+ Γρ
zφ eρ dφ + Γφ

zφ eφ dφ + Γz
zφ ez dφ

+ Γρ
zz eρ dz + Γφ

zz eφ dz + Γz
zz ez dz

= 0

Exemple 21.4.4. Symboles de Christoffel en coordonnées sphériques (r, θ, φ) dans un
espace euclidien, en posant r = x1, θ = x2 et φ = x3, on a le tenseur métrique (39) p. 97,
g11 = 1, g22 = (x1)2, g33 = (x1)2 sin2 x2. Les dérivées partielles des gij sont nulles sauf
g22,1 = 2x1, g33,1 = 2x1 sin2 x2 et g33,2 = 2 (x1)2 sin x2 cos x2.
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(1) Les relations (130) p. 227 donnent les symboles de première espèce :




Γ221 = Γ212 = 1
2

g22,1

Γ331 = Γ313 = 1
2

g33,1

Γ332 = Γ323 = 1
2

g33,2

Γ122 = −1
2

g22,1

Γ133 = −1
2

g33,1

Γ233 = −1
2

g33,2

⇒





Γ221 = Γ212 = x1

Γ331 = Γ313 = x1 sin2 x2

Γ332 = Γ323 =
(
x1
)2

sin x2 cos x2

Γ122 = −x1

Γ133 = −x1 sin2 x2

Γ233 = −
(
x1
)2

sin x2 cos x2

(2) Les relations (131) p. 227 donnent les symboles de deuxième espèce :




Γ2
21 = Γ2

12 = Γ221/g22

Γ3
31 = Γ3

13 = Γ331/g33

Γ3
32 = Γ3

23 = Γ332/g33

Γ1
22 = Γ122/g11

Γ1
33 = Γ133/g11

Γ2
33 = Γ233/g22

⇒





Γ2
21 = Γ2

12 = 1/x1

Γ3
31 = Γ3

13 = 1/x1

Γ3
32 = Γ3

23 = cot x2

Γ1
22 = −x1

Γ1
33 = −x1 sin2 x2

Γ2
33 = − sin x2 cos x2

Exemple 21.4.5. Symboles de Christoffel à la surface d’une sphère
En coordonnées sphériques (r, θ, φ), à la surface d’une sphère de rayon r, en se servant
de l’exemple précédent :

(1) Les relations (130) p. 227 donnent les symboles de première espèce :




Γ332 = Γ323 = 1
2

g33,2

Γ233 = −1
2

g33,2

⇒





Γ332 = Γ323 =
(
x1
)2

sin x2 cos x2

Γ233 = −
(
x1
)2

sin x2 cos x2

(2) Les relations (131) p. 227 donnent les symboles de deuxième espèce :




Γ3
32 = Γ3

23 = Γ332/g33

Γ2
33 = Γ233/g22

⇒




Γ3
32 = Γ3

23 = cot x2

Γ2
33 = − sin x2 cos x2

Exemple 21.4.6. Symboles de Christoffel de deuxième espèce, pour la métrique de
Schwarzschild
Les symboles de Christoffel ayant trois indices, dans un espace de dimension quatre ils
ont 43 = 64 composantes. Leur symétrie par rapport à deux indices réduit le nombre de
composantes indépendantes à 4 × (8 + 2) = 40 (la moitié de la matrice 4 × 4 des indices
symétriques, plus la moitié de ses éléments diagonaux, le tout fois 4).
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Les relations (131) p. 227 en coordonnées rectangulaires nous donnent :




Γ0
00 = g00,0/(2g00)

Γ0
01 = g00,1/(2g00)

Γ0
02 = g00,2/(2g00)

Γ0
03 = g00,3/(2g00)

Γ0
11 = −g11,0/(2g00)

Γ0
22 = −g22,0/(2g00)

Γ0
33 = −g33,0/(2g00)





Γ1
11 = g11,1/(2g11)

Γ1
10 = g11,0/(2g11)

Γ1
12 = g11,2/(2g11)

Γ1
13 = g11,3/(2g11)

Γ1
00 = −g00,1/(2g11)

Γ1
22 = −g22,1/(2g11)

Γ1
33 = −g33,1/(2g11)





Γ2
22 = g22,2/(2g22)

Γ2
20 = g22,0/(2g22)

Γ2
21 = g22,1/(2g22)

Γ2
23 = g22,3/(2g22)

Γ2
00 = −g00,2/(2g22)

Γ2
11 = −g11,2/(2g22)

Γ2
33 = −g33,2/(2g22)





Γ3
33 = g33,3/(2g33)

Γ3
30 = g33,0/(2g33)

Γ3
31 = g33,1/(2g33)

Γ3
32 = g33,3/(2g33)

Γ3
00 = −g00,3/(2g33)

Γ3
11 = −g11,3/(2g33)

Γ3
22 = −g22,3/(2g33)

g00 et g11 ne sont fonction que des coordonnées x0 et x1, g22 n’est fonction que de x1, et
g33 n’est fonction que de x1 et x2. Donc

g00,2 = g00,3 = g11,2 = g11,3 = g22,0 = g22,2 = g22,3 = g33,0 = g33,3 = 0





Γ0
00 = g00,0/(2g00)

Γ0
01 = g00,1/(2g00)

Γ0
11 = −g11,0/(2g00)





Γ1
11 = g11,1/(2g11)

Γ1
10 = g11,0/(2g11)

Γ1
00 = −g00,1/(2g11)

Γ1
22 = −g22,1/(2g11)

Γ1
33 = −g33,1/(2g11)





Γ2
21 = g22,1/(2g22)

Γ2
33 = −g33,2/(2g22)





Γ3
31 = g33,1/(2g33)

Γ3
32 = g33,2/(2g33)

Notons par un point la dérivation par rapport à ct et par un prime celle par rapport à r.
Avec le tenseur métrique de Schwarzschild (55) p. 103 :





Γ0
00 = 1

2
α̇

Γ0
01 = 1

2
α′

Γ0
11 = 1

2
β̇eβ−α





Γ1
11 = 1

2
β ′

Γ1
10 = 1

2
β̇

Γ1
00 = 1

2
α′eα−β

Γ1
22 = −re−β

Γ1
33 = −r sin2(θ)e−β





Γ2
21 = 1/r

Γ2
33 = − sin(θ) cos(θ)





Γ3
31 = 1/r

Γ3
32 = cot(θ)

(132)

21.4.8 Formules de Christoffel

Démontrons les formules de Christoffel en partant du changement de base suivant, ∀i :

ei′ =
∂xj

∂xi′
ej

dei′ =
∂xj

∂xi′
dej + d

(
∂xj

∂xi′

)
ej

ωk′

i′ek′ =
∂xj

∂xi′
ωj

l el + d

(
∂xj

∂xi′

)
ej

=
∂xj

∂xi′
ωj

l

∂xk′

∂xl
ek′ + d

(
∂xj

∂xi′

)
∂xk′

∂xj
ek′
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On simplifie et on réarrange les termes :

∀i, k ωk′

i′ =
∂xj

∂xi′

∂xk′

∂xl
ωj

l +
∂xk′

∂xj
d

(
∂xj

∂xi′

)

Γk′

i′m′ dxm′

=
∂xj

∂xi′

∂xk′

∂xl
Γl

jn dxn +
∂xk′

∂xj

∂2xj

∂xm′∂xi′
dxm′

=
∂xj

∂xi′

∂xk′

∂xl
Γl

jn

∂xn

∂xm′
dxm′

+
∂xk′

∂xj

∂2xj

∂xm′ ∂xi′
dxm′

∀i, k, m Γk′

i′m′ =
∂xj

∂xi′

∂xk′

∂xl

∂xn

∂xm′
Γl

jn +
∂xk′

∂xj

∂2xj

∂xm′∂xi′

Les symboles de Christoffel ne sont pas des tenseurs à cause de la présence du second terme du
membre de droite. De même, en inversant le rôle des variables, ∀i, k, m :

Γk
im =

∂xj′

∂xi

∂xk

∂xl′

∂xn′

∂xm
Γl′

j′n′ +
∂xk

∂xj′

∂2xj′

∂xm∂xi
(133)

Le second terme du membre de droite étant symétrique par rapport aux indices i et m nous
pouvons le supprimer pour former le tenseur

Sk
im = Γk

im − Γk
mi

=
∂xj′

∂xi

∂xk

∂xl′

∂xn′

∂xm
Sl′

j′n′

appelé tenseur de torsion de l’espace.

21.5 Dérivée ordinaire le long d’une courbe

Dans un espace ponctuel En rapporté au système de coordonnées (xi), soit une courbe
C (λ) d’équations paramétriques xi = xi(λ). Une variation infinitésimale dλ du paramètre fait
passer d’un point de la courbe à un autre point de la courbe infiniment proche. Soit un champ
de vecteurs u[ui(xj(λ))] défini le long de C . Dérivons par rapport au paramètre λ la loi de
transformation par changement de base naturelle des composantes contravariantes de ce champ
de vecteurs le long de la courbe C (λ) :

∀i ui′

= uj ∂xi′

∂xj

∀i
dui′

dλ
=

duj

dλ

∂xi′

∂xj
+ uj d

dλ

[
∂xi′

∂xj
(xk)

]

=
duj

dλ

∂xi′

∂xj
+ uj ∂2xi′

∂xk∂xj

dxk

dλ

La dérivée de u le long de la courbe n’est pas un tenseur à cause de la présence du second
membre. Si les xi′

sont des fonctions affines des xj alors ∂2
kjx

i′

= 0, mais pour être un tenseur
la relation de transformation doit être valable quel que soit le changement de coordonnées.

Soit t(s) = dx/ds le champ de vecteurs tangents le long de la courbe C (s) de paramètre
l’abscisse curviligne s. La courbure de C (s) est le taux de variation du vecteur tangent en
fonction de la distance :

κ =

∥∥∥∥∥
dt
ds

∥∥∥∥∥
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dt/ds n’étant pas un tenseur, la courbure ne sera pas invariante si l’on passe en coordonnées
curvilignes. Or la courbure est une notion intrinsèque, indépendante du système de coordonnées.
Il faut donc redéfinir la dérivation des vecteurs, donc des tenseurs.

21.6 Dérivée partielle ordinaire

Dans un espace ponctuel En rapporté à un système de coordonnées (xk), soit un vecteur
u (ui). La dérivation partielle ordinaire par rapport aux coordonnées de la loi de transformation
des composantes contravariantes de ce vecteur s’écrit :

∀i ui′

= uk ∂xi′

∂xk

∀i, j
∂ui′

∂xj′
=

∂

∂xj′

(
uk ∂xi′

∂xk

)

∂j′ui′

=
∂

∂xl

(
uk ∂xi′

∂xk

)
∂xl

∂xj′

=
∂uk

∂xl

∂xi′

∂xk

∂xl

∂xj′
+ uk ∂2xi′

∂xl∂xk

∂xl

∂xj′

∂j′ui′

n’est pas un tenseur à cause de la présence du second membre.

De même pour les composantes covariantes d’un vecteur u (ui) :

∀i ui′ = uk
∂xk

∂xi′

∀i, j
∂ui′

∂xj′
=

∂

∂xj′

(
uk

∂xk

∂xi′

)

∂j′ui′ =
∂

∂xl

(
uk

∂xk

∂xi′

)
∂xl

∂xj′

=
∂uk

∂xl

∂xk

∂xi′

∂xl

∂xj′
+ uk

∂2xk

∂xl∂xi′

∂xl

∂xj′

∂j′ui′ n’est pas un tenseur à cause de la présence du second membre.

21.7 Différentielle absolue d’un vecteur

21.7.1 Vecteur en composantes contravariantes

Dans un espace ponctuel En rapporté à un système de coordonnées (xi), soit un champ de
vecteurs u(ui). Lorsque l’on passe d’un point à un point infiniment proche, les composantes
contravariantes ui du vecteur u changent, ainsi que le repère naturel (ei). Avec les relations
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(112) p. 222, et (113) p. 222 :

u = uiei

= ui(xk)ei(xk)

du = duiei + uidei

= duiei + uiωj
iej

=
(
dui + ujωi

j

)
ei

=
(
∂ju

idxj + ukΓi
kj dxj

)
ei

=
(
∂ju

i + ukΓi
kj

)
dxjei (134)

= Duiei

Définition 21.7.1. du est le vecteur différentielle absolue du vecteur u.

Définition 21.7.2. Les Dui sont les composantes contravariantes du vecteur différentielle
absolue du, appelées différentielles absolues des composantes contravariantes ui.

Remarque 36. Les dui ne sont pas les composantes contravariantes d’un vecteur.

Remarque 37. Les ∂jui ne sont pas les composantes mixtes d’un tenseur d’ordre deux.

Remarque 38. Nous avons deux façons d’écrire le vecteur final u + du :

u + du = ui
ei + dui

ei + uidei

= ui (ei + dei) + dui
ei

et,

u + du =
(
ui + dui

)
ei + uidei

=
(
ui + dui + ujωi

j

)
ei

21.7.2 Vecteur en composantes covariantes

Dans un espace ponctuel En, soit v(vi) un champ de vecteurs uniforme et arbitraire. Avec
les relations (112) p. 222 :

v = cste

d
(
viei

)
= 0

dvjej + vjdej = 0
(
dvj + viωj

i

)
ej = 0

∀j dvj = −viωj
i
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Soit u un champ de vecteurs de composantes covariantes ui. Avec les relations (113) p. 222,
leur produit scalaire donne :

u · v = uiv
i

d (u · v) = d
(
uiv

i
)

du · v + u · dv = vidui + ujdvj

du · v = vidui + ujdvj

du · eiv
i =

(
dui − ujω

j
i

)
vi

∀i du · ei = dui − ujω
j
i

=
(
∂ju

i − ukΓk
ij

)
dxj

= Dui

Définition 21.7.3. Les Dui sont les composantes covariantes du vecteur différentielle
absolue du, appelées différentielles absolues des composantes covariantes ui.

Remarque 39. Les dui ne sont pas les composantes covariantes d’un vecteur.

Remarque 40. Les ∂jui ne sont pas les composantes covariantes d’un tenseur d’ordre deux.

21.8 Dérivée covariante d’un vecteur

21.8.1 Vecteur en composantes contravariantes

La dérivée d’un vecteur est la dérivée de ses composantes et des vecteurs de base. Avec les
relations (115) p. 222,

∀j ∂ju = ∂j

(
uiei

)

= ei∂ju
i + uk∂jek

=
(
∂ju

i + ukΓi
kj

)
ei

= ∇ju
iei

Définition 21.8.1. Les ∇ju
i sont les composantes mixtes du vecteur dérivée ∂ju, appelées

dérivées covariantes des composantes contravariantes du vecteur u ou dérivée covariante
du vecteur u.
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Notation 25. Nous emploierons également les notations suivantes :

∀i, j ui
; j , ∂jui + ukΓi

jk

∀i, j Djui , ∂jui + ukΓi
jk

Avec les relations (134) p. 233 :

∀i Dui = ∇ju
i dxj (135)

D’après la définition 21.7.2 p. 233 des Dui, les ∇ju
i dxj sont les composantes contravariantes

du vecteur différentielle absolue du. D’après la relation (10) p. 29, les dxj sont les composantes
contravariantes d’un vecteur. Par conséquent les ∇ju

i sont les composantes mixtes d’un tenseur
d’ordre deux.

21.8.2 Vecteur en composantes covariantes

Dans un espace ponctuel En, soit v un champ de vecteurs uniforme et arbitraire, de com-
posantes contravariantes vi :

v = cste

∀j ∂j

(
viei

)
= 0

∀j ei∂jv
i + vk∂jek = 0

∀j
(
∂jv

i + vkΓi
kj

)
ei = 0

∀i, j ∂jv
i = −vkΓi

kj

Soit u un champ de vecteurs de composantes covariantes ui. Leur produit scalaire donne :

u · v = uiv
i

∀j ∂j (u · v) = ∂j

(
uiv

i
)

∀j ∂ju · v + u · ∂jv = vi∂jui + ui∂jv
i

∀j ∂ju · v = vi∂jui − uiv
kΓi

kj

∀j ∂ju · viei =
(
∂jui − ukΓk

ij

)
vi

∀i, j ∂ju · ei = ∂jui − ukΓk
ij

= ∇jui

Définition 21.8.2. Les ∇jui sont les composantes covariantes du vecteur dérivée ∂ju,
appelées dérivées covariantes des composantes covariantes du vecteur u, ou dérivée cova-
riante du covecteur ũ.

Notation 26. Nous emploierons également la notation suivante :

∀i, j ui ; j , ∂jui − ukΓk
ij

Avec la définition 21.7.3 p. 234 :

∀i Dui = ∇jui dxj

D’après la définition 21.7.3 p. 234 des Dui, les ∇jui dxj sont les composantes covariantes du
vecteur différentielle absolue du. D’après la relation (10) p. 29, les dxj sont les composantes
contravariantes d’un vecteur. Par conséquent, les quantités ∇jui sont les composantes deux fois
covariantes d’un tenseur d’ordre deux.
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Résumé du passage des coordonnées rectilignes aux coordonnées curvilignes :

du = ∂ju
i dxjei → du = ∇ju

i dxjei

du = ∂jui dxjei → du = ∇jui dxjei

21.9 Dérivée absolue le long d’une courbe

Dans un espace ponctuel En rapporté à un système de coordonnées (xi), soit C (λ) une
courbe d’équation paramétrique xi = xi(λ). Soit un champ de vecteurs u[ui(xj(λ))] défini le
long de C (λ). À partir des relations (134) p. 233, on définit la dérivée absolue par rapport au
paramètre λ du champ de vecteurs u le long de la courbe C (λ), par :

∀i
Dui

dλ
,

dui

dλ
+ ukΓi

kj

dxj

dλ
(136)

Il s’agit en fait de la multiplication contractée du tenseur ∇ju
i avec le vecteur dxj/dλ tangent

à C (λ). En effet :

∀i ∇ju
i dxj

dλ
=

(
∂ui

∂xj
+ ukΓi

kj

)
dxj

dλ

=
dui

dλ
+ ukΓi

kj

dxj

dλ

21.9.1 Vecteur accélération d’un point mobile

Dans l’espace ponctuel En, considérons un point mobile M dont les coordonnées curvilignes
(xi) sont fonction du temps, M(xi(t)). Le vecteur position est particulier, il s’écrit

OM(t) = xi(t)ei

où ei n’est jamais fonction du temps. Il relie l’origine de l’ancien repère à l’origine du nouveau
repère, et n’est exprimé que dans l’ancienne base. Par conséquent, dans la base naturelle locale
(ei), sa différentielle est donnée par la relation (10) p. 29

dM = dxiei

et non par la définition 21.7.2 p. 233. Le vecteur vitesse a alors pour expression :

v ,
dM

dt

viei =
dxiei

dt

∀i vi = ẋi (137)
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Notation 27. Le point est l’opérateur de dérivation totale par rapport au temps.

Le vecteur accélération a pour expression :

γ , v̇

γi ei =
Dvi

dt
ei

∀i γi =
Dvi

dt

Avec la définition 21.7.3 p. 234 :

∀i γi = v̇i + Γi
jkvjvk (138)

Remarque 41. Le vecteur dérivée absolue d’un vecteur le long d’une courbe est unique. En effet,
supposons qu’il y en ait deux, alors en coordonnées rectilignes ou les symboles de Christoffel sont nuls,
nous aurions :

Du

dλ
=

du

dλ
et

δu

δλ
=

du

dλ
implique

Du

dλ
=

δu

δλ
Or d’après le paragraphe 20.10 p. 212, une équation tensorielle valable dans un système de coordonnées
est valable dans tout système de coordonnées.

Exemple 21.9.1. Une particule se déplace d’un mouvement circulaire uniforme ayant
pour équations en coordonnées polaires ρ = cste, θ = ωt. Cherchons l’expression de son
accélération. En se servant des symboles de Christoffel calculés dans l’exemple 21.4.3
p. 227 : 




γρ = ρ̈ + Γρ
θθθ̇θ̇

γθ = θ̈ + Γθ
θρθ̇ρ̇

⇒




γρ = −ρθ̇2 = −ρω2

γθ = 0
D’après la définition 11.6.1 p. 94 de la norme d’un vecteur :

γ2 = γ · γ

= γiei · γjej

γ =
√

gijγiγj

=
√

gρργργρ

= ρω2

21.10 Géodésiques de l’espace euclidien

L’accélération du point M est nulle ssi sa trajectoire est une géodésique de En. La trajec-
toire à accélération nulle est invariante par changement de coordonnées. Les géodésiques sont
donc indépendantes du choix du système de coordonnées, dans les espaces euclidiens et non-
euclidiens. D’après (137) et (138) p. 236, les coordonnées xi(t) d’une géodésique de En sont
solutions du système d’équations différentielles :

∀i = 1, . . . , n ẍi + Γi
kjẋ

kẋj = 0 (139)
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Une géodésique est complètement déterminée par un point et sa tangente en ce point. Soit u
le vecteur unitaire tangent à la trajectoire du point M et s l’abscisse curviligne. On le définit
à partir du vecteur vitesse,

v =
dM

dt

=
dM

ds

ds

dt
= uv

où l’on a posé :

u ,
dM

ds
(140)

Le vecteur u est unitaire puisque

u = v/v

Il a pour composantes :

∀i ui =
dxi

ds

Adoptons comme paramètre indépendant à la place du temps, l’abscisse curviligne s du point
M le long de la géodésique de En, comptée à partir d’une origine fixe. Le système d’équations
différentielles (139) devient

∀i = 1, . . . , n
dui

ds
+ Γi

kj ukuj = 0 (141)

où u est le vecteur unitaire tangent porté par la géodésique.

21.10.1 Exemples

Exemple 21.10.1. En coordonnées rectilignes, donc dans un espace euclidien ou pseudo-
euclidien, les gij étant constants les symboles de Christoffel sont nuls. Le système d’équa-
tions différentielles (139) s’écrit :

∀i
d2xi

ds2
= 0

∀i
dxi

ds
= ai

∀i xi = ais + bi

Dans l’espace ponctuel euclidien E2 (le plan) rattaché au système de coordonnées recti-
lignes (x, y) :

{
x = a1s + b1

y = a2s + b2
⇒





s = (x − b1)/a1

y =
a2

a1
x + b2 − a2

a1
b1

⇒ y = ax + b

Exemple 21.10.2. La droite verticale d’équation x = a dans un système rectangulaire a
pour équation polaire ρ = a/ cos(θ). Montrons que cette équation vérifie l’équation (141).
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Paramétrons l’équation de la droite :
{

ρ = a/ cos(λ)

θ = λ

Avec la relation (110) p. 215 :

ds

dλ
=

√

gij
dxi

dλ

dxj

dλ

=
√

ρ′2 + ρ2θ′2

Le long de la droite :

ds

dλ
=

√√√√
[

d

dλ

(
a

cos(λ)

)]2

+

(
a

cos(λ)

)2 (
dλ

dλ

)2

= |a|
√√√√ sin2 λ

cos4 λ
+

1
cos2(λ)

= |a|/ cos2(λ)

dλ

ds
= cos2(λ)/|a|

Ainsi, pour toute fonction x(λ) le long de la droite :

dx(λ)
ds

=
dx

dλ

dλ

ds

=
cos2(λ)

|a|
dx

dλ

d2x(λ)
ds2

=
d

dλ

(
cos2(λ)

|a|
dx

dλ

)
dλ

ds

=

(
−2 cos(λ) sin(λ)

|a|
dx

dλ
+

cos2(λ)
|a|

d2x

dλ2

)
cos2(λ)

|a|

=
cos4(λ)

a2

d2x

dλ2
− 2 sin(λ) cos3(λ)

a2

dx

dλ
L’équation de droite pour ρ(λ) s’écrit :

d2ρ

ds2
+ Γρ

θθ

dθ

ds

dθ

ds
=

cos4(λ)
a2

d2ρ

d(λ)2
− 2 sin(λ) cos3(λ)

a2

dρ

dλ
+ (−ρ)

cos4(λ)
a2

(
dθ

dλ

)2

=
cos4(λ)

a2

(
ρ′′ − 2ρ′ tan(λ) − ρθ′2

)

=
cos4(λ)

a2

(
a cos3(λ) + 2a sin2(λ) cos(λ)

cos4(λ)
− 2a sin(λ)

cos2(λ)
tan(λ) − a

cos(λ)

)

= 0
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De même, l’équation de droite pour θ(λ) s’écrit :

d2θ

ds2
+ Γθ

ρθ

dρ

ds

dθ

ds
=

cos4(λ)
a2

d2θ

d(λ)2
− 2 sin(λ) cos3(λ)

a2

dθ

dλ
+

2
ρ

cos4(λ)
a2

dρ

dλ

dθ

dλ

=
cos4(λ)

a2

(
θ′′ − 2θ′ tan(λ) +

2ρ′θ′

ρ

)

=
cos4(λ)

a2

(
−2 tan(λ) +

2a sin(λ) cos(λ)
a cos2(λ)

)

= 0

21.11 Différentielle absolue d’un tenseur

Les considérations du paragraphe 21.7 p. 232 sur la différentielle absolue d’un vecteur
s’étendent à un champ de tenseur. Soit En un espace ponctuel euclidien rapporté à un sys-
tème de coordonnées curvilignes (xi). Soit un champ de tenseurs T d’ordre trois, deux fois
covariant et une fois contravariant, de composantes t k

ij :

T = t k
ij ei ⊗ ej ⊗ ek

Lorsque l’on passe d’un point à un point infiniment proche, les composantes t k
ij du tenseur T

changent, ainsi que le repère naturel ei ⊗ ej ⊗ ek :

dT = d
(
t k
ij ei ⊗ ej ⊗ ek

)

= dt k
ij

(
ei ⊗ ej ⊗ ek

)
+ t k

ij d
(
ei ⊗ ej ⊗ ek

)

Définition 21.11.1. Différentielle absolue d’un tenseur
dT est le tenseur différentielle absolue du tenseur T.

Définition 21.11.2. Différentielles absolues des composantes d’un tenseur
Les Dt k

ij sont les composantes du tenseur différentielle absolue dT.

dT , Dt k
ij ei ⊗ ej ⊗ ek

Pour trouver l’expression des Dt k
ij nous utilisons la commutativité de la contraction et de

la différentiation.

(1) La multiplication tensorielle de T avec trois champs de vecteurs uniformes donne :

T ⊗ u ⊗ v ⊗ w = t k
ij ulvmwn ei ⊗ ej ⊗ ek ⊗ el ⊗ em ⊗ en

où le champ de vecteur w est exprimé en composantes covariantes. La contraction
complète de ce produit tensoriel (i = l, j = m, k = n) donne le scalaire

t k
ij uivjwk
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Différentions ce scalaire pour un déplacement infiniment petit :

d(t k
ij uivjwk) = dt k

ij uivjwk + t k
ij duivjwk + t k

ij uidvjwk + t k
ij uivjdwk

Les champs de vecteurs étant uniformes, leurs différentielles absolues sont nulles et les
définitions 21.7.2 p. 233 et 21.7.3 p. 234 donnent

∀i dui = −ulωi
l ; ∀j dvj = −vlωj

l ; ∀k dwk = wlω
l
k

d(t k
ij uivjwk) = dt k

ij uivjwk − t k
ij ulωi

lv
jwk − t k

ij uivlωj
lwk + t k

ij uivjwlω
l
k

= dt k
ij uivjwk − t k

lj uiωl
iv

jwk − t k
il uivjωl

jwk + t l
ij uivjwkωk

l

=
(
dt k

ij − t k
lj ωl

i − t k
il ωl

j + t l
ij ωk

l

)
uivjwk

(2) Les champs de vecteurs étant uniformes, différentions le produit tensoriel :

d(T ⊗ u ⊗ v ⊗ w) = d
(
t k
ij ulvmwn ei ⊗ ej ⊗ ek ⊗ el ⊗ em ⊗ en

)

=
(
Dt k

ij ulvmwn + t k
ij Dulvmwn + t k

ij ulDvmwn + t k
ij ulvmDwn

)
ei ⊗ ej ⊗ ek ⊗ el ⊗ em ⊗ en

= Dt k
ij ulvmwn ei ⊗ ej ⊗ ek ⊗ el ⊗ em ⊗ en

Si nous contractons complètement ce produit tensoriel nous avons :

Dt k
ij uivjwk =

(
dt k

ij − t k
lj ωl

i − t k
il ωl

j + t l
ij ωk

l

)
uivjwk

∀i, j, k Dt k
ij = dt k

ij − t k
lj ωl

i − t k
il ωl

j + t l
ij ωk

l (142)

21.12 Dérivée covariante d’un tenseur

À partir des relations (142) :

∀i, j, k Dt k
ij = ∂mt k

ij dxm − t k
lj Γl

im dxm − t k
il Γl

jm dxm + t l
ij Γk

lm dxm

=
(
∂mt k

ij − t k
lj Γl

im − t k
il Γl

jm + t l
ij Γk

lm

)
dxm

= ∇mt k
ij dxm

Définition 21.12.1. Dérivée covariante d’un tenseur
Les composantes du tenseur dérivée covariante du tenseur T s’écrivent

∇mt k
ij = ∂mt k

ij − t k
lj Γl

im − t k
il Γl

jm + t l
ij Γk

lm

21.13 Théorème de Ricci

Théorème 21.13.1. Théorème de Ricci
La différentielle absolue du tenseur fondamental est nulle :

∀i, j Dgij = 0
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Démonstration. Appliquons les relations (142) p. 241 à un tenseur deux fois covariant,
et utilisons (122) p. 224 :

∀i, j Dgij = dgij − ωk
jgik − ωk

igjk

= ωk
jgik + ωk

igjk − ωk
jgik − ωk

igjk

= 0

�

Par conséquent la dérivée covariante du tenseur métrique est nulle :

∀i, j Dgij = 0

∇kgijdxk = 0

∀i, j, k ∇kgij = 0 (143)

Le tenseur métrique se comporte comme une constante vis à vis de la dérivation covariante.
La dérivation covariante des symboles de Kronecker est nulle. En effet :

∀j tiδj
i = tj

∀j, k ∇ktiδj
i + ti∇kδj

i = ∇ktj

∇ktj + ti∇kδj
i = ∇ktj

∀i, j, k ∇kδj
i = 0

Nous avons alors :

∀j, l glig
ij = δj

l

∀j, k, l ∇kglig
ij + gli∇kgij = ∇kδj

l

∀i, j, k ∇kgij = 0

∀i, j Dgij = 0 (144)

Par conséquent la dérivée covariante et la montée-descente des indices commutent :

∀i, j, k ∇kti
j = ∇k

(
giltlj

)

= gil∇ktlj

21.13.1 Identités de Ricci

À partir des relations (122) p. 224 :

∀i, j dgij = ωk
jgik + ωk

igjk

∂hgij dxh = Γk
jh gikdxh + Γk

ih gjkdxh

∀h, i, j ∂hgij = gik Γk
jh + gjk Γk

ih (145)

Ces relations constituent les identités de Ricci.
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21.14 Opérateurs différentiels

21.14.1 Gradient d’un champ de scalaires

Le gradient est défini au paragraphe 18 p. 151 :

∀i ∂iφ , grad φ · ei

21.14.2 Divergence d’un champ de vecteurs

Soit un champ de vecteurs u de composantes contravariantes ui. Par contraction du tenseur
dérivée covariante ∇ju

i on obtient le scalaire

div u , ∇iu
i (146)

appelé divergence du champ de vecteurs u. En se servant de la définition 21.8.1 p. 234 de la
dérivée covariante puis des symboles de Christoffel contractés, relation (129) p. 226 :

div u , ∂iu
i + uj Γi

ji

= ∂iu
i +

uj

√
|g|

∂j

√
|g|

div u =
1√
|g|

∂i

(
ui
√

|g|
)

(147)

Dans un système de coordonnées rectilignes les symboles de Christoffel sont nuls :

div u = ∂iu
i (148)

21.14.3 Divergence d’un champ de tenseurs

(1) Dans le cas d’un champ de tenseur 2 fois contravariant, d’après la définition de la
dérivée covariante 21.12.1 p. 241 d’un tenseur :

∇ktij = ∂ktij + tlj Γi
lk + til Γj

kl

∇it
ij = ∂it

ij + tlj Γi
li + til Γj

il

Si le tenseur est antisymétrique til = −tli, alors le dernier terme est nul car :

til Γj
il = tli Γj

li

= −til Γj
il

= 0

Il reste :

∇it
ij = ∂it

ij + tlj Γi
li

= ∂it
ij +

1√
|g|

∂l

√
|g|

=
1√
|g|

∂i

(
tij
√

|g|
)
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(2) Dans le cas d’un champ de tenseur mixte d’ordre deux :

∇kti
j = ∂kti

j + tl
j Γi

lk − ti
l Γl

kj

∇it
i
j = ∂it

i
j + tl

j Γi
li − ti

l Γl
ij

=
1√
|g|

∂l

(
tl

j

√
|g|
)

− ti
l Γl

ij

=
1√
|g|

∂l

(
tl

j

√
|g|
)

− 1
2

ti
l glh (ghi,j + gjh,i − gij,h)

=
1√
|g|

∂l

(
tl

j

√
|g|
)

− 1
2

tih (ghi,j + gjh,i − gij,h)

Si le tenseur est symétrique tih = tih alors :

tihgjh,i = thigji,h

= tihgji,h

∇it
i
j =

1√
|g|

∂i

(
ti
j

√
|g|
)

− 1
2

tih ghi,j

21.14.4 Rotationnel d’un champ de vecteurs

Soit un champ de vecteurs u de composantes covariantes ui. D’après la définition 21.8.2
p. 235, le tenseur dérivée covariante ∇jui s’écrit :

∀i, j ∇jui = ∂jui − uk Γi
kj

En échangeant les indices j et i, et en utilisant la symétrie des symboles de Christoffel par
rapport à leurs indices inférieurs :

∀i, j ∇iuj = ∂iuj − uk Γi
kj

si bien que :

∀i, j ∇jui − ∇iuj = ∂jui − ∂iuj

D’après le paragraphe 20.9.1 p. 206, la soustraction de deux tenseurs est un tenseur, par consé-
quent les quantités,

∀i, j rotiju , ∂jui − ∂iuj

sont les composantes covariantes d’un tenseur d’ordre deux

rot u = (∂jui − ∂iuj) ei ⊗ ej

antisymétrique

rotiju = −rotjiu

appelé rotationnel du vecteur u.



Espace euclidien en coordonnées curvilignes 245

Espace de dimension 3

Un tenseur antisymétrique d’ordre n possède n2 composantes, dont n(n − 1)/2 sont diffé-
rentes. Dans le cas d’un espace à trois dimensions, et seulement dans ce cas, 3(3 − 1)/2 = 3, le
nombres de composantes « strictes » du tenseur est égal à la dimension de l’espace :

rot u =




0 u1,2 − u2,1 u1,3 − u3,1

−(u1,2 − u2,1) 0 u2,3 − u3,2

−(u1,3 − u3,1) −(u2,3 − u3,2) 0




À tout tenseur antisymétrique on peut adjoindre un vecteur ayant pour composantes les com-
posantes strictes du tenseur.

rot u =




u3,2 − u2,3

u1,3 − u3,1

u2,1 − u1,2




est appelé vecteur rotationnel.

Exemple 21.14.1. Dans le système de coordonnées rectangulaires (x, y, z) de l’espace
euclidien E3 :

rot u =




∂yuz − ∂zuy

∂zux − ∂xuz

∂xuy − ∂yux




21.14.5 Laplacien d’un champ de scalaires

Soit φ une fonction scalaire des coordonnées curvilignes. On appelle laplacien de φ le sca-
laire :

△φ = div grad φ

La divergence étant définie avec les composantes contravariantes du vecteur, nous avons :

△φ = ∇i

(
gijφ,j

)

= gij∇i (φ,j)

Avec la définition 21.8.2 p. 235 :

△φ = gij
(
∂ijφ − Γi

kj φ,k

)

Avec la relation (147) p. 243 nous avons aussi :

△φ = ∇i

(
gijφ,j

)

△φ =
1√
|g|

∂i

(√
|g|gijφ,j

)

Pour un système de coordonnées rectangulaire, g = 1 et gij = δij :

△φ =
∑

i

∂iiφ
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21.15 Dérivée covariante seconde d’un vecteur

21.15.1 Vecteur en composantes contravariantes

Soit v un vecteur de composantes contravariantes vi, d’après la définition 21.8.1 p. 234 sa
dérivée covariante est un tenseur mixte de composantes :

∀i, j ∇jv
i , vi

,j + vk Γi
kj

La définition 21.12.1 p. 241 de la dérivation covariante d’un tenseur mixte,

∀i, k, l ∇lt
i
k = ∂lt

i
k − ti

h Γh
kl + th

k Γi
hl

nous donne :

∇l

(
∇kvi

)
= ∂l∇kvi − ∇hvi Γh

kl + ∇kvh Γi
hl

= ∂l

(
vi

,k + vjΓi
jk

)
−
(
∂hvi + vjΓi

jh

)
Γh

kl +
(
∂kvh + vjΓh

jk

)
Γi

hl

= ∂lkvi + vj∂lΓi
jk + Γi

jk ∂lv
j − Γh

kl ∂hvi − vj Γi
jh Γh

kl + Γi
hl ∂kvh + vj Γh

jk Γi
hl

(149)

21.15.2 Vecteur en composantes covariantes

Soit vecteur v de composantes covariantes vi, d’après la définition 21.8.2 p. 235, sa dérivée
covariante est un tenseur deux fois covariant de composantes :

∀i, k ∇kvi , ∂kvi − vjΓi
jk

La définition 21.12.1 p. 241 de la dérivation covariante d’un tenseur deux fois covariant,

∀i, k, m ∇mtik = ∂mtik − tlk Γl
im − til Γl

km

nous donne :

∇m (∇kvi) = ∂m∇kvi − ∇lvi Γl
km − ∇kvl Γl

im

= ∂m

(
∂kvi − vjΓi

jk

)
−
(
∂lvi − vjΓ

j
il

)
Γl

km −
(
∂kvl − vjΓ

j
lk

)
Γl

im

= ∂mkvi − vj∂mΓi
jk − Γi

jk ∂mvj − Γl
km ∂lvi + vj Γj

il Γl
km − Γl

im ∂kvl + vj Γj
lk Γl

im

21.16 Règles de dérivation des tenseurs

21.16.1 Dérivée covariante

Dérivée covariante,

de la somme : ∇k (T + S) = ∇kT + ∇kS

de la multiplication tensorielle : ∇k [TS] = [∇kTS] + [T∇kS]

de la multiplication tensorielle contractée : ∇k (TS) = ∇kTS + T∇kS
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21.16.2 Différentielle absolue

Différentielle absolue,

de la somme : D (T + S) = DT + DS

de la multiplication tensorielle : D [TS] = [DT S] + [T DS]

de la multiplication contractée : D (TS) = DT S + T DS

Exemple 21.16.1. Dérivée covariante de la somme de deux tenseurs :

∀i, k ∇kti + ∇ksi = ∂kti + tjΓi
jk + ∂ksi + sjΓi

jk

= ∂k

(
ti + si

)
+
(
tj + sj

)
Γi

jk

= ∇k

(
ti + si

)

Exemple 21.16.2. Dérivée covariante de la multiplication tensorielle de deux tenseurs.
Soient ti

j et si
j les composantes de deux tenseurs mixtes d’ordre deux, de produit tensoriel

upq
rs = tp

rs
q
s :

∀k, p, q, r, s upq
rs ; k = upq

rs,k + Γp
tkutq

rs + Γq
tkupt

rs − Γt
rkupq

ts − Γt
skupq

rt

=
(
tp
r,ksq

s + tp
rsq

s,k

)
+ Γp

tkutq
rs + Γq

tkupt
rs − Γt

rkupq
ts − Γt

skupq
rt

=
(
tp
r,k + Γp

tktt
r − Γt

rktp
t

)
sq

s + tp
r

(
sq

s,k + Γq
tkst

s − Γt
sksq

t

)

= tp
r ; ksq

s + tp
rs

q
s ; k

Exemple 21.16.3. La contraction des indices et la dérivée covariante commutent :

∀i, j, l rij
k ; l δk

j =
(
rij

k,l + Γi
tlr

tj
k + Γj

tlr
it
k − Γt

klr
ij
t

)
δk

j

= rij
j,l + Γi

tlr
tj
j + Γj

tlr
it
j − Γt

jlr
ij
t

= rij
j,l + Γi

tlr
tj
j

= rij
j ; l

Nous en déduisons la loi de dérivation covariante de la multiplication contractée, la
contraction étant effectuée à la fin.

Exemple 21.16.4. Dérivée absolue de la multiplication tensorielle. Soit une courbe
d’équation paramétrique x = x(λ), et soient T [x(λ)] et S [x(λ)] deux tenseurs définis
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sur cette courbe :
D

dλ
[TS] = ∇k [TS]

dxk

dλ

= {[∇kTS] + [T∇kS]} dxk

dλ

=

[
∇kT

dxk

dλ
S

]
+

[
T∇kS

dxk

dλ

]

=
[
DT
dλ

S
]

+
[
T

DS
dλ

]



22
Gravitation non relativiste

22.1 Force, champ, potentiel

Dans la théorie newtonienne de la gravitation, le modèle de Hooke de force de gravitation
en inverse du carré de la distance s’exerçant entre deux corps de masse M et m s’écrit :

FM→m = − GMm

‖rm − rM‖3
(rm − rM)

= −GMm

r2
er

où r est la distance entre les deux masses, rer est le rayon vecteur de M vers m, et où la
constante de proportionnalité G est appelée constante d’attraction gravitationnelle. Le signe
négatif indique que la force de gravitation est attractive.

M m
rer

F M→m

Fig. 22.1 – Signe de la force de gravitation

À partir de la force exercée en un point de l’espace (de masse m), on définit un champ de
force exercé dans tout l’espace (donc indépendant de m).

Définition 22.1.1. Modèle de champ de force
Le modèle du champ de gravitation créé par la masse M à une distance quelconque r a
pour expression :

gM , −GM

r2
er (150)

où le rayon vecteur rer à pour origine M , et le signe négatif indique que le champ est
dirigé vers M .
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D’où la relation entre force gravitationnelle et champ de force gravitationnel :

FM→m = m gM (151)

Définition 22.1.2. Potentiel scalaire d’un champ vectoriel
La fonction scalaire f est dite potentielle du champ vectoriel A ssi :

A , − grad f

Réciproquement, nous dirons que le champ vectoriel A dérive du champ de scalaires f .

Exemple 22.1.1. En coordonnées rectangulaires, cylindriques et sphériques, le gradient
du vecteur A s’écrit respectivement :

xAi + yAj + zAk = −
(

∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k

)

ρAeρ + θAeθ + zAez = −
(

∂f

∂ρ
eρ +

1

ρ

∂f

∂θ
eθ +

∂f

∂z
ez

)

rAer + θAeθ + φAeφ = −
(

∂f

∂r
er +

1

r

∂f

∂θ
eθ +

1

r sin(θ)

∂f

∂φ
eφ

)

En partant de la définition précédente :

Définition 22.1.3. Potentiel du champ gravitationnel
φ est le modèle de potentiel scalaire du champ gravitationnel g ssi

g , − grad φ

Réciproquement, nous dirons que le champ g dérive du potentiel de champ φ.

Un champ est conservatif s’il dérive d’un potentiel. Le champ de gravitation est conserva-
tif, il dérive du potentiel de champ φ appelé potentiel newtonien. En coordonnées sphériques
(r, θ, φ) :

ger = −∂φ

∂r
er

g = −∂φ

∂r
ˆ B

A

g dr = − (φB − φA)

La définition 22.1.1 p. 249 donne l’expression du modèle du champ gravitationnel créé par une
masse M , on en déduit le modèle de potentiel du champ gravitationnel :

− (φB − φA) = −
ˆ B

A

GM

r2
dr

φA − φB =

[
GM

r

]B

A

φ = −GM

r
(152)
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Définition 22.1.4. Potentiel de la force gravitationnelle
Ep est le modèle de potentiel scalaire de la force gravitationnelle F ssi

F , − grad Ep

Réciproquement, la force de gravitation F dérive du potentiel de force Ep, appelé énergie
potentielle de gravitation.

En partant de la définition précédente, en coordonnées sphériques (r, θ, φ) :

F = − grad Ep

Fer = −∂Ep

∂r
er

F = −∂Ep

∂r

Ep = −
ˆ

F dr

= −
ˆ

−GMm

r2
dr

Ep = −GMm

r

Le potentiel de force et le potentiel de champ sont liés par la même relation ((151) p. 250) qui
lie force et champ :

Ep = mφ

22.2 Champ de gravitation dû à une sphére homogène

Soit une masse uniformément répartie sur la surface d’une sphère creuse de rayon a. Cal-
culons l’intensité du champ de gravitation en un point P extérieur à la sphère. Découpons la
sphère en bandes circulaires de rayon a sin(θ) et de largeur adθ où θ est la latitude.

θ

P

R

a

r

Fig. 22.2 – Champ de gravitation en P
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L’aire infinitésimale d’une bande vaut

ds = 2πa sin(θ) × adθ

= 2πa2 sin(θ)dθ

Soit m la masse de la sphère et ρ sa densité. La masse infinitésimale d’une bande vaut

dm = ρds

=
m

4πa2
× 2πa2 sin(θ)dθ

= 1
2

m sin(θ)dθ

Soit R la distance du point P à la bande, le champ de gravitation infinitésimal produit par
cette bande en un point P s’écrit :

dgm = −Gm sin(θ)dθ

2R2
er

Plutôt que d’effectuer la difficile intégration du champ vectoriel de gravitation, nous allons
intégrer le champ scalaire du potentiel grâce à la relation (152) p. 250, puis nous reviendrons
au champ de gravitation :

dV = −G dm

R

= −Gm sin(θ)dθ

2R

Soit r la distance du point P au centre de la sphère. Différentions la loi des cosinus :

R2 = a2 + r2 − 2ar cos(θ)

2RdR = 2ar sin(θ)dθ

RdR

ar
= sin(θ)dθ

si bien que

dV = −GmdR

2ar

Intégrons sur la surface totale de la sphère. Quand P est en dehors de la sphère r > a, R varie
de r + a à r − a :

V = −Gm

2ar

ˆ r+a

r−a

dR

= −Gm

2ar
2a

= −Gm

r

Quand P est dans la sphère r < a, R varie de a + r à a − r :

V = −Gm

2ar

ˆ a−r

a+r

dR

= −Gm

2ar
2r

= −Gm

a
= Cste
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Pour le champ de gravitation à l’extérieur de la sphère nous obtenons :

g = −Gm

r2
er, r > a

Le champ de gravitation en un point extérieur à la sphère est identique au champ de gravitation
que l’on aurait si la masse de la sphère était toute entière au centre de la sphère. À l’intérieur
de la sphère :

g = 0, r < a

En tout point intérieur à une sphère le champ de gravitation est nul.

22.3 Champ de gravitation dû à une boule homogène

On suppose que la boule est un ensemble de sphères concentriques homogènes. On applique
le résultat précédent pour chaque sphère. Le champ de gravitation en un point extérieur à la
boule est identique au champ de gravitation que l’on aurait si la masse de la boule était toute
entière au centre de la boule.

En un point P intérieur à la boule, toutes les sphères de rayon supérieur à r ne contribuent
pas au champ en P . Soit M la masse de la boule de rayon r, le champ de gravitation s’écrit :

g = −GM

r2
er

La masse M a pour expression :

M =
m

4
3
πa3

× 4

3
πr3

=
mr3

a3

si bien que :

g = −Gmr

a3
er

Au centre d’une boule le champ de gravitation est nul (par symétrie sphérique), puis il augmente
linéairement jusqu’à la surface de la boule, puis décroit en fonction du carré de la distance au
centre de la boule.

22.4 Équations de Poisson et de Laplace

Si dans un volume donné un champ de vecteurs (scalaires, vecteurs ou tenseurs) est de
divergence nulle, ce qui signifie qu’il ne diverge pas, ni ne converge, autrement dit il n’y a ni
source ni puit dans ce volume, alors ce champ de vecteurs est à flux conservatif à travers la
surface fermée de ce volume. Tout ce qui entre par la surface en ressort, et tout ce qui sort
entre. Il y a conservation du champ dans le volume en question. Réciproquement, si un champ
de vecteur est à flux conservatif alors sa divergence est nulle.
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22.4.1 Théorème de la divergence

Théorème 22.4.1. Théorème de la divergence
Soit u un champ de vecteurs quelconque. Pour tout volume V de surface S et de normale

sortante n :
"

S

u · n ds =

˚

V

div u dv

Démonstration. Soit un système de coordonnées rectangulaires (xi), de base naturelle
(ei). Soit S une surface fermée telle que toute droite parallèle aux axes de coordonnées coupe
cette surface en au plus deux points (par exemple un balon de baudruche suffisamment gonflé) :

"

S

u · n ds =

"

S

(u1e1 + u2e2 + u3e3) · n ds

=

"

S

u1e1 · n ds +

"

S

u2e2 · n ds +

"

S

u3e3 · n ds

x1

x2

x3

R

S1

S2

n1

n2

e3

e2

e1

Fig. 22.3 – Volume de surface S

Calculons le dernier terme du membre de droite. Imaginons un plan (x1, x2) horizontal
coupant la surface fermée S en deux, de sorte que la ligne d’intersection soit la plus longue
possible. Nous intégrons maintenant sur les deux surfaces S1 en bas et S2 en haut, non fermées,
de normales sortantes respectives n1 vers le bas et n2 vers le haut

"

S

u3e3 · n ds =

¨

S1

u3e3 · n1 ds1 +

¨

S2

u3e3 · n2 ds2

avec : 



e3 · n1 ds1 = −dx1dx2

e3 · n2 ds2 = dx1dx2

Les surfaces S1 et S2 ont pour équation respective :




S1 : x3 = x3
1(x1, x2)

S2 : x3 = x3
2(x1, x3)
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Soit R le domaine d’intégration en x1, x2 :
"

S

u3e3 · n ds =

¨

R

u3(x1, x2, x3
2) dx1dx2 −

¨

R

u3(x1, x2, x3
1) dx1dx2

=

¨

R

[u3(x1, x2, x3
2) − u3(x1, x2, x3

1)] dx1dx2

=

¨

R



ˆ x3

2

x3

1

∂u3

∂x3
dx3


 dx1dx2

=

˚

V

∂u3

∂x3
dv

Nous obtenons un résultat similaire pour les coordonnées x1 et x2, si bien que :
"

S

u · n ds =

˚

V

∂u1

∂x1
dv +

˚

V

∂u2

∂x2
dv +

˚

V

∂u3

∂x3
dv

=

˚

V

(
∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3

)
dv

=

˚

V

div u dv

où l’on a utilisé la définition (148) p. 243 de l’opérateur différentiel divergence en coordonnées
rectilignes. Le théorème peut s’étendre aux surfaces qui ne satisfont pas la condition que des
droites parallèles aux axes de coordonnées rectangulaires les coupent en au plus deux points.
Pour établir cette généralisation, subdiviser le domaine S en sous-domaines dont les surfaces
satisfont la condition. �

u · n et div u sont des scalaires et l’intégrale de surface et celle de volume ne dépendent pas
du système de coordonnées, par conséquent ce théorème est une égalité entre deux scalaires,
donc une relation tensorielle vraie dans tout système de coordonnées :

"

S

uini ds =

˚

V

∂iu
i dv

Avec (76) p. 162, remplaçons dv par
√

|g| dΩ et ds par
√

|g| dσ :
"

S

√
|g| uini dσ =

˚

V

√
|g| ∂iu

i dΩ (153)

22.4.2 Théorème de Gauss

Théorème 22.4.2. Théorème de Gauss
Soit S une surface fermée quelconque, de normale sortante n. Soit r = rer un champ de

vecteurs d’origine O :

Si O est extérieur à S,
"

S

er

r2
· n ds = 0

Si O est intérieur à S,
"

S

er

r2
· n ds = 4π

Démonstration. À partir du théorème de la divergence 22.4.1 p. 254 avec u = er/r2 :
"

S

er

r2
· n ds =

˚

V

div
(er

r2

)
dv
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— Supposons O extérieur à S. Dans ce cas r ne peut pas être nul dans le volume d’inté-
gration de la divergence (r 6= 0 dans V ) :

div
(er

r2

)
= div

( r
r3

)

= div

(
x1

r3
e1 +

x2

r3
e2 +

x3

r3
e3

)

=
∂

∂x1

(
x1

r3

)
+

∂

∂x2

(
x2

r3

)
+

∂

∂x3

(
x3

r3

)

Pour le premier membre :

∂

∂x1

(
x1

r3

)
=

∂

∂x1

{
x1

[(x1)2 + (x2)2 + (x3)2]3/2

}

=
(

r3 − x1 × 2x1 × 3

2
r
)

/r6

=
(
r3 − 3r(x1)2

)
/r6

donc :

div
(er

r2

)
=
[
3r3 − 3

(
x2 + y2 + z2

)
r
]

/r6

= 0

— Supposons maintenant O intérieur à S. Entourons O d’une petite sphère s de rayon a
et de volume v. Soit V le volume intérieur à S et extérieur à s, et soient nS et ns les
normales sortantes respectives des surfaces S et s :

"

S

er · nS

r2
ds −

"

s

er · ns

r2
ds =

˚

V

div
(er

r2

)
dv −

˚

v

div
(er

r2

)
dv

=

˚

V

div
(er

r2

)
dv

= 0

car O est extérieur à V . Nous avons alors :
"

S

er · nS

r2
ds =

"

s

er · ns

r2
ds

=
1

a2

"

s

ds

=
4πa2

a2

= 4π

�

22.4.3 Loi de Gauss pour la gravitation

Théorème 22.4.3. Loi de Gauss, forme intégrale
Le flux d’un champ de gravitation à travers une surface fermée est proportionnel à la somme

des masses intérieures à cette surface :
"

S

gMint
· n ds = −4πGMint
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Le signe négatif indique que le flux est entrant.

Démonstration. Deux cas :
— Pour le « cas intérieur », remplaçons le champ de gravitation par son modèle (150)

p. 249, et intégrons sur une surface fermée autour de la masse :
"

S

gMint
· n ds =

"

S

−GMint

r2
er · n ds

= −GMint

"

S

er

r2
· n ds

Appliquons le théorème de Gauss :
"

S

gMint
· n ds = −4πGMint

La masse intérieure à la surface est la source du champ de gravitation, dirigé vers la
masse (signe négatif car gMint

est entrant et la normale n est sortante).
�

— Pour le « cas extérieur » nous pouvons poser Mint = 0, ou bien appliquer le théorème
de Gauss sur une surface fermée ne contenant pas de masse :

"

S

gM · n ds = 0

Le flux du champ de vecteurs gM issu de M est nul à travers une surface ne contenant
pas M . Il n’y a ni source ni puit dans le volume défini par cette surface, et le flux
entrant et égal au flux sortant.

Théorème 22.4.4. Loi de Gauss, forme différentielle

div g = −4πGρint

Démonstration. À partir du théorème de la divergence 22.4.1 p. 254 et de la forme
intégrale du théorème de Gauss appliqué au champ de gravitation :

˚

V

div g dv =

"

S

g · n ds

= −4πGMint

= −4πG

˚

V

ρint dv

div g = −4πGρint

�

Théorème 22.4.5. Équation de Poisson
Soit φ le potentiel d’un champ de gravitation. À l’intérieur d’une distribution de masse de

densité volumique ρ (cas « intérieur ») :

△φ = 4πρG (154)

Démonstration. À partir de la loi de Gauss sous forme différentielle :

div g = −4πρG

− div grad φ = −4πρG

△φ = 4πρG

�
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Théorème 22.4.6. Équation de Laplace
En posant ρ = 0 dans l’équation de Poisson, nous retrouvons le cas « extérieur » :

△φ = 0 (155)

22.5 Principe d’équivalence

Un observateur en chute libre dans un champ de gravitation est dans un référentiel inertiel, il
ne ressent pas le champ de gravitation. La réciproque de ce constat est le Principe d’équivalence :

Un champ de gravitation (ressenti) est localement équivalent à un référentiel non inertiel.

Un champ de gravitation homogène et constant est localement équivalent à un référentiel
uniformément accéléré, ou à un référentiel en rotation uniforme autour d’un axe loin du centre
du référentiel (en plaçant l’observateur au centre du référentiel). Cette équivalence est locale
car

— dans un champ de gravitation les trajectoires de deux masses se rejoignent alors qu’elles
sont parallèles dans un référentiel uniformément accéléré, et divergentes dans un réfé-
rentiel en rotation uniforme.

— un champ de gravitation n’est homogène que localement, il tend vers zéro à l’infini
alors que le champ équivalent est constant dans un référentiel uniformément accéléré,
et croit indéfiniment dans un référentiel en rotation uniforme. L’inhomogénéité des
champs de gravitation est à l’origine des forces de marée, qui n’existent pas dans un
référentiel uniformément accéléré ou en rotation uniforme, les forces étant fictives.

De plus ce principe n’est valable que lorsque les masses passives sont petites par rapport à la
masse active qui crée le champ de gravitation. Dans le champ de gravitation terrestre, le Soleil
n’a pas la même trajectoire que la lune.

Un champ de gravitation homogène et non constant (variable) est localement équivalent à
un référentiel accéléré non uniformément ou à un référentiel en rotation non uniforme.



23
Géométrie des variétés riemanniennes

Nous avons vu, définition 11.2.2 p. 90, qu’un espace vectoriel est pré-euclidien s’il admet
une base orthonormée ou pseudo-orthonormée globale, autrement dit si le tenseur fondamental
G peut être ramené par un changement de coordonnées à la forme :

∀i, j gij = ±δij

Cela n’est pas toujours possible car dans un espace à n dimensions, un changement de variables
fournit n fonctions xi′

= xi′

(xj) alors qu’il en faudrait n(n + 1)/2 pour changer chaque élément
d’une métrique riemannienne quelconque. L’espace euclidien est donc un cas particulier d’espace
riemannien.

Pour une dimension donnée il existe une infinité d’espaces riemanniens, quelques espace pré-
euclidiens, et un seul espace euclidien. Si nous ne pouvons pas toujours ramener globalement
un espace riemannien à un espace pré-euclidien par changement de coordonnées, il est toujours
possible de le faire localement en un point, que nous noterons M0. Cela revient à considérer
l’espace pré-euclidien tangent à l’espace riemannien en M0. Les métriques de deux espaces
tangents en un point sont par définition égales, et par conséquent la dimension de l’espace et
celle de son espace tangent sont égales.

De plus, nous cherchons un espace tangent pré-euclidien dont les composantes du tenseur
métrique ḡij sont des constantes (ne sont pas fonction des coordonnées)

∀i, j, k ∂k ḡij = 0

donc exprimées dans un système de coordonnées rectilignes.

23.1 Métrique euclidienne tangente en un point

23.1.1 Espace euclidien tangent

Soit (xi) un système de coordonnées curvilignes d’un espace de Riemann Rn de métrique :

ds2 = gij(x
i) dxidxj

Pour douer cet espace de propriétés géométriques, nous l’identifions localement à un espace
ponctuel euclidien de même signature.

Soit (yi) un système de coordonnées curvilignes d’un espace ponctuel euclidien En de même
signature que Rn, et de métrique :

ds̄2 = ḡij(y
i) dyidyj
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Par changement de variables dans En, yi = yi(xj), utilisons les mêmes coordonnées (xi) que
celles de Rn. La métrique de En s’écrit à présent :

ds̄2 = ḡij(x
i) dxidxj

Construisons l’espace euclidien tangent à Rn en un point M0(xi
0) de Rn. À ce point faisons

correspondre le point m0(xi
0) de En, tel qu’en ces deux points les métriques soient égales :

∀i, j (ḡij)m0
= (gij)M0

(156)

Pour l’instant nous avons fixé la métrique de l’espace euclidien en un seul point, le point m0.
Prenons une métrique constante (dont les composantes ne sont pas des fonctions explicites ou
implicites des coordonnées) pour l’espace En entier, qui soit en tout point égale à (ḡij)m0

. C’est
le plus simple et cela nous assure que l’espace que nous avons contruit est bien euclidien. Notons
(ēi) sa base :

∀i, j ḡij = (ḡij)M0
(157)

ēi · ēj = (gij)M0

23.1.2 Représentation du premier ordre

Nous avons la métrique constante ḡij = (gij)M0
de l’espace euclidien tangent au point M0

de l’espace riemannien. Étudions la correspondance entre ces deux espaces au voisinage de ce
point.

Supposons qu’à tout point M(xi) du voisinage de M0(xi
0) dans Rn, nous fassions corres-

pondre un point m du voisinage de m0 dans En, tel que :

m0m ,
[(

xi − xi
0

)
+ Ψi

2 (xr − xr
0)
]

ēi

,
[
dxi + Ψi

2 (dxr)
]

ēi (158)

où les fonctions Ψi
2 sont du deuxième ordre par rapport aux variables (xr − xr

0), pour xr −
xr

0 voisins de zéro. Cette correspondance définit une représentation du premier ordre pour le
voisinage de M0. Le point m est l’image de M dans cette représentation, et m0 est l’image de
M0.

D’après cette relation, m a pour coordonnées xi dans la base (m0, ēi). On vérifie ainsi que
le système de coordonnées curvilignes (xi) de Rn constitue aussi un système de coordonnées
curvilignes de l’espace euclidien au voisinage de m0. On vérifie également que la base naturelle
de En est définie par les (ēi) :

∀i
∂m0m

∂xi
=

∂

∂xi

[(
xi − xi

0

)
+ Ψi

2 (xr − xr
0)
]

ēi

∀i

(
∂m

∂xi

)

m0

= ēi (159)

23.1.3 Caractère intrinsèque de la représentation du premier ordre

Effectuons le changement de coordonnées (xi) →
(
xi′

)
. La représentation du premier ordre

prend alors la forme suivante

m0m =
[(

xi′ − xi′

0

)
+ Θi

2

(
xr′ − xr′

0

)]
ēi
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où les fonctions Θi
2 sont du deuxième ordre par rapport aux variables xr′ − xr′

0 , pour xr′ − xr′

0

voisins de zéro. Sa forme étant indépendante du système de coordonnées utilisé, elle présente
un caractère intrinsèque.

Pour que la métrique euclidienne tangente présente elle aussi un caractère intrinsèque, l’éga-
lité (157) p. 260 doit être également vérifiée dans le nouveau système de coordonnées :

∀k, l ḡk′l′ = (gk′l′)M0

D’après les relations (108) p. 204, par changement de coordonnées, le tenseur métrique de
l’espace ponctuel euclidien tangent En se transforme en tout point selon la loi :

∀i, j ḡij =
∂xk′

∂xi

∂xl′

∂xj
ḡk′l′

Par conséquent, il faut aussi que dans l’espace riemannien Rn nous ayons en tout point

∀i, j gij =
∂xk′

∂xi

∂xl′

∂xj
gk′l′

et c’est ce que nous poserons. En effet, dans ce cas d’après (157) p. 260

∀i, j ḡij = (gij)M0

∂ix
k′

∂jx
l′ ḡk′l′ = ∂ix

k′

∂jx
l′ (gk′l′)M0

∀k, l ḡk′l′ = (gk′l′)M0

et l’égalité est conservée par changement de coordonnées. Nous pouvons alors, grâce au caractère
instrinsèque de la représentation du premier ordre et de la métrique euclidienne tangente,
étendre aux espaces riemanniens des notions géométriques d’origine euclidienne.

23.1.4 Propriétés déduites des métriques euclidiennes tangentes

Certaines propriétés de l’espace euclidien vont pouvoir être transposées dans les espaces de
Riemann en utilisant la métrique euclidienne tangente en chaque point M de Rn.

Soit (xi) un système de coordonnées curvilignes d’un espace riemannien Rn de métrique :

ds2 = gij dxidxj

Soit M un point de Rn et soit En l’espace ponctuel euclidien tangent en M à Rn, de même
système de coordonnées curvilignes (xi) et de métrique constante :

ds̄2 = ḡij dxidxj

= (gij)M dxidxj

Définition 23.1.1. Tenseur de Rn

Nous définissons un tenseur au point M d’un espace riemannien par ses composantes
relatives aux coordonnées (xi), en définissant un tenseur au point m de l’espace euclidien
tangent en M , par ses composantes dans le repère (m, ēi).

Produit scalaire

Le produit scalaire de deux vecteurs attachés au même point M d’un espace riemannien de
tenseur métrique G, est donné par :

v · w = (gij)M viwj
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Distance dans Rn

Le carré de la distance élémentaire entre deux points M0 et M infiniment proches dans
l’espace riemannien est égale au carré de la distance élémentaire euclidienne des deux points
images m0 et m :

m0m
2 = ḡij dxidxj

= (gij)M0
dxidxj

= M0M
2

On déduit la longueur d’un arc de courbe en intégrant la distance élémentaire dans l’espace
riemannien. La fonction indicatrice ε ((34) p. 77) rend le carré de la distance positif dans les
espaces pseudo-riemanniens :

ds2 = εgij dxidxj

De façon équivalente

εds2 = gij dxidxj

Par intégration on en déduit la longueur d’un arc de courbe :

Γ =

ˆ b

a

√
εgij dxidxj

On retrouve (23) p. 65.

Exemple 23.1.1. Soit la courbe paramétrée,

C (λ) :





x1 = 1

x2 = λ
(1 6 λ 6 2)

dans un espace de métrique hyperbolique

g11 = g22 = 1/(x2)
2 : g12 = g21 = 0

calculons sa longueur :

ε

(
ds

dλ

)2

=

(
dxi

dλ

)T

G

(
dxj

dλ

)

=
(
0 1

) [1/λ2 0
0 1/λ2

](
1
0

)

=
1

λ2

donc ε = 1.

Γ =

ˆ 2

1

ds =

ˆ 2

1

dλ

λ
= ln 2

Hypervolume dans Rn

L’hypervolume élémentaire d’origine M est donné par la relation (111) p. 220 :

dV =
√

|g| dx1 . . . dxn

=
√

|ḡ| dx1 . . . dxn
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où le déterminant g est fonction des coordonnées du point M . Par intégration on déduit l’hy-
pervolume d’un domaine de dimension n :

V =

ˆ √
|g|

n∏

i=1

dxi

=

ˆ √
|g| dΩ

Utilisons les relations (76) p. 162 et (109) p. 205 :
√

|g| dΩ = J
√

|g′| dΩ′

J

=
√

|g′| dΩ′ (160)

L’élément d’hypervolume et par suite l’hypervolume sont donc invariants par changement de
coordonnées, ce sont des scalaires. Une arrête de l’hypervolume pouvant être prise de longueur
nulle, un hypervolume de dimension quelconque d’un domaine de l’espace est un scalaire.

23.1.5 Représentation du second ordre

Pour étendre aux espaces de Riemann les notions d’analyse tensorielle de la géométrie
euclidienne, nous définissons la notion de champ de tenseurs sur un espace riemannien.

Définition 23.1.2. Champ de tenseurs
Attachons à chaque point M d’un espace riemannien Rn un tenseur T de la façon sui-
vante : au point M faisons correspondre dans l’espace euclidien tangent un repère (m, ei)
compatible avec la métrique riemannienne en ce point. La donnée des composantes du
tenseur dans ce repère en fonction des coordonnées (xi) communes aux deux espaces dans
le voisinage de M , constitue un champ de tenseurs dans Rn.

Exemple 23.1.2. Les composantes gij du tenseur fondamental données en tout point M
sont un exemple de composantes covariantes d’un champ de tenseur d’ordre deux.

Définition 23.1.3. Différentielle absolue
Soient T0 et T deux tenseurs de Rn, attachés aux points infiniment voisins M0 et M .
Dans une représentation du premier ordre, leur différence est définie à des infiniment
petits du premier ordre. La partie principale de cette différence est appelée différentielle
absolue du tenseur T .

La notion de métrique euclidienne tangente ne nous permet pas de comparer entre eux des
tenseurs attachés à deux points, même infiniment proches, de l’espace riemannien.

En effet, dans un espace riemannien Rn, donnons-nous un champ de vecteurs v par leurs
composantes contravariantes vi. Soient deux vecteurs de ce champ, attachés en deux points
infiniment proches M0 et M . Leur différentielle absolue est la différence géométrique de leurs
vecteurs images dans l’espace euclidien tangent En. La définition 21.7.2 p. 233 nous donne ses
composantes contravariantes dans le repère naturel en un point m0 de En :

∀i
(
Dvi

)
m0

=
(
dvi
)

m0

+
(
vj
)

m0

(
Γ̄i

kj

)
m0

duk
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Pour étendre la notion de différentielle absolue aux espaces de Riemann, et écrire

∀i
(
Dvi

)
M0

=
(
Dvi

)
m0

il faudrait avoir

∀i, j, k
(
Γi

kj

)
M0

=
(
Γ̄i

kj

)
m0

c’est-à-dire d’après (127) p. 225 :

∀i, j, k (∂kgij)M0
= (∂kḡij)m0

(161)

Pour cela, remplaçons la représentation du premier ordre (158) p. 260 par une représentation
du second ordre, c’est-à-dire l’espace euclidien tangent par un espace euclidien osculateur. La
formule de Taylor s’écrit

f(x, y) = f(a, b) +
∂f

∂x

∣∣∣∣
a,b

(x − a) +
∂f

∂y

∣∣∣∣
a,b

(y − b) +
1

2

∂2f

∂x2

∣∣∣∣
a,b

(x − a)2 +
1

2

∂2f

∂y2

∣∣∣∣
a,b

(x − b)2

+
∂2f

∂x∂y

∣∣∣∣
a,b

(x − a)(y − b) + R3[(x − a), (y − b)]

où les fonctions R3 sont du 3e ordre par rapport aux variables (x − a) et (y − b). En prenant
deux points infiniment proches :

f(x + dx, y + dy) − f(x, y) =
∂f

∂x
dx +

∂f

∂y
dy +

1

2

∂2f

∂x2
dx2 +

1

2

∂2f

∂y2
dy2 +

∂2f

∂x∂y
dxdy + R3(dx, dy)

En particulier pour le vecteur position, en utilisant la relation (119) p. 224 :

om(xi + dxi) − om0(xi) = ∂imdxi + 1
2
∂jkmdxjdxk + Φi

3(dxr)ēi

= dxiēi + 1
2
Γ̄i

jkdxjdxkēi + Φi
3(dxr)ēi

= [dxi + 1
2
Γ̄i

jkdxjdxk + Φi
3(dxr)]ēi

où les fonctions Φi
3 sont du 3e ordre par rapport aux variables dxr au voisinage du point m0.

Posons :

m0m ,
[
dxi + 1

2
Γi

kjdxjdxk + Φi
3 (dxr)

]
ēi (162)

où les symboles de Christoffel sont évalués dans l’espace riemannien. Cette représentation étant
déjà du premier ordre, les relations (159) p. 260 restent valables :

∀i

(
∂m

∂xi

)

m0

= ēi

— d’une part, en dérivant deux fois (162) :

∀j, k

(
∂2m

∂xk∂xj

)

m0

=
(
Γi

kj

)
M0

ēi

— d’autre part avec les relations (115) p. 222 :

∀i, k

(
∂2m

∂xk∂xi

)

m0

=
(
Γ̄j

ki

)
m0

ēj ⇒ ∀j, k

(
∂2m

∂xk∂xj

)

m0

=
(
Γ̄i

kj

)
m0

ēi

On en déduit :

∀i, j, k
(
Γi

kj

)
M0

=
(
Γ̄i

kj

)
m0
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Nous pouvons alors étendre la notion de différentielle absolue aux espaces de Riemann. Quel
que soit le point m0, nous avons :

∀i Dvi = dvi + vjωi
j

Si le champ de vecteur est défini par ses composantes covariantes vi, sa différentielle absolue
a pour composantes covariantes :

∀i Dvi = dvi − vjω
j
i

De même, on généralise aux espaces de Riemann la notion de dérivée covariante d’un vecteur.
Les quantités,

∀i, k ∇kvi = vi
,k + vjΓi

jk

sont les composantes mixtes du tenseur (d’ordre deux) dérivée covariante du vecteur v.
Si le champ de vecteur est défini par ses composantes covariantes, les quantités,

∀i, k ∇kvi = ∂kvi − vjΓ
i
jk

sont les composantes covariantes du tenseur (d’ordre deux) dérivée covariante du covecteur ṽ.
Ces formules sont généralisées aux dérivées covariantes de tenseurs riemanniens.

Définition 23.1.4. Equipollence
Deux vecteurs d’un espace euclidien sont équipollents s’ils ont même longueur, même
direction et même sens : leur différence géométrique est nulle. Dans un espace riemannien,
deux vecteurs d’origines infiniment voisines M et M ′ sont équipollents s’ils sont équipol-
lents dans l’espace euclidien tangent en M .

Soient deux vecteurs d’origines infiniment voisines. Ils sont équipollents ssi la différentielle
absolue Dvi correspondant au transport du premier vecteur au second est nulle :

∀i Dvi = 0

Définition 23.1.5. Transport parallèle ou transport par équipollence
Le transport parallèle d’un vecteur v d’origine M en un point infiniment voisin M ′,
consiste à construire le vecteur v′ d’origine M ′, équipollent à v.

Les notions de représentation du second ordre et de métrique euclidienne osculatrice per-
mettent d’étendre aux espaces de Riemann les notions d’analyse tensorielle euclidienne relative
aux tenseurs attachés à deux points infiniment voisins. Il en est ainsi en particulier pour tous
les opérateurs différentiels que nous avons étudiés au paragraphe 21.14 p. 243.

Exemple 23.1.3. Espace osculateur en un point d’une surface quelconque
Soit une surface S quelconque (un espace proprement riemannien de dimension deux)
plongée dans l’espace euclidien à trois dimensions, et soit P un plan tangent à S au point
M . Soit (x, y, z) un système de coordonnées rectangulaires de centre M , tel que (x, y) soit
dans le plan. Le carré de l’élément linéaire du plan est donné par :

ds2 = dx2 + dy2
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Dans le système de coordonnées rectangulaires (x, y, z) la surface a pour équation z =
z(x, y), le carré de son élément linéaire est :

ds2 = dx2 + dy2 + dz2

Or

dz =
∂z

∂x
dx +

∂z

∂y
dy

dz2 =

(
∂z

∂x

)2

dx2 +

(
∂z

∂y

)2

dy2 + 2
∂z

∂x

∂z

∂y
dxdy

Si bien que

ds2 = dx2 + dy2 +

(
∂z

∂x

)2

dx2 +

(
∂z

∂y

)2

dy2 + 2
∂z

∂x

∂z

∂y
dxdy

=


1 +

(
∂z

∂x

)2

 dx2 +


1 +

(
∂z

∂y

)2

 dy2 + 2

∂z

∂x

∂z

∂y
dxdy

Au point M la coordonnée z est minimale, donc ∂z/∂x = ∂z/∂y = 0. Par conséquent, au
point M les coefficients des métriques sont égales (et valent l’unité), la représentation est
du premier ordre (relation (156) p. 260). De plus, les dérivées partielles du premier ordre
de ces coefficients par rapport aux coordonnées sont aussi égales (et sont nulles puisque
l’on dérive des constantes), la représentation est du second ordre (relation (161) p. 264).
L’espace osculateur à la surface est donc ici l’espace tangent à la surface.

23.1.6 Vecteur accélération dans un espace riemannien

Dans l’espace riemannien Rn, considérons un point mobile M dont les coordonnées cur-
vilignes (xi) sont fonction du temps, M(xi(t)). Comme dans l’exemple 21.9.1 p. 236 pour un
espace euclidien, les composantes contravariantes du vecteur vitesse ont pour expression

∀i vi =
dxi

dt

et le vecteur accélération a pour composantes contravariantes :

∀i γi =
d2xi

dt2
+ Γi

kj

dxk

dt

dxj

dt

23.2 Géodésiques d’un espace riemannien

Définition 23.2.1. Géodésique
Une géodésique d’un espace riemannien Rn est la trajectoire d’un point d’accélération
nulle :

∀i = 1, . . . , n ẍi + Γi
kj ẋkẋj = 0 (163)
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Toute géodésique est définie par ce système de n équations différentielles ordinaires du
second ordre, pour les n fonctions xi(λ) du paramètre quelconque λ (habituellement le temps
ou l’abscisse curviligne).

Remarque 42. Dans l’espace-temps de la relativité générale, la quadriaccélération de la Terre est
nulle, ce qui implique que le trivecteur accélération d’un observateur terrestre est nul (mesurée par un
accéléromètre). Pour un observateur non terrestre, le trivecteur accélération de la Terre est non nul et
son trivecteur vitesse varie en norme et en direction. Sa trajectoire est une géodésique de l’espace-temps
courbé par le Soleil.

Avec les relations (135) p. 235 :

∀i γi = 0

∀i
Dvi

dt
= 0

∀i
∇kvi dxk

dt
= 0

∀i vk∇kvi = 0

Ces équations montrent que sur une géodésique le vecteur vitesse reste équipollent à lui-même.
Cela permet d’étendre la notion de transport parallèle à un voisinage quelconque. Deux vecteurs
formant un même angle avec une géodésique seront dits parallèles. Les géodésiques constituent
l’extension en géométrie de Riemann des droites de l’espace euclidien. Les systèmes de coordon-
nées construits avec les géodésiques d’un espace courbe sont appelés systèmes de coordonnées
géodésiques (voir le paragraphe 23.4.6 p. 280). Un système de coordonnées rectilignes, dit carté-
sien, est un système de coordonnées géodésiques de l’espace euclidien, construit avec des droites
qui sont des géodésiques de l’espace euclidien.

Si nous adoptons pour paramètre indépendant l’abscisse curviligne s le long de la géodésique,
le vecteur u de composantes dxi/ds est un vecteur colinéaire à dM et unitaire :

‖u‖ = u · u

= uiu
i

= dxidxi/(ds2)

= gijdxjdxi/(ds2)

= 1

Il est tangent à la courbe, comme l’est la vitesse (voir (140) p. 238), les équations (163) donnent :

∀i
d2xi

ds2
+ Γi

kj ukuj = 0

En relativité générale, la présence de matière et/ou d’énergie (d’agitation thermique, élec-
tromagnétique, etc.) définit le tenseur énergie-impulsion qui détermine la métrique de l’espace-
temps. d2xi/ds2 est la quadriaccélération de l’espace-temps plat pseudo-euclidien de la relativité
restreinte, et Γi

kj ukuj est la courbure de l’espace-temps. Pour une masse m dans un champ de
gravitation :

∀i m
d2xi

ds2
= −mΓi

jk ukuj (164)
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La force gravitationnelle de Newton est remplacée par le terme −mΓi
jk ukuj de courbure du

quadri-espace riemannien R4 appelé espace-temps, dont les particules libres suivent une géo-
désique. Le tenseur métrique est le potentiel du champ de gravitation car sa dérivée donne
l’intensité du champ de gravitation Γi

jk (relations (127) p. 225).

Dans les espaces euclidiens et pseudo-euclidiens toute droite est à la fois une trajectoire
à accélération nulle (donc une géodésique) et un extremum de longueur entre deux points de
cette droite. Il en va de même en géométrie riemannienne, comme nous allons le voir.

Théorème 23.2.1. Géodésique
Une trajectoire joignant deux points a et b de Rn de longueur extrémale est une géodésique

de cet espace.

d

ˆ tb

ta

√

gij
dxi

dt

dxj

dt
dt = 0 (165)

Une courbe de longueur extrémale entre deux points est invariante par changement de
coordonnées. Nous retrouvons la propriété des géodésiques d’être indépendantes du système de
coordonnées.

Démonstration. Si l’intégrale d’une fonction est extrémale, il en va de même du carré de
cette fonction ou de n’importe quelle puissance de cette fonction :

d

ˆ tb

ta

F dt = 0 ⇔ d

ˆ tb

ta

F 2 dt = 0

Remarque 43. De façon générale, on peut remplacer la fonction dans l’intégrale par une fonction
monotone (fonction croissante ou décroissante) de cette fonction sur l’intervalle [ta, tb] :

d

ˆ tb

ta

F dt = 0 ⇔ d

ˆ tb

ta

f(F ) dt = 0

Dans (165), posons L = gij ẋiẋj ,

d

ˆ tb

ta

√
L dt = 0 ⇔ d

ˆ tb

ta

L dt = 0

en conservant la condition L > 0. Cela donne le système des n équations d’Euler-Lagrange :

∀i
d

dt

(
∂L

∂ẋi

)
− ∂L

∂xi
= 0

∀i
d

dt

(
2gij ẋj

)
− ∂

∂xi

(
gkj ẋkẋj

)
= 0

∀i 2gij ẍj + 2
dgij

dxk

dxk

dt
ẋj − ∂gkj

∂xi
ẋkẋj = 0

∀i gij ẍj + gij,k ẋkẋj − 1
2
∂igkj ẋkẋj = 0

∀i gij ẍj +
(
gij,k − 1

2
∂igkj

)
ẋkẋj = 0

En remarquant que gij,kẋkẋj = gki,jẋ
kẋj :

∀i gij ẍj +
(

1
2

gki,j + 1
2

gij,k − 1
2

∂igkj

)
ẋkẋj = 0

∀i gij ẍj + 1
2

( gki,j + gij,k − ∂igkj) ẋkẋj = 0
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En se servant des relations (126) p. 225 qui donnent l’expression des symboles de Christoffel de
première espèce en fonction des dérivées du tenseur métrique :

∀i gij ẍj + Γjik ẋkẋj = 0

Par multiplication contractée par gih, nous retrouvons bien le système des n équations différen-
tielles (163) p. 266 d’une géodésique

∀h ẍh + Γh
jk ẋj ẋk = 0

avec gij ẋiẋj > 0. �

En raisonnant dans l’autre sens, c’est-à-dire en partant de (163) p. 266, on montre que la
réciproque est vraie :

Théorème 23.2.2. Une géodésique est une trajectoire joignant deux points a et b de Rn de
longueur extrémale.

Nous pouvons donner une nouvelle définition d’une géodésique :

Définition 23.2.2. Géodésique
Une géodésique entre deux points d’un espace riemannien est la trajectoire de longueur
extremale entre ces deux points.

Cette définition est indépendante du système de coordonnées puisque la notion de distance
en est elle-même indépendante. Dans l’espace-temps de la relativité générale, la distance spatio-
temporelle entre deux évènements quelconques sur la trajectoire de la Terre est extrémale. Dans
le cas limite d’un espace-temps pseudo-euclidien, le carré de l’intervalle élémentaire d’univers
a pour expression :

ds2 = c2dt2 − dx2 − dy2 − dz2

Or, les évènements sur la trajectoire terrestre ont lieu au même endroit dans le référentiel
terrestre et seul le temps propre varie. Il s’agit alors de chercher la condition pour avoir ds2

extrémal lorsque sa partie spatiale est nulle. C’est le cas lorsque l’intervalle de temps propre dt
est maximal et rend le ds2 maximal (si dt était minimal, une partie spatiale non nulle rendrait
le ds2 plus petit encore à cause des signes négatifs).

Si la forme quadratique fondamentale n’est pas définie, la détermination de la longueur de
la géodésique

s =

ˆ tb

ta

√

gij
dxi

dt

dxj

dt
dt

devra se faire dans une région de l’espace où elle conserve un signe constant.

Exemple 23.2.1. Trouver l’équation des géodésiques à la surface d’une sphère.

(1) Première méthode
L’exemple 12.1.2 p. 97 donne les composantes du tenseur métrique sur une

sphère de rayon r en coordonnées (θ, φ) : gθθ = r2, gφφ = r2 sin2(θ). Les dérivées
partielles des gij sont nulles sauf gφφ,θ = 2r2 sin(θ) cos(θ). Les relations (131)
p. 227 donnent les symboles de Christoffel de deuxième espèce en coordonnées
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orthogonales :




Γi
ii =

gii,i

2gii

Γi
ij =

gii,j

2gii

Γj
ii = − gii,j

2gjj

Γi
jk = 0 i, j, k 6=

⇒





Γθ
θθ = Γφ

φφ = 0

Γθ
θφ = 0

Γφ
φθ = cot(θ)

Γφ
θθ = 0

Γθ
φφ = − sin(θ) cos(θ)

Les géodésiques ont alors pour équations :




d2θ

ds2
+ Γθ

φφ

(
dφ

ds

)2

= 0

d2φ

ds2
+ Γφ

φθ

dθ

ds

dφ

ds
+ Γφ

θφ

dφ

ds

dθ

ds
= 0

⇒





d2θ

ds2
− sin(θ) cos(θ)

(
dφ

ds

)2

= 0

d2φ

ds2
+

2

tan(θ)

dθ

ds

dφ

ds
= 0

La seconde relation s’écrit :
d

ds

(
dφ

ds
sin2(θ)

)
= 0

dφ

ds
sin2(θ) = cste

La solution évidente φ = cste donne pour la première relation :

d2θ

ds2
= 0

dθ

ds
= a

θ = as + θ0

où a est une constante. En prenant θ = 0 en s = 0 on a θ0 = 0 et :

θ = as

θ et φ étant constants

s = rθ

d’où

a =
1

r
L’équation d’une géodésique est donc :

{
θ = s/r

φ = cste (166)

Comme θ varie de 0 à π, la géodésique est un demi-arc de grand cercle allant
d’un pôle à l’autre. Par symétrie sphérique, tous les arcs de grands cercles sont
des géodésiques.

(2) Seconde méthode
À partir du carré de l’élément linéaire sur une sphère de rayon r :

ds2 = r2dθ2 + r2 sin2(θ) dφ2
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où gθθ = r2 et gφφ = r2 sin2(θ). Plutôt que de calculer les symboles de Christoffel,
résolvons le problème de variation,

d

ˆ

ds = 0

d

ˆ

r
(
dθ2 + sin2(θ) dφ2

)1/2
= 0

d

ˆ (
θ̇2 + sin2(θ) φ̇2

)1/2
dp = 0

d

ˆ (
θ̇2 + sin2(θ) φ̇2

)
dp = 0

où le point désigne une dérivation par rapport au paramètre quelconque p. Le
Lagrangien s’écrit

L (θ̇, φ̇, θ, φ, p) = θ̇2 + sin2(θ) φ̇2

et les équations de Lagrange :




d

dp

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0

d

dp

(
∂L

∂φ̇

)
− ∂L

∂φ
= 0

⇒





2
dθ̇

dp
− 2 sin(θ) cos(θ)φ̇2 = 0

d

dp

(
sin2(θ)φ̇

)
= 0

(167a)

(167b)

⇒




θ̈ − sin(θ) cos(θ)φ̇2 = 0

2 sin(θ) cos(θ)θ̇φ̇ + sin2(θ)φ̈ = 0
⇒





θ̈ − sin(θ) cos(θ)φ̇2 = 0

φ̈ + 2 cot(θ)θ̇φ̇ = 0

On retrouve les 2 équations différentielles (163) p. 266 d’une géodésique, qui nous
donne les symboles de Christoffel :




θ̈ + Γθ
φφ φ̇2 = 0

φ̈ + Γφ
θφ θ̇φ̇ + Γφ

φθ φ̇θ̇ = 0
avec





Γθ
φφ = − sin(θ) cos(θ)

Γφ
θφ = cot(θ)

L’équation (167b) donne une intégrale première du mouvement :

sin2(θ)φ̇ = c1

φ̇ = c1/ sin2(θ)

φ̇2 = c2
1/ sin4 θ

Une seconde intégrale première est obtenue en posant L = c2 (la variation d’une
constante est nulle) :

θ̇2 + sin2(θ) φ̇2 = c2
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À partir des deux intégrales premières :

θ̇2 +
c2

1

sin2(θ)
= c2

θ̇2

c2
1

=
c2

c2
1

− 1

sin2(θ)

θ̇2

φ̇2 sin4 θ
=

c2

c2
1

− 1

sin2(θ)

1

sin4 θ

(
dθ

dφ

)2

=
c2

c2
1

− 1

sin2(θ)

Posons

α = cot(θ)

dα

dφ
=

− sin2(θ) − cos2(θ)

sin2(θ)

dθ

dφ
(

dα

dφ

)2

=
1

sin4 θ

(
dθ

dφ

)2

=
c2

c2
1

− 1

sin2(θ)

=
c2

c2
1

− sin2(θ) + cos2(θ)

sin2(θ)

=
c2

c2
1

− 1 − α2

Donc α est une fonction sinus :

α = a sin(φ + b)

dα

dφ
= a cos(φ + b)

(
dα

dφ

)2

= a2 cos2(φ + b)

On trouve l’expression de la nouvelle constante :

a2 cos2(φ + b) =
c2

c2
1

− 1 − a2 sin2(φ + b)

a2 =
c2

c2
1

− 1

Revenons à l’ancienne variable :
cos(θ)

sin(θ)
= a sin(φ + b)

cos(θ) = sin(θ) (A cos(φ) + B sin(φ))

r cos(θ) = Ar sin(θ) cos(φ) + Br sin(θ) sin(φ)

z = Ax + By
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Les géodésiques sont donc les sections de la sphère par des plans passant par son
centre, c’est-à-dire des grands cercles.

23.3 Métrique euclidienne de raccordement

23.3.1 Développement d’une courbe de Rn sur l’espace ponctuel euclidien

Dans un espace riemannien Rn, soit C une courbe d’équations paramétriques xi = xi(t). À
chaque point M de C faisons correspondre un point m et un repère (m, ei) de l’espace ponctuel
euclidien En. Au point M0 de C pour t = 0, faisons correspondre un point m0 arbitrairement
choisi dans En, et un repère (m0, ei0

) indéterminé en orientation mais défini en forme (angles
entre les vecteurs) et grandeur par :

∀i, j ei0
· ej0

= (gij)M0
(168)

Posons également que les points m de l’espace euclidien et les vecteurs des repères naturels
dans En vérifient les relations différentielles :





dm = dxiei

∀i dei =
(
Γh

ki

)
M

dxkeh

(169)

où les symboles de Christoffel au point M sont évalués dans l’espace riemannien et ne dépendent
que du paramètre t.

L’intégration du système différentiel (169) pour obtenir m(t) et les ei(t) avec les conditions
initiales que nous nous sommes données, fait alors correspondre à la courbe C de Rn, une
courbe Γ de En, appelée développement de la courbe C sur l’espace euclidien.

La modification des conditions initiales revient à effectuer un déplacement quelconque de
la courbe Γ dans l’espace euclidien. Par suite, Γ se trouve définie à un déplacement près dans
En, et est indéterminée en orientation.

23.3.2 Métrique euclidienne de raccordement le long d’une courbe

Au sujet du développement de la courbe Γ de C, nous allons établir le théorème suivant :

Théorème 23.3.1. Métrique euclidienne de raccordement
On peut trouver dans l’espace ponctuel euclidien En une métrique telle que les valeurs nu-

mériques que prennent ses coefficients et leurs dérivées premières le long de la courbe Γ de En,
coïncident avec les valeurs numériques que prennent les coefficients de la métrique riemannienne
et leurs dérivées premières aux points homologues de la courbe C de Rn.

Autrement dit, on peut construire une métrique euclidienne qui soit osculatrice à la métrique
riemannienne en tous les points de C.

Démonstration. Nous pouvons choisir les coordonnées dans Rn de sorte que la première
coordonnée soit la courbe C, les autres coordonnées étant nulles :

∀M ∈ C





x1
M = t

x2
M = · · · = xn

M = 0
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Avec la convention que les indices grecs varient de 2 à n, le système différentiel (169) p. 273
s’écrit : 




dm = dx1e1

∀i dei =
(
Γh

ki

)
xα=0

dx1eh

(170)

où les symboles de Christoffel sont évalués sur la courbe C, c’est-à-dire pour xα = 0. À tout
point P (xi) au voisinage d’un point M de C, faisons correspondre un point p au voisinage du
point m de C̄, en posant

mp =
[
xi

p − xi
m + 1

2
Γi

jk

(
xj

p − xj
m

) (
xk

p − xk
m

)
+ Φi

3

(
xr

p − xr
m

)]
ei (171)

où les fonctions Φi
3 sont du 3e ordre par rapport aux variables xr

p − xr
m pour xr

p − xr
m voisins de

zéro. Le point m décrivant la courbe C̄, ses coordonnées sont telles que :
{

x1
m = t

xα
m = 0

Le point p étant au voisinage de m : {
x1

p = x1
m

xα
p 6= 0

La relation (171) devient :

mp = xβ
peβ +

[
1
2

(
Γi

γδ

)
xγ

pxδ
p + Φi

3

(
xǫ

p

)]
ei (172)

Le point p de En se trouve défini comme fonction des n variables (xi). Les (xi) constituent donc
aussi un systéme de coordonnées curvilignes pour En dans le voisinage de C̄. Pour ce système
de coordonnées, le repère naturel en m(t, xα = 0) est défini par :





(
∂p

∂x1

)

xα=0

=
dm

dy1
= e1

(
∂p

∂xβ

)

xα=0

= eβ

(173)

Ce repère naturel coïncide avec le repère (m, ei) du développement de la courbe dans l’espace
ponctuel euclidien En. La métrique de En dans le système de coordonnées (xi), admet donc pour
coefficients en m les produits scalaires ei · ej .

Montrons qu’en tout point de la courbe C, ces coefficients sont égaux à ceux de la métrique
riemannienne. Avec la seconde relation de (170) nous avons :

d(ei · ej) = dei · ej + ei · dej

=
(
Γi

kh

)
M

eh · dejdxk +
(
Γh

kj

)
M

eh · deidxk

=
[(

Γi
kh

)
M

ghj +
(
Γh

kj

)
M

ghi

]
dyk

= dgij

Les quantités ei · ej et gij satisfont donc au même système différentiel. Or, d’après la relation
(168) p. 273, les conditions initiales sont les mêmes. Il en résulte

ei · ej = gij

identiquement quand M décrit C. Les métriques euclidienne et riemannienne sont donc tan-
gentes en tous point de C.
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Pour monter qu’elles sont osculatrices (tangentes à l’ordre deux), il faut monter que les
symboles de Christoffel en m dans En sont égaux à ceux en M dans Rn. Pour la première
coordonnée, d’après les relations (170) p. 274 et (173) :

(
∂2p

∂xi∂x1

)

xα=0

=
d

dx1

(
∂p

∂xi

)

xα=0
(
Γh

1i

)
M

eh =
∂ei

∂x1

=
(
Γh

1i

)
xα=0

eh
(
Γh

1i

)
M

=
(
Γh

1i

)
xα=0

Pour les autres coordonnées, avec (172) :
(

∂2p

∂xβ∂xγ

)

xα=0

=
(
Γi

βγ

)
xα=0

ei

(Le facteur 1
2

disparait car la somme dans (172) donne deux termes). Les métriques sont donc
osculatrices, et la métrique euclidienne obtenue est appelée métrique euclidienne de raccorde-
ment le long de C. �

Ainsi, grâce à un choix convenable de système de coordonnées, on peut rendre nuls tous les
symboles de Christoffel, non seulement en un point donné mais le long d’une courbe de l’espace
de Riemann. En relativité générale, cela revient à dire qu’il est toujours possible de trouver un
référentiel qui soit inertiel le long d’une ligne d’univers quelconque, géodésique ou non.

23.3.3 Application géométrique à la métrique euclidienne de raccordement

Soit C une courbe de l’espace riemannienn Rn, en chaque point M de C on attache un
vecteur unitaire u tangent à la courbe. Lorsque l’on passe du point M à un point de C infiniment
voisin, le vecteur u est transporté parallèlement (définition 23.1.5 p. 265), sa différentielle
absolue est nulle. Cette différentielle absolue est égale à celle du vecteur image dans l’espace
ponctuel euclidien En, dans une représentation du second ordre du voisinage de M (par exemple
celle d’une métrique euclidienne de raccordement). Le vecteur image n’est autre que le vecteur
unnitaire tangent à la courbe Γ développement de C. Par transport parallèle d’un vecteur dans
un espace euclidien, on construit une droite. On en conclue que les géodésiques d’un espace
riemannien sont les courbes qui se développent sur l’espace euclidien selon des droites.

23.4 Tenseur de courbure d’un espace riemannien

Introduisons le tenseur de courbure d’un espace riemannien en suivant une méthode géo-
métrique due à Élie Cartan. Dans un espace riemannien on constate que l’orientation d’un
repère partant d’un point M dépend au point d’arrivée N du trajet qu’il a suivi. Par exemple
un repère qui parcourt un triangle sphérique ne retrouve pas son orientation de départ à son
retour au point initial, et sa nouvelle orientation dépend du sens de parcours. Notez qu’il n’est
pas nécessaire de suivre des géodésiques pour mettre en évidence la rotation d’un repère.
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23.4.1 Quasi-parallélogramme

Introduisons deux symboles de différentiation, d et δ, que l’on supposera échangeables, c’est-
à-dire tels que :

∀j δdxj = dδxj (174)

Sous cette hypothèse, pour une fonction scalaire f(xj) deux fois continûment différentiable des
xj , nous avons :

dδf = d
(
∂jfδxj

)

= ∂jifδxjdxi + ∂jfdδxj

= ∂ijfdxiδxj + ∂ifδdxi

= δ
(
∂ifδxi

)

= δdf

La fonction f pouvant être par exemple un changement de variables, on en déduit que le
caractère échangeable de deux symboles de différentiation subsiste par un changement arbitraire
des variables xj.

Soit M(xj) un point de Rn :

— la différentiation d fait passer de M(xj) à M1(x
j + dxj) = M + dM

— la différentiation δ fait passer de M(xj) à M2(xj + δxj) = M + δM

Nous supposerons que dM et δM ne sont pas colinéaires, c’est-à-dire que dxj et δxj ne sont
pas proportionnels.

— de M1(xj + dxj), la différentiation δ fait passer au point M3(xj + δxj + dxj + δdxj)

— de M2(xj + δxj), la différentiation d fait passer au point M4(xj + dxj + δxj + dδxj)

D’après les relations (174) p. 276, les points M3 et M4 sont confondus. Le circuit fermé formé
des quatre points M, M1, M3, M2 est appelé quasi-parallélogramme dans Rn.

23.4.2 Développement du quasi-parallélogramme

Développons le quasi-parallélogramme dans l’espace ponctuel euclidien En tangent à l’es-
pace riemannien au point M . Pour rester dans cet espace nous nous maintenons au voisinage
infinitésimal du point M en considérant un trajet fermé infiniment petit. Lorsque dans Rn on
passe du point M au point infiniment proche M1, dans En on passe du repère (m, ej) au repère
(m + dm, ej + dej), et d’après (169) p. 273 :





dm = dxjej

∀j dej = ωi
jei = Γi

jkdxkei

Puis, lorsque dans Rn on passe du point M1 au point M3, dans En on passe au repère (m + dm

+δm + δdm, ej + dej + δej + δdej).

Maintenant, si dans Rn on passe du point M au point M2, dans En on passe du repère
(m, ej) au repère (m + δm, ej + δej), et avec les relations (169) :





δm = δxjej

∀j δej = ω̃i
jei = Γi

jkδxkei

Le tilde indique la forme différentielle prise par ω pour les δxj . Puis, lorsque dans Rn on passe du
point M2 au point M3, dans En on passe au repère (m + δm + dm + dδm, ej + δej +dej + dδej).
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Comparons les positions des repères finaux :

dδm − δdm = d(δxjej) − δ(dxjej)

= δxjdej − dxjδej

=
(
δxjΓi

jk dxk − dxjΓi
jk δxk

)
ei

=
(
δxjΓi

jk dxk − dxkΓi
kj δxj

)
ei

=
(
Γi

jk − Γi
kj

)
dxkδxjei

On suppose que les conditions d’intégrabilité des points sont satisfaites, et donc que les symboles
de Christoffel de deuxième espèce sont symétriques par rapport à leurs indices inférieurs :

dδm − δdm = 0

Les développements conduisent alors au même repère final, et le quasi-parallélogramme est
fermé également dans En.

Comparons les vecteurs des deux repères finaux :

∀j dδej − δdej = d
(
ω̃i

jei

)
− δ

(
ωi

jei

)

=
(
dω̃i

j − δωi
j

)
ei + ω̃k

jdek − ωk
jδek

=
(
dω̃i

j − δωi
j + ω̃k

jω
i
k − ωk

jω̃
i
k

)
ei

= Ωi
jei

où l’on a posé

∀i, j Ωi
j , dω̃i

j − δωi
j + ω̃k

jω
i
k − ωk

jω̃
i
k (175)

Les vecteurs finaux ont mêmes forme et grandeur puisque les produits scalaires de ces
vecteurs sont donnés par les coefficients de la métrique en M3. Par conséquent, les quantités
Ωi

j définissent la rotation permettant de passer d’un repère à l’autre autour du point m3 de
En. La courbure d’un espace riemannien se manifeste ainsi par le fait qu’en développant sur
l’espace euclidien, à partir d’un même repère initial, deux chemins ayant mêmes extrémités, les
repères finaux sont différents en orientation.

Remarque 44. Nous aurions pu comparer les repères finaux par ∀j δdej − dδej. Ainsi le tenseur
rotation Ωi

j est défini au signe près.

23.4.3 Tenseur rotation

Théorème 23.4.1. Les quantités Ωi
j sont les composantes mixtes d’un tenseur d’ordre deux.

Démonstration. Soit un changement de base naturelle tel que :

∀j ej =
∂xk′

∂xj
ek′

∀j δej =
∂xk′

∂xj
δek′ + δ

(
∂xk′

∂xj

)
ek′

∀j dδej =
∂xk′

∂xj
dδek′ + d

(
∂xk′

∂xj

)
δek′ + δ

(
∂xk′

∂xj

)
dek′ + dδ

(
∂xk′

∂xj

)
ek′
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De même :

∀j δdej =
∂xk′

∂xj
δdek′ + δ

(
∂xk′

∂xj

)
dek′ + d

(
∂xk′

∂xj

)
δek′ + δd

(
∂xk′

∂xj

)
ek′

d et δ étant échangeables devant les ∂xk′

/∂xj :

∀j dδej − δdej =
∂xk′

∂xj
dδek′ − ∂xk′

∂xj
δdek′

=
∂xk′

∂xj
(dδek′ − δdek′)

∀j Ωi
jei =

∂xk′

∂xj
Ωh′

k′eh′

=
∂xk′

∂xj
Ωh′

k′

∂xi

∂xh′
ei

∀h, j Ωi
j =

∂xk′

∂xj

∂xi

∂xh′
Ωh′

k′

�

23.4.4 Tenseur de courbure de Riemann-Christoffel de seconde espèce

À partir des relations (175) p. 277 :

∀i, j Ωi
j = dω̃i

j − δωi
j + ω̃k

jω
i
k − ωk

jω̃
i
k

— avec d’une part

∀i, j dω̃i
j − δωi

j = d
(
Γi

sj δxs
)

− δ
(
Γi

sj dxs
)

= ∂rΓ
i
sj dxrδxs + Γi

sj dδxs − ∂rΓ
i
sj δxrdxs − Γi

sj δdxs

= ∂rΓ
i
sj dxrδxs − ∂rΓ

i
sj δxrdxs

= ∂rΓ
i
sj dxrδxs − ∂sΓ

i
rj δxsdxr

=
(
∂rΓ

i
sj − ∂sΓ

i
rj

)
dxrδxs

— et d’autre part

∀i, j ω̃k
jω

i
k − ωk

jω̃
i
k = Γk

sj δxs Γi
rk dxr − Γk

rj dxr Γi
sk δxs

=
(
Γk

sj Γi
rk − Γk

rj Γi
sk

)
dxrδxs

nous avons :

∀i, j Ωi
j =

(
∂rΓ

i
sj − ∂sΓ

i
rj

)
dxrδxs +

(
Γk

sj Γi
rk − Γk

rj Γi
sk

)
dxrδxs

=
(
∂rΓ

i
sj − ∂sΓ

i
rj + Γk

sj Γi
rk − Γk

rj Γi
sk

)
dxrδxs

= Ri
j,rs dxrδxs

Les dxr et les δxs étant les composantes contravariantes de deux vecteurs arbitraires, et les Ωi
j

étant les composantes mixtes d’un tenseur d’ordre deux, il en résulte que les quantités Ri
j,rs

sont les composantes d’un tenseur d’ordre quatre, trois fois covariant et une fois contravariant,
antisymétrique par rapport aux indices r et s. Tout comme le tenseur rotation, il est défini au
signe près.
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Définition 23.4.1. Tenseur de courbure de Riemann-Christoffel de seconde espèce
Le tenseur d’ordre quatre

∀i, j, r, s Ri
j,rs , ∂rΓ

i
js − ∂sΓ

i
jr + Γk

js Γi
kr − Γk

jr Γi
ks

est appelé tenseur de courbure de Riemann-Christoffel de seconde espèce de l’espace rie-
mannien Rn.

Etant donnée une forme différentielle quadratique arbitraire, pour qu’elle soit la métrique
d’un espace euclidien, il est nécessaire que les conditions suivantes soient satisfaites :

∀i, j, r, s Ri
j,rs = 0 (176)

Dans ce cas, l’orientation du repère ne dépend pas du chemin suivi (par exemple le long d’un
parallélogramme), et les conditions (112) p. 222 sont intégrables.

Lorsque la variété correspondante est topologiquement équivalente à l’espace euclidien, on
démontre que ces conditions sont suffisantes. Lorsque la variété correspondante n’est pas to-
pologiquement équivalente à l’espace euclidien, si les conditions (176) sont satisfaites, l’espace
riemannien est dit localement euclidien : ses propriétés purement locales ne diffèrent pas de
celles d’un espace euclidien.

23.4.5 Tenseur de courbure de Riemann-Christoffel de première espèce

En abaissant l’indice contravariant dans la définition 23.4.1 p. 279, nous obtenons :

∀i, j, r, s Rij,rs = gih Rh
j,rs

= gih

(
∂rΓ

h
sj − ∂sΓ

h
rj + Γk

sj Γh
rk − Γk

rj Γh
sk

)

= gih ∂rΓ
h

sj − gih ∂sΓ
h

rj + Γk
sj Γirk − Γk

rj Γisk

= ∂r

(
gih Γh

sj

)
− Γh

sj ∂rgih − ∂s

(
gih Γh

rj

)
+ Γh

rj ∂sgih + Γk
sj Γirk − Γk

rj Γisk

= ∂r Γisj − ∂s Γirj + Γk
sj (Γirk − ∂rgik) − Γk

rj (Γisk − ∂sgik)

Les relations (123) p. 224 donnent :

Γijk + Γjik = ∂kgij

Γijk − ∂kgij = −Γjik

Γikr − ∂rgik = −Γkir

Γirk − ∂rgik = −Γkir

et

Γijk + Γjik = ∂kgij

Γijk − ∂kgij = −Γjik

Γiks − ∂sgik = −Γkis

Γisk − ∂sgik = −Γkis

si bien que l’on a la définition suivante :

Définition 23.4.2. Tenseur de courbure de Riemann-Christoffel de première espèce
Le tenseur d’ordre quatre

∀i, j, r, s Rij,rs , ∂r Γijs − ∂s Γijr + Γk
jr Γkis − Γk

js Γkir

est appelé tenseur de courbure de Riemann-Christoffel de première espèce de l’espace de
Riemann Rn.
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En dérivant les relations (126) p. 225 :

Γijk = 1
2

(gij,k + gki,j − gjk,i)

Γisj = 1
2

(gis,j + gji,s − gsj,i)

∂rΓisj = 1
2

(gis,jr + gji,sr − gsj,ir)

et

Γijk = 1
2

(gij,k + gki,j − gjk,i)

Γirj = 1
2

(gir,j + gji,r − grj,i)

∂sΓirj = 1
2

(gir,js + gji,rs − grj,is)

∀i, j, r, s Rij,rs = 1
2

(gis,jr + gji,sr − gsj,ir) − 1
2

(gir,js + gji,rs − grj,is) − Γk
sj Γkri + Γk

rj Γksi

= 1
2

(gis,jr + grj,is − gsj,ir − gir,js) − Γk
sj Γkri + Γk

rj Γksi (177)

23.4.6 Système de coordonnées localement géodésiques

En tout point d’un espace de Riemann il est toujours possible de définir un système de
coordonnées localement géodésiques. Ce système de coordonnées utilise les géodésiques passant
par un point donné comme système de coordonnées pour les points du voisinage. On peut
toujours choisir ce système de coordonnées de sorte qu’il soit orthonormal, on parle alors de
système de coordonnées géodésiques normal, ou système de coordonnées riemanniennes normal.
En tout point d’un espace passent une infinité de géodésiques, une par direction. Par exemple
une infinité de droites passent par un point du plan ou de l’espace euclidien, une infinité de
grands cercles passent par un point de la sphère. L’ensemble des géodésiques passant par un
point ne se croisent pas ailleurs qu’en ce point si l’on prend un voisinage suffisamment petit.
Les coordonnées géodésiques sont donc utilisées la plupart du temps localement. Cela revient à
se placer dans l’espace plat tangent au point considéré à l’espace de Riemann, et à utiliser un
système de coordonnées rectilignes.

L’emploi de ce système facilite les calculs car les propriétés (intrinsèques) des tenseurs
démontrées dans ce système de coordonnées sont valides dans tous les autres systèmes de
coordonnées. Nous montrons que dans les systèmes de coordonnées localement géodésiques, les
dérivées des composantes du tenseur métrique sont nulles et par conséquent les symboles de
Christoffel également. En ce point, la dérivée covariante se réduit à la dérivée partielle ordinaire.

Soit (xi) un système de coordonnées curviligne d’un espace riemannien Rn. Soit un point
M(a1, . . . , an) de Rn et soit P un point suffisamment voisin de M pour que deux géodésiques
passant par M ne passent pas par P . Considérons l’unique géodésique MP passant par M et
P , d’équations paramétriques

∀i xi = xi(s)

où le paramètre est l’abscisse curviligne s. Prenons le point M(ai) pour origine de l’abscisse
curviligne de cette géodésique :

∀i xi(0) = ai

Les coordonnées des points de cette géodésique peuvent se développer en série de puissance de
s au voisinage de M :

∀i = 1, . . . , n xi(s) = ai + s

(
dxi

ds

)

M

+
1

2
s2

(
d2xi

ds2

)

M

+ . . .

Les coordonnées du vecteur unitaire u(ui) tangent à la géodésique MP au point M s’écrivent :

∀i ui =

(
dxi

ds

)

M

Ce vecteur unitaire est dans l’hyperplan tangent à l’espace riemannien Rn.
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Remarque 45. L’hyperplan en question est un espace pré-euclidien de même dimension n que l’espace
riemannien, qui contient toutes les tangentes en M à toutes les courbes de Rn passant par M .

Les équations (163) p. 266 d’une géodésique nous donnent l’expression de la dérivée seconde
des coordonnées de la géodésique xi(s) par rapport à s au point M ,

∀i

(
d2xi

ds2

)

M

= −Γi
kj

(
dxk

ds

)

M

(
dxj

ds

)

M

si bien que :

∀i = 1, . . . , n xi = ai + sui − 1
2

s2
(
Γi

kj

)
M

ukuj + . . .

Plaçons-nous dans le système de coordonnées de centre M en effectuant le changement de
coordonnées (ou en posant ai = 0 ∀i)

∀i xi′

= xi − ai (178)

Alors

∀i = 1, . . . , n xi′

= sui − 1
2

s2
(
Γi

kj

)
M

ukuj + . . .

Définition 23.4.3. Coordonnées localement géodésiques
Les coordonnées localement géodésiques yi d’un point quelconque P suffisamment proche
de M(ai = 0) sont définies par :

∀i yi , sui (179)

où s est la distance de M à P le long de la géodésique.

Les coordonnées localement géodésiques ne conservent que la partie linéaire en s des co-
ordonnées curvilignes en prenant les tangentes aux géodésiques, et reviennent à effectuer le
changement de coordonnées :

∀i = 1, . . . , n yi = xi′

+ 1
2

s2
(
Γi

kj

)
M

ukuj

On a supprimé localement au point M la courbure du système de coordonnées géodésique (xi′

).
Les termes de courbure d’ordre supérieur sont négligés.

Remarque 46. Parmi l’infinité de géodésiques passant par le point M de l’espace riemannien Rn,
nous pouvons en choisir n dont les tangentes en M sont perpendiculaires, et construire ainsi un système
de coordonnées géodésiques normal.

Théorème 23.4.2. Au point origine M des coordonnées localement géodésiques, les symboles
de Christoffel de première et de deuxième espèce sont nuls, ainsi que les dérivées partielles des
composantes du tenseur métrique.

Démonstration. Pour un vecteur unitaire u de direction fixée et d’origine M , la dérivée
de (179) donne :

∀i
dyi

ds
= ui

∀i
d2yi

ds2
= 0
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Les équations (163) p. 266 donnent :

∀i

(
d2yi

ds2

)

M

+
(
Γi

kj

)
M

(
dyk

ds

)

M

(
dyj

ds

)

M

= 0

∀i
(
Γi

kj

)
M

ukuj = 0

Les symboles de Christoffel étant symétriques par rapport aux indices inférieurs, ils ne peuvent
s’annuler par soustraction. Par exemple pour k et j variant de 1 à 2 :

(
Γi

11

)
M

u1u1 +
(
Γi

12

)
M

u1u2 +
(
Γi

21

)
M

u2u1 +
(
Γi

22

)
M

u2u2 = 0
(
Γi

11

)
M

u1u1 +
[(

Γi
12

)
M

+
(
Γi

21

)
M

]
u1u2 +

(
Γi

22

)
M

u2u2 = 0
(
Γi

11

)
M

u1u1 + 2
(
Γi

12

)
M

u1u2 +
(
Γi

22

)
M

u2u2 = 0

⇒
(
Γi

11

)
M

=
(
Γi

12

)
M

=
(
Γi

22

)
M

= 0

Par conséquent

∀i, j, k
(
Γi

kj

)
M

= 0

dans le système de coordonnées localement géodésiques de centre M . Les relations (117) p. 223
donnent les symboles de Christoffel de première espèce :

∀i, j, k (Γijk)M = gjh

(
Γh

ik

)
M

= 0

Les relations (123) p. 224 donnent les dérivées partielles des composantes du tenseur métrique :

∀i, j, k (∂kgij)M = (Γjik)M + (Γijk)M

= 0

�

D’après les équations (164) p. 267 le champ gravitationnnel de la physique non relativiste
devient la courbure de l’espace-temps en relativité générale. En un point arbitraire de l’espace-
temps, le système de coordonnées localement géodésiques permet d’éliminer localement autour
de ce point la courbure de l’espace-temps, donc le champ gravitationnel. En physique non
relativiste, l’égalité observée entre masse grave et masse inerte (principe d’équivalence entre
masse grave et masse inerte) entraine l’égalité locale entre forces d’inertie et force de gravitation :
principe d’équivalence locale entre ces forces. Le caractère local de cette équivalence est en
accord avec le fait que les lois de la physique sont toutes locales. Le choix toujours possible
d’un système de coordonnées localement géodésiques est l’expression du principe d’équivalence
en relativité générale. En physique relativiste et non relativiste on parle de système de référence
localement inertiel, et de système de coordonnées galiléen.

23.4.7 Propriétés du tenseur de courbure de première espèce

À partir des relations (177) p. 280, dans le système de coordonnées localement géodésiques
le tenseur de courbure de Riemann-Christoffel de première espèce s’écrit :

∀i, j, r, s Rij,rs = 1
2

(∂rigsj + ∂sjgri − ∂rjgsi − ∂sigrj) (180)

où les gij sont les coefficients de l’élément linéaire en coordonnées localement géodésiques.

Remarque 47. Cette dernière relation n’est valable qu’en coordonnées géodésiques, par exemple en
coordonnées cartésiennes dans le plan mais pas en coordonnées polaires dans le plan. De plus elle n’est valable
qu’en un point, au centre du système de coordonnées géodésiques. En revanche les propriétés de symétrie du
tenseur de courbure sont valables dans tous les systèmes de coordonnées.
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23.4.7.1 Antisymétries et symétrie par blocs

(1) Antisymétrie par rapport aux indices i et j :

∀i, j, r, s Rji,rs = 1
2

(∂rjgsi + ∂sigrj − ∂rigsj − ∂sjgri)

∀i, j, r, s Rji,rs = −Rij,rs (181)

(2) Antisymétrie par rapport aux indices r et s :

∀i, j, r, s Rij,sr = 1
2

(∂sigrj + ∂rjgsi − ∂sjgri − ∂rigsj)

∀i, j, r, s Rij,sr = −Rij,rs (182)

(3) Symétrique par blocs d’indices ij, et rs :

∀i, j, r, s Rrs,ij = 1
2

(∂irgjs + ∂jsgir − ∂isgjr − ∂jrgis)

∀i, j, r, s Rrs,ij = Rij,rs

23.4.7.2 Premières identités de Bianchi

Le tenseur de courbure est cyclique. Par permutation circulaire sur les indices j, r, s puis
addition, nous obtenons les premières identités de Bianchi :

∀i, j, r, s Rij,rs = 1
2

(∂rigsj + ∂sjgri − ∂rjgsi − ∂sigrj)

∀i, j, r, s Rir,sj = 1
2

(∂sigjr + ∂jrgsi − ∂srgji − ∂jigsr)

∀i, j, r, s Ris,jr = 1
2

(∂jigrs + ∂rsgji − ∂jsgri − ∂rigjs)

∀i, j, r, s Rij,rs + Rir,sj + Ris,jr = 0

23.4.7.3 Composantes indépendantes

Dans un espace à n dimensions, le tenseur de courbure de Riemann-Christoffel a n4 compo-
santes. À l’aide de propriétés précédentes, calculons le nombre de composantes indépendantes.
Par composante indépendante on entend une composante non nulle qui ne soit pas l’opposée
d’une autre composante déjà comptabilisée comme indépendante, ou qui ne soit la somme de
deux autres composantes.

(1) Commençons par dénombrer les composantes ayant 4 indices identiques, du type Raa,aa

où a est la valeur prise par les indices i, j, r, s. L’antisymétrie par rapport aux indices
i et j donne :

Raa,aa = −Raa,aa

= 0

(2) Les composantes ayant 3 indices identiques sont de 4 types :

Raa,ab, Raa,ba, Rab,aa, Rba,aa avec a 6= b

La symétrie par blocs puis l’antisymétrie par rapport aux indices i, j ou r, s donnent :

Raa,ab = Rab,aa

= −Raa,ab

= 0

et

Raa,ba = Rba,aa

= −Raa,ba

= 0
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(3) Les composantes ayant exactement 2 fois 2 indices identiques sont de 6 types :

Raa,bb, Rab,ab, Rba,ab, Rba,ba, Rbb,aa, Rab,ba

La condition a 6= b est trop faible et l’on doit poser soit a < b soit a > b pour ne pas
tout compter deux fois (si a prend l’ancienne valeur de b, et b prend l’ancienne valeur
de a). Cette condition sert au dénombrement et n’a pas de rapport avec les propriétés
de symétrie du tenseur de courbure.

On peut aussi écrire que les composantes sont des 3 types suivants

Raa,bb, Rab,ab, Rab,ba avec a 6= b

La symétrie par blocs puis l’antisymétrie par rapport aux indices i, j ou r, s donnent :

Raa,bb = Rbb,aa

= −Raa,bb

= 0

et
Rab,ab = −Rba,ab = Rba,ba = −Rab,ba a < b

= −Rab,ba a 6= b

Donc 2 types de composantes nulles et 4 types de composantes non indépendantes. Il ne
reste plus qu’à dénombrer les composantes du type Rab,ab, ce qui revient à dénombrer
ab. Dans un espace de dimension n, l’un des indices prend n valeurs et l’autre n − 1
valeurs car il est différent du premier (a 6= b). Il s’agit de choisir deux nombres différents
parmi n où l’ordre des nombres choisis n’intervient pas. Ceci est équivalent à tirer sans
remise 2 boules parmi n boules numérotées de 1 à n sans tenir compte de l’ordre. C’est
une combinaison :

C2
n = n(n − 1)/2

(4) Les composantes ayant exactement 2 indices identiques (autrement dit exactement 3
indices différents) sont de 12 types

Raa,bc, Raa,cb, Rbc,aa, Rcb,aa, Rab,ca, Rac,ba, Rba,ac, Rca,ab, Rba,ca, Rca,ba, Rab,ac, Rac,ab

avec a 6= b et a 6= c sinon on serait dans le cas (2). Ici aussi la condition b 6= c est
trop faible et l’on doit poser b < c (ou b > c) pour ne pas tout compter deux fois.
En revanche, a étant présent deux fois, les valeurs de a et de b, et celles de a et de
c peuvent s’échanger sans redonner la même composante. Ainsi les conditions a 6= b,
a 6= c et b < c donnent les trois cas : a < b < c, b < a < c et b < c < a.

On peut aussi écrire que les composantes sont des 6 types suivants

Raa,bc, Rbc,aa, Rab,ca, Rba,ac, Rba,ca, Rab,ac avec a 6= b, a 6= c, b 6= c

L’antisymétrie par rapport aux indices i, j ou r, s donne :

Raa,bc = Raa,cb = Rbc,aa = Rcb,aa = 0

L’antisymétrie et la symétrie par blocs donnent :

Rab,ac = −Rab,ca = Rba,ca = −Rba,ac = −Rac,ba = Rac,ab = −Rca,ab = Rca,ba

Donc 4 types de composantes nulles et 8 types de composantes non indépendantes. Il
ne reste plus qu’à dénombrer Rab,ac. Par hypothèse a 6= b, a 6= c, b 6= c, donc un indice
prend n valeurs, l’autre prend n − 1 valeurs et le dernier prend n − 2 valeurs. Nous
avons trois cas, a < b < c, b < a < c et b < c < a, pour chaque cas C3

n combinaisons :

3C3
n = n(n − 1)(n − 2)/2
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(5) Les composantes ayant leurs 4 indices différents sont de 24 types :

Rab,cd = −Rab,dc = Rba,dc = −Rba,cd = −Rcd,ba = Rcd,ab = −Rdc,ab = Rdc,ba

Rac,bd = −Rac,db = Rca,db = −Rca,bd = −Rbd,ca = Rbd,ac = −Rdb,ac = Rdb,ac

Rad,bc = −Rad,cb = Rda,cb = −Rda,bc = −Rbc,da = Rbc,ad = −Rcb,ad = Rcb,da

avec a < b < c < d pour ne pas tout compter plusieurs fois. Nous avons 3 ensembles
de 8 types de composantes non indépendantes. Les identités de Bianchi montrent que
le dernier ensemble dépend des deux premiers car

Rab,cd + Rac,bd = −Rad,bc

Il reste deux ensembles de huit types de composantes non indépendantes. Nous dé-
nombrons C4

n combinaisons pour les composantes de type Rab,cd et autant pour celles
de type Rac,bd, soit :

2C4
n = n(n − 1)(n − 2)(n − 3)/12

Au total, dans un espace de dimension n, le nombre de composantes non nulles et indépendantes
du tenseur de courbure de Riemann-Christoffel est donné par :

n(n − 1)

2
+

n(n − 1)(n − 2)

2
+

n(n − 1)(n − 2)(n − 3)

12
=

n(n − 1)

2

[
1 + (n − 2)

(
1 +

n − 3

6

)]

=
n(n − 1)

2

[
1 +

(n − 2)(n + 3)

6

]

=
(
n2 − n

) (
n2 + n

)
/12

= n2
(
n2 − 1

)
/12

Exemple 23.4.1. Dans un espace riemannien à une dimension le tenseur de courbure a
14 = 1 composante, dont 12(12 − 1)/12 = 0 indépendantes. Le tenseur de courbure d’une
courbe est nul

R11,11 = 0

car c’est bien la courbure intrinsèque qui est mesurée.

Exemple 23.4.2. Dans un espace riemannien à deux dimensions le tenseur de courbure
a 24 = 16 composantes, dont 22(22 − 1)/12 = 1 seule indépendante :

R12,12 = −R12,21 = R21,21 = −R21,12

Les composantes ont 2 fois 2 indices identiques, et l’on a bien 2(2 − 1)/2 = 1.

(1) En coordonnées cartésiennes du plan, autrement dit pour l’élément différentiel

ds2 =
(
dx1

)2
+
(
dx2

)2

le tenseur métrique est constant, tous les symboles de Christoffel sont nuls (21.4.6
p. 226). D’après la définition 23.4.2 p. 279 du tenseur de courbure de première
espèce, toutes les composantes du tenseur de courbure sont nulles, l’espace est
plat.
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(2) En coordonnées polaires appliquées au plan, l’élément différentiel (voir (21)
p. 63) s’écrit :

ds2 =
(
dx1

)2
+
(
x1
)2 (

dx2
)2

avec x1 = ρ et x2 = θ, où g11 = 1 et g22 = (x1)
2. Calculons la valeur de la

seule composante indépendante potentiellement non nulle grâce aux symboles de
Christoffel non nuls donnés dans l’exemple 21.4.3 p. 227 :





Γ212 = Γ221 = x1

Γ122 = −x1
et





Γ2
12 = Γ2

21 = 1/x1

Γ1
22 = −x1

Avec la définition 23.4.2 p. 279 du tenseur de courbure de première espèce :

∀i, j, r, s Rij,rs , ∂r Γijs − ∂s Γijr + Γk
jr Γkis − Γk

js Γkir

R12,12 = ∂1 Γ122 − ∂2 Γ121 + Γk
21 Γk12 − Γk

22 Γk11

= ∂1 Γ122 − ∂2 Γ121 + Γ1
21 Γ112 − Γ1

22 Γ111 + Γ2
21 Γ212 − Γ2

22 Γ211

= ∂1 Γ122 + Γ2
21 Γ122

= −1 + x1/x1

= 0

Le tenseur de courbure est nul et l’espace est plat.

Exemple 23.4.3. Dans un espace riemannien à trois dimensions le tenseur de courbure
a 34 = 81 composantes, dont 32(32 − 1)/12 = 6 indépendantes.
3(3 − 1)/2 = 3 composantes ayant 2 fois 2 indices identiques :

R12,12 = −R12,21 = R21,21 = −R21,12

R13,13 = −R13,31 = R31,31 = −R31,13

R23,23 = −R23,32 = R32,32 = −R32,23

3(3 − 1)(3 − 2)/2 = 3 composantes ayant exactement 2 indices identiques :

R12,13 = −R12,31 = R21,31 = −R21,13 = −R13,21 = R13,12 = −R31,12 = R31,21

R21,23 = −R21,32 = R12,32 = −R12,23 = −R23,12 = R23,21 = −R32,21 = R32,12

R31,32 = −R31,23 = R13,23 = −R13,32 = −R32,13 = R32,31 = −R23,31 = R23,13

En coordonnées sphériques dans l’espace euclidien, autrement dit pour l’élément différen-
tiel (voir (22) p. 65)

ds2 = d
(
x1
)2

+
(
x1dx2

)2
+
(
x1 sin x2

)2 (
dx3

)2

avec x1 = ρ, x2 = θ et x3 = φ, d’après l’exemple 21.4.4 p. 228 les symboles de Christoffel
non nuls sont les suivants :
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



Γ221 = Γ212 = x1

Γ331 = Γ313 = x1 sin2 x2

Γ332 = Γ323 =
(
x1
)2

sin x2 cos x2

Γ122 = −x1

Γ133 = −x1 sin2 x2

Γ233 = −
(
x1
)2

sin x2 cos x2

et





Γ2
21 = Γ2

12 = 1/x1

Γ3
31 = Γ3

13 = 1/x1

Γ3
32 = Γ3

23 = cot x2

Γ1
22 = −x1

Γ1
33 = −x1 sin2 x2

Γ2
33 = − sin x2 cos x2

Avec la définition 23.4.2 p. 279 du tenseur de courbure de première espèce :

R12,12 = ∂1 Γ122 − ∂2 Γ121 + Γ1
21 Γ112 − Γ1

22 Γ111 + Γ2
21 Γ212 − Γ2

22 Γ211

= ∂1 Γ122 + Γ2
21 Γ212 = −1 + x1/x1 = 0

R13,13 = ∂1 Γ133 − ∂3 Γ131 + Γ1
31 Γ113 − Γ1

33 Γ111 + Γ3
31 Γ313 − Γ3

33 Γ311

= ∂1 Γ133 + Γ3
31 Γ313 = − sin2 x2 + x1 sin2 x2/x1 = 0

R23,23 = ∂2 Γ233 − ∂3 Γ232 + Γ2
32 Γ223 − Γ2

33 Γ222 + Γ3
32 Γ323 − Γ3

33 Γ322

= ∂2 Γ233 + Γ3
32 Γ323 = −

(
x1
)2

cos2 x2 + cot x2
(
x1
)2

sin x2 cos x2 = 0

∀i, j, r, s Rij,rs , ∂r Γijs − ∂s Γijr + Γk
jr Γkis − Γk

js Γkir

R12,13 = ∂1 Γ123 − ∂3 Γ121 + Γk
21 Γk13 − Γk

23 Γk11

= ∂1 Γ123 − ∂3 Γ121 + Γ1
21 Γ113 − Γ1

23 Γ111 + Γ2
21 Γ213 − Γ2

23 Γ211

+ Γ3
21 Γ313 − Γ3

23 Γ311 = 0

R21,23 = ∂2 Γ213 − ∂3 Γ212 + Γk
12 Γk23 − Γk

13 Γk22

= ∂2 Γ213 − ∂3 Γ212 + Γ1
12 Γ123 − Γ1

13 Γ122 + Γ2
12 Γ223 − Γ2

13 Γ222

+ Γ3
12 Γ323 − Γ3

13 Γ322 = 0

R31,32 = ∂3 Γ312 − ∂2 Γ313 + Γk
13 Γk32 − Γk

12 Γk33

= ∂3 Γ312 − ∂2 Γ313 + Γ1
13 Γ132 − Γ1

12 Γ133 + Γ2
13 Γ232 − Γ2

12 Γ233

+ Γ3
13 Γ332 − Γ3

12 Γ333

= −∂2 Γ313 − Γ2
12 Γ233 + Γ3

13 Γ332

= −2x1 sin x2 cos x2 + x1 sin x2 cos x2 + x1 sin x2 cos x2 = 0

Le tenseur de courbure est nul et l’espace est plat.

Exemple 23.4.4. Dans un espace riemannien à quatre dimensions le tenseur de courbure
a 44 = 256 composantes, dont 42(42 − 1)/12 = 20 indépendantes.
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4(4 − 1)/2 = 6 composantes ayant 2 fois 2 indices identiques :

R12,12 = −R12,21 = R21,21 = −R21,12

R13,13 = −R13,31 = R31,31 = −R31,13

R14,14 = −R14,41 = R41,41 = −R41,14

R23,23 = −R23,32 = R32,32 = −R32,23

R24,24 = −R24,42 = R42,42 = −R42,24

R34,34 = −R34,43 = R43,43 = −R43,34

4(4 − 1)(4 − 2)/2 = 12 composantes ayant exactement 2 indices identiques :

R12,13 = −R12,31 = R21,31 = −R21,13 = −R13,21 = R13,12 = −R31,12 = R31,21

R12,14 = −R12,41 = R21,41 = −R21,14 = −R14,21 = R14,12 = −R41,12 = R41,21

R13,14 = −R13,41 = R31,41 = −R31,14 = −R14,31 = R14,13 = −R41,13 = R41,31

R21,23 = −R21,32 = R12,32 = −R12,23 = −R23,12 = R23,21 = −R32,21 = R32,12

R21,24 = −R21,42 = R12,42 = −R12,24 = −R24,12 = R24,21 = −R42,21 = R42,12

R23,24 = −R23,42 = R32,42 = −R32,24 = −R24,32 = R24,23 = −R42,23 = R42,32

R31,32 = −R31,23 = R13,23 = −R13,32 = −R32,13 = R32,31 = −R23,31 = R23,13

R31,34 = −R31,43 = R13,43 = −R13,34 = −R34,13 = R34,31 = −R43,31 = R43,13

R32,34 = −R32,43 = R23,43 = −R23,34 = −R34,23 = R34,32 = −R43,32 = R43,32

R41,42 = −R41,24 = R14,24 = −R14,42 = −R42,14 = R42,41 = −R24,41 = R24,14

R41,43 = −R41,34 = R14,34 = −R14,43 = −R43,14 = R43,41 = −R34,41 = R34,14

R42,43 = −R42,34 = R24,34 = −R24,43 = −R43,24 = R43,42 = −R34,42 = R34,24

4(4 − 1)(4 − 2)(4 − 3)/12 = 2 composantes ayant 4 indices différents :

R12,34 = −R12,43 = R21,43 = −R21,34 = −R34,21 = R34,12 = −R43,12 = R43,21

R13,24 = −R13,42 = R31,42 = −R31,24 = −R24,31 = R24,13 = −R42,13 = R42,13

23.4.8 Dérivées covariantes secondes d’un vecteur

Soit un champ de vecteurs de composantes contravariantes vh, cherchons la différence entre
∇r

(
∇sv

h
)

et ∇s

(
∇rv

h
)
. Reprenons les relations (149) p. 246, ∀h, r, s

∇r

(
∇sv

h
)

= ∂rsv
h + vi∂rΓ

h
is + Γh

is ∂rv
i − Γk

sr ∂kvh − vi Γh
ik Γk

sr + Γh
kr ∂sv

k + vi Γk
is Γh

kr

∇s

(
∇rv

h
)

= ∂srv
h + vi∂sΓ

h
ir + Γh

ir ∂sv
i − Γk

rs ∂kvh − vi Γh
ik Γk

rs + Γh
ks ∂rv

k + vi Γk
ir Γh

ks

si bien que ∀h, r, s :

∇r

(
∇sv

h
)

− ∇s

(
∇rv

h
)

= vi∂rΓ
h

is − vi∂sΓ
h

ir + Γh
is ∂rv

i − Γh
ir ∂sv

i + Γh
kr ∂sv

k − Γh
ks ∂rv

k + vi Γk
is Γh

kr − vi Γk
ir Γh

ks

= vi
(
∂rΓ

h
is − ∂sΓ

h
ir

)
+ Γh

is ∂rv
i − Γh

ir ∂sv
i + Γh

ir ∂sv
i − Γh

is ∂rv
i + vi

(
Γk

is Γh
kr − Γk

ir Γh
ks

)

On en déduit qu’au point M :

∀h, r, s ∇r

(
∇sv

h
)

− ∇s

(
∇rv

h
)

= vi
(
∂rΓ

h
is − ∂sΓ

h
ir + Γk

is Γh
kr − Γk

ir Γh
ks

)
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On reconnait la définition 23.4.1 p. 279 du tenseur de courbure de Riemann-Christoffel de
seconde espèce :

∀h, r, s ∇r

(
∇sv

h
)

− ∇s

(
∇rv

h
)

= viRh
i,rs

Dans un espace courbe, les dérivées covariantes secondes d’un vecteur, et plus généralement d’un
tenseur, dépendent de l’ordre des dérivations (ce qui n’a pas lieu pour les dérivées ordinaires).

23.4.9 Tenseur de courbure de Ricci

Nous verrons au paragraphe 26.9 p. 347 que pour établir les équations de la relativité
générale nous devons trouver un tenseur chronogéométrique (lié uniquement à la courbure de
l’espace-temps) symétrique d’ordre deux.

Effectuons toutes les contractions possibles du tenseur de courbure de Riemann-Christoffel.
En utilisant les symétries du tenseur de courbure du paragraphe 23.4.7 p. 282 :

Rij,rs = −Rji,rs = Rji,sr = −Rij,sr = Rrs,ij = −Rsr,ij = Rsr,ji = Rrs,ji

gijRij,rs = −gijRji,rs = gijRji,sr = −gijRij,sr = gijRrs,ij = −gijRsr,ij = gijRsr,ji = gijRrs,ji

Rrs = −Rrs = Rsr = −Rsr = 0

grsRij,rs = gijRrs,ij

= 0

girRij,rs = −girRji,rs = girRji,sr = −girRij,sr = girRrs,ij = −girRsr,ij = girRsr,ji = girRrs,ji

Rjs = −Rjs = Rsj = −Rsj = 0

gjsRij,rs = girRji,sr

= 0

gisRij,rs = −gisRji,rs = gisRji,sr = −gisRij,sr = gisRrs,ij = −gisRsr,ij = gisRsr,ji = gisRrs,ji

Rjr = Rrj

gjrRij,rs = gisRji,sr

R r
i ,rs = R s

j ,sr

Ris = Rjr

Par contraction du tenseur de courbure de Riemann-Christoffel, nous ne pouvons donc former
qu’un seul tenseur, le tenseur symétrique d’ordre deux Ris, qui s’écrit également Rjr.

Définition 23.4.4. Tenseur de courbure de Ricci
Le tenseur symétrique d’ordre deux

∀i, s Ris , gjrRij,rs

= R r
i ,rs

= ∂rΓ
r
si − ∂sΓ

r
ri + Γk

si Γr
rk − Γk

ri Γr
sk

est appelé tenseur de courbure de Ricci de l’espace riemannien Rn.
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Montrons que ce tenseur est symétrique en montrant que chacun de ses termes est symé-
trique :

∂rΓ
r
si = ∂rΓ

r
is

Γk
si Γr

rk = Γk
is Γr

rk

Γk
ri Γr

sk = Γk
rs Γr

ik

∂sΓ
r
ri = ∂s

(
1
2g

∂ig
)

= 1
2
∂s(∂i ln |g|)

= 1
2
∂i(∂s ln |g|)

= ∂iΓ
r
rs

Exemple 23.4.5. Tenseur de Ricci dans les espaces pré-euclidiens
D’après le paragraphe 21.4.6 p. 226, dans les espaces pré-euclidiens les symboles de Chris-
toffel sont nuls. Par conséquent le tenseur de Ricci est également nul. Par exemple dans
l’espace-temps pseudo-euclidien de la relativité restreinte :

∀µ, ν Rµν = 0

Exemple 23.4.6. Tenseur de Ricci d’une sphère
En se servant de l’exemple 21.4.5 p. 229 :

Rθθ = ∂rΓ
r
θθ − ∂θΓr

rθ + Γk
θθ Γr

rk − Γk
rθ Γr

θk

= −∂θΓφ
φθ − Γφ

φθ Γφ
θφ

= 1 + cot2(θ) − cot2(θ)

= 1

Rφφ = ∂rΓ
r
φφ − ∂φΓr

rφ + Γk
φφ Γr

rk − Γk
rφ Γr

φk

= ∂θΓθ
φφ + Γθ

φφ Γr
rθ − Γφ

rφ Γr
φφ − Γθ

rφ Γr
φθ

= ∂θΓθ
φφ + Γθ

φφ

(
Γθ

θθ + Γφ
φθ

)
− Γφ

θφ Γθ
φφ − Γφ

φφ Γφ
φφ − Γθ

θφ Γθ
φθ − Γθ

φφ Γφ
φθ

= ∂θΓθ
φφ + Γθ

φφΓφ
φθ − Γφ

θφ Γθ
φφ − Γθ

φφ Γφ
φθ

= ∂θΓθ
φφ − Γφ

θφ Γθ
φφ

= sin2(θ) − cos2(θ) + cos2(θ)

= sin2(θ)

Rθφ = ∂rΓ
r
θφ − ∂θΓr

rφ + Γk
θφ Γr

rk − Γk
rφ Γr

θk

= ∂θΓ
θ
θφ − ∂θΓ

θ
θφ + Γφ

θφ Γr
rφ − Γφ

rφ Γr
θφ

= ∂θΓ
θ
θφ − ∂θΓ

θ
θφ

= 0
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Exemple 23.4.7. Tenseur de Ricci pour la métrique de Schwarzschild
Grâce aux symboles de Christoffel, exercice 21.4.6 p. 229, calculons la composante R00 :

R00 = ∂rΓ
r
00 − ∂0Γr

r0 + Γk
00 Γr

rk − Γk
r0 Γr

0k

∂rΓ
r
00 = ∂0Γ0

00 + ∂1Γ1
00 + ∂2Γ2

00 + ∂3Γ3
00

= ∂0Γ0
00 + ∂1Γ1

00

= 1
2
∂ctα̇ + 1

2
∂r

(
α′eα−β

)

= 1
2
α̈ +

(
1
2
α′′ + 1

2
α′2 − 1

2
α′β ′

)
eα−β

∂0Γr
r0 = ∂0Γ0

00 + ∂0Γ1
10 + ∂0Γ2

20 + ∂0Γ3
30

= 1
2
∂ctα̇ + 1

2
∂rβ̇

= 1
2
α̈ + 1

2
β̈

Γk
00 Γr

rk = Γ0
00 Γr

r0 + Γ1
00 Γr

r1 + Γ2
00 Γr

r2 + Γ3
00 Γr

r3

= Γ0
00 Γr

r0 + Γ1
00 Γr

r1

= Γ0
00

(
Γ0

00 + Γ1
10 + Γ2

20 + Γ3
30

)
+ Γ1

00

(
Γ0

01 + Γ1
11 + Γ2

21 + Γ3
31

)

= 1
2
α̇
(

1
2
α̇ + 1

2
β̇
)

+ 1
2
α′eα−β

(
1
2
α′ + 1

2
β ′ + 1

r
+ 1

r

)

= 1
4
α̇2 + 1

4
α̇β̇ +

(
1
4
α′2 + 1

4
α′β ′ + 1

r
α′
)

eα−β

Γk
r0 Γr

0k = Γ0
r0 Γr

00 + Γ1
r0 Γr

01 + Γ2
r0 Γr

02 + Γ3
r0 Γr

03

= Γ0
r0 Γr

00 + Γ1
r0 Γr

01

= Γ0
00Γ

0
00 + Γ0

10Γ
1
00 + Γ0

20Γ
2
00 + Γ0

30Γ3
00

+ Γ1
00Γ0

01 + Γ1
10Γ1

01 + Γ1
20Γ2

01 + Γ1
30Γ3

01

= Γ0
00 Γ0

00 + Γ0
10 Γ1

00 + Γ1
00Γ0

01 + Γ1
10Γ1

01

= 1
4
α̇2 + 1

4
α′2eα−β + 1

4
α′2eα−β + 1

4
β̇2

= 1
4
α̇2 + 1

4
β̇2 + 1

2
α′2eα−β

R00 = 1
2
α̈ +

(
1
2
α′′ + 1

2
α′2 − 1

2
α′β ′

)
eα−β − 1

2
α̈ − 1

2
β̈

+ 1
4
α̇2 + 1

4
α̇β̇ +

(
1
4
α′2 + 1

4
α′β ′ + 1

r
α′
)

eα−β

− 1
4
α̇2 − 1

4
β̇2 − 1

2
α′2eα−β

= −1
2
β̈ + 1

4
α̇β̇ − 1

4
β̇2 +

(
1
2
α′′ + 1

4
α′2 − 1

4
α′β ′ + 1

r
α′
)

eα−β

Calculons la composante R10 :

R10 = ∂rΓ
r
01 − ∂0Γr

r1 + Γk
01 Γr

rk − Γk
r1 Γr

0k

∂rΓ
r
01 = ∂0Γ0

01 + ∂1Γ1
01 + ∂2Γ2

01 + ∂3Γ3
01

= ∂0Γ0
01 + ∂1Γ1

01

= 1
2
∂ctα

′ + 1
2
∂rβ̇

= 1
2
α̇′ + 1

2
β̇ ′
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∂0Γ
r
r1 = ∂0Γ0

01 + ∂0Γ1
11 + ∂0Γ2

21 + ∂0Γ3
31

= 1
2
∂ctα

′ + 1
2
∂ctβ

′ + ∂ct
1
r

+ ∂ct
1
r

= 1
2
α̇′ + 1

2
β̇ ′

Γk
01 Γr

rk = Γ0
01 Γr

r0 + Γ1
01 Γr

r1 + Γ2
01 Γr

r2 + Γ3
01 Γr

r3

= Γ0
01 Γr

r0 + Γ1
01 Γr

r1

= Γ0
01

(
Γ0

00 + Γ1
10 + Γ2

20 + Γ3
30

)
+ Γ1

01

(
Γ0

01 + Γ1
11 + Γ2

21 + Γ3
31

)

= Γ0
01Γ0

00 + Γ0
01Γ1

10 + Γ1
01Γ

0
01 + Γ1

01Γ
1
11 + Γ1

01Γ
2
21 + Γ1

01Γ
3
31

= 1
4
α′α̇ + 1

4
α′β̇ + 1

4
α′β̇ + 1

4
β̇β ′ + 1

r
β̇

= 1
4
α′α̇ + 1

2
α′β̇ + 1

4
β̇β ′ + 1

r
β̇

Γk
r1 Γr

0k = Γ0
r1 Γr

00 + Γ1
r1 Γr

01 + Γ2
r1 Γr

02 + Γ3
r1 Γr

03

= Γ0
r1 Γr

00 + Γ1
r1 Γr

01

= Γ0
01Γ0

00 + Γ0
11Γ1

00 + Γ0
21Γ2

00 + Γ0
31Γ3

00

+ Γ1
01 Γ0

01 + Γ1
11 Γ1

01 + Γ1
21 Γ2

01 + Γ1
31 Γ3

01

= Γ0
01Γ0

00 + Γ0
11Γ1

00 + Γ1
01 Γ0

01 + Γ1
11 Γ1

01

= 1
4
α′α̇ + 1

4
α′β̇ + 1

4
α′β̇ + 1

4
β̇β ′

= 1
4
α′α̇ + 1

2
α′β̇ + 1

4
β̇β ′

R10 = β̇
r

Calculons la composante R11 :

R11 = ∂rΓ
r
11 − ∂1Γr

r1 + Γk
11 Γr

rk − Γk
r1 Γr

1k

∂rΓ
r
11 = ∂0Γ0

11 + ∂1Γ1
11 + ∂2Γ2

11 + ∂3Γ3
11

= ∂0Γ0
11 + ∂1Γ1

11

= 1
2
∂ct

(
β̇eβ−α

)
+ 1

2
∂rβ

′

= 1
2
β ′′ +

(
1
2
β̈ + 1

2
β̇2 − β̇α̇

)
eβ−α

∂1Γ
r
r1 = ∂1Γ0

01 + ∂1Γ1
11 + ∂1Γ2

21 + ∂1Γ3
31

= 1
2
∂rα

′ + 1
2
∂rβ

′ + ∂r
1
r

+ ∂r
1
r

= 1
2
α′′ + 1

2
β ′′ − 2

r2

Γk
11 Γr

rk = Γ0
11 Γr

r0 + Γ1
11 Γr

r1 + Γ2
11 Γr

r2 + Γ3
11 Γr

r3

= Γ0
11 Γr

r0 + Γ1
11 Γr

r1

= Γ0
11

(
Γ0

00 + Γ1
10 + Γ2

20 + Γ3
30

)
+ Γ1

11

(
Γ0

01 + Γ1
11 + Γ2

21 + Γ3
31

)

= Γ0
11Γ0

00 + Γ0
11Γ1

10 + Γ1
11Γ

0
01 + Γ1

11Γ
1
11 + Γ1

11Γ
2
21 + Γ1

11Γ
3
31

= 1
4
β̇α̇eβ−α + 1

4
β̇2eβ−α + 1

4
β ′α′ + 1

4
β ′2 + 1

2r
β ′ + 1

2r
β ′

= 1
4
β ′α′ + 1

4
β ′2 + 1

r
β ′ +

(
1
4
β̇α̇ + 1

4
β̇2
)

eβ−α
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Γk
r1Γ

r
1k = Γ0

r1Γ
r
10 + Γ1

r1Γ
r
11 + Γ2

r1Γ
r
12 + Γ3

r1Γ
r
13

= Γ0
01Γ

0
10 + Γ0

11Γ
1
10 + Γ0

21Γ
2
10 + Γ0

31Γ
3
10

+ Γ1
01Γ

0
11 + Γ1

11Γ1
11 + Γ1

21Γ2
11 + Γ1

31Γ3
11

+ Γ2
01Γ0

12 + Γ2
11Γ1

12 + Γ2
21Γ2

12 + Γ2
31Γ3

12

+ Γ3
01Γ0

13 + Γ3
11Γ1

13 + Γ3
21Γ2

13 + Γ3
31Γ3

13

= Γ0
01Γ

0
10 + Γ0

11Γ
1
10 + Γ1

01Γ
0
11 + Γ1

11Γ
1
11 + Γ2

21Γ2
12 + Γ3

31Γ3
13

= 1
4
α′2 + 1

4
β̇2eβ−α + 1

4
β̇2eβ−α + 1

4
β ′2 + 1

r2 + 1
r2

= 1
4
α′2 + 1

4
β ′2 + 2

r2 + 1
2
β̇2eβ−α

R11 = 1
2
β ′′ +

(
1
2
β̈ + 1

2
β̇2 − β̇α̇

)
eβ−α − 1

2
α′′ − 1

2
β ′′ + 2

r2

+ 1
4
β ′α′ + 1

4
β ′2 + 1

r
β ′ +

(
1
4
β̇α̇ + 1

4
β̇2
)

eβ−α

− 1
4
α′2 − 1

4
β ′2 − 2

r2 − 1
2
β̇2eβ−α

= −1
2
α′′ + 1

4
β ′α′ + 1

r
β ′ − 1

4
α′2 +

(
1
2
β̈ + 1

4
β̇2 − 3

4
β̇α̇
)

eβ−α

Calculons la composante R22 :

R22 = ∂rΓ
r
22 − ∂2Γr

r2 + Γk
22 Γr

rk − Γk
r2 Γr

2k

∂rΓ
r
22 = ∂0Γ0

22 + ∂1Γ1
22 + ∂2Γ2

22 + ∂3Γ3
22

= ∂1Γ1
22

= ∂r

(
−re−β

)

= −e−β + rβ ′e−β

∂2Γr
r2 = ∂2Γ0

02 + ∂2Γ1
12 + ∂2Γ2

22 + ∂2Γ3
32

= ∂2Γ3
32

= ∂θ cot(θ)

= −1 − cot2(θ)

Γk
22 Γr

rk = Γ0
22 Γr

r0 + Γ1
22 Γr

r1 + Γ2
22 Γr

r2 + Γ3
22 Γr

r3

= Γ1
22

(
Γ0

01 + Γ1
11 + Γ2

21 + Γ3
31

)

= −re−β
(

1
2
α′ + 1

2
β ′ + 1

r
+ 1

r

)

= −1
2
r (α′ + β ′) e−β − 2e−β
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Γk
r2Γ

r
2k = Γ0

r2Γr
20 + Γ1

r2Γ
r
21 + Γ2

r2Γ
r
22 + Γ3

r2Γ
r
23

= Γ1
r2Γr

21 + Γ2
r2Γ

r
22 + Γ3

r2Γ
r
23

= Γ1
02Γ0

21 + Γ1
12Γ1

21 + Γ1
21Γ

2
21 + Γ1

31Γ
3
21

+ Γ2
02Γ

0
22 + Γ2

12Γ
1
22 + Γ2

22Γ
2
22 + Γ2

32Γ3
22

+ Γ3
02Γ0

23 + Γ3
12Γ1

23 + Γ3
22Γ2

23 + Γ3
32Γ3

23

= Γ1
12Γ1

21 + Γ2
12Γ1

22 + Γ3
32Γ

3
23

= 1
r

× −re−β + 1
r

× −re−β + cot(θ) cot(θ)

= −2e−β + cot2(θ)

R22 = −e−β + rβ ′e−β + 1 + cot2(θ) − 1
2
r (α′ + β ′) e−β − 2e−β + 2e−β − cot2(θ)

= −
[
1 + r

2
(α′ − β ′)

]
e−β + 1

23.4.10 Courbure riemannienne scalaire

La contraction du tenseur de courbure de Ricci, définition 23.4.4 p. 289, donne un invariant
(le seul possible) :

Définition 23.4.5. Courbure de Ricci
Le scalaire

R , gisgjrRij,rs

= gisR r
i ,rs

= gisRis

= Ri
i

est appelé courbure de Ricci ou courbure riemannienne scalaire de l’espace Rn.

Dans un espace de Riemann à n dimensions :

Ri
i = R0

0 + R1
1 + R2

2 + · · · + Rn
n

Réciproquement, avec la relation (52) p. 102 pour un espace à n dimensions :

gijg
ijRij = gijR

Rij = 1
n

gijR

Exemple 23.4.8. Dans un espace riemannien de dimension deux, d’après l’exemple
23.4.2 p. 285, les seules composantes du tenseur de Riemann-Christoffel non nulles sont
les suivantes :

R12,12 = −R12,21 = R21,21 = −R21,12
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Avec la relation (50) p. 102 sur le déterminant du tenseur métrique dual, la courbure de
Ricci a pour expression :

R = g12g21R12,12 + g21g12R21,21 + g11g22R12,21 + g22g11R21,12

=
(
g12g21 + g21g12 − g11g22 − g22g11

)
R12,12

= 2
(
g11g22 − g12g21

)
R12,12

= −2g−1R12,12

Réciproquement :

R12,12 = −1
2
gR

= −1
2
R (g11g22 − g12g21)

Exemple 23.4.9. En utilisant l’inverse du tenseur métrique (54) p. 103 et l’exemple
23.4.6 p. 290, la courbure de Ricci d’une sphère de rayon r s’écrit :

R = gijRij

= gθθRθθ + gφφRφφ

=
1

r2
+

1

r2 sin2(θ)
sin2(θ)

=
2

r2

23.4.11 Secondes identités de Bianchi

Nous pouvons obtenir de nouvelles identités par dérivation du tenseur de courbure de
Riemann-Christoffel. Adoptons un système de coordonnées localement géodésiques en un point
M de Rn, les symboles de Christoffel sont alors nuls, la définition 23.4.1 p. 279 du tenseur de
courbure de Riemann-Christoffel s’écrit :

∀h, i, r, s Rh
i,rs = ∂rΓ

h
si − ∂sΓ

h
ri

Dans le système de coordonnées localement géodésiques la dérivation covariante se réduit à la
dérivation partielle ordinaire :

∀h, i, r, s, t ∇tR
h

i,rs = ∂trΓ
h

si − ∂tsΓ
h

ri

Par permutation circulaire sur les indices r, s, t, nous avons :

∀h, i, r, s, t ∇rR
h

i,st = ∂rsΓ
h

ti − ∂rtΓ
h

si

∀h, i, r, s, t ∇sR
h

i,tr = ∂stΓ
h

ri − ∂srΓ
h

ti

puis par addition :

∀h, i, r, s, t ∇tR
h

i,rs + ∇rR
h

i,st + ∇sR
h

i,tr = 0

La dérivée covariante d’un tenseur étant un tenseur, chacun des membres de l’identité est un
tenseur, cette relation est une relation tensorielle. Les identités de Bianchi sont donc valables
dans tout système de coordonnées, en tout point de Rn.
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23.4.12 Tenseur d’Einstein

Toujours au paragraphe 26.9 p. 347, nous verrons que pour établir les équations de la
relativité générale, la divergence du tenseur symétrique d’ordre deux que nous cherchons doit
être nulle. En effet, ce tenseur qui représente la courbure de l’espace-temps doit être égale au
tenseur impulsion-énergie qui est conservatif, donc de divergence nulle (théorème de divergence
22.4.1 p. 254). Effectuons une double contraction des secondes identités de Bianchi :

(1) Pour t = h :

∀i, r, s ∇hRh
i,rs + ∇rR

h
i,sh + ∇sR

h
i,hr = 0

∇hRh
i,rs − ∇rR

h
i,hs + ∇sR

h
i,hr = 0

∇hRh
i,rs − ∇rRis + ∇sRir = 0

∀k, r, s gik∇hRh
i,rs − gik∇rRis + gik∇sRir = 0

La dérivée covariante du tenseur métrique étant nulle, (143) p. 242 :

∇h

(
gikRh

i,rs

)
− ∇r

(
gikRis

)
+ ∇s

(
gikRir

)
= 0

∇hRhk
,rs − ∇rR

k
s + ∇sR

k
r = 0

(2) puis pour s = k :

∀r ∇hRhk
,kr + ∇kRk

r − ∇rR
k
k = 0

∇hRh
r + ∇kRk

r − ∇rR = 0

2∇kRk
r − ∇rR = 0

∇kRk
r − 1

2
δk

r ∇kR = 0

∇kRk
r − 1

2
∇kδk

r R = 0

∇k

(
Rk

r − 1
2

δk
r R
)

= 0 (183)

Définition 23.4.6. Tenseur d’Einstein
Le tenseur

∀k, r Sk
r , Rk

r − 1
2

δk
r R

est appelé tenseur d’Einstein.

Par symétrie du tenseur de courbure de Ricci et du tenseur fondamental, ce tenseur est
symétrique. La relation (183) exprime que la divergence du tenseur d’Einstein est nulle (relation
(146) p. 243). Les composantes covariantes de ce tenseur s’écrivent :

∀k, r gikSi
r = gikRi

r − 1
2

gikδi
rR

Skr = Rkr − 1
2

gkrR (184)



24
Dynamique classique

24.1 Exemple d’application de la géométrie de Riemann

La géométrie de Riemann trouve une application importante dans les problèmes de mé-
canique. Soit un système dynamique se déplaçant dans l’espace ordinaire, euclidien à trois
dimensions. Prenons le cas d’un pendule sphérique. La tige du pendule exerce une force sur la
masse l’obligeant à se déplacer sur une sphère. Nous pouvons ignorer cette force et considérer
directement que la masse se déplace sur une sphère, sans jamais la quitter. Nous savons que
l’espace accessible à la masse du pendule simple est une sphère. Dans le cas général pour trou-
ver la forme de l’espace accessible, la force doit pouvoir être remplacée par une fonction des
coordonnées, de la forme

F
(
x1, x2, x3

)
= 0

La force est alors dite holonome. Par exemple pour le pendule sphèrique :

ρ = cste

Dans le cas présent elle est aussi scléronome, c’est-à-dire indépendante du temps. Grâce à cette
relation, pour décrire le mouvement de la masse nous passons de :

— trois coordonnées sphériques (ρ, θ, φ), une force, un espace euclidien

à :

— deux coordonnées (θ, φ), aucune force, un espace courbe (la sphère)

Lorsque l’on utilise un nombre minimal de coordonnées pour décrire l’évolution du système, on
parle de coordonnées généralisées. Ici ce sont deux angles, et l’espace riemannien correspondant
est une surface.

En l’absence de champ de gravitation, la masse ne peut décrire que des grands cercles de
la sphère, c’est-à-dire des géodésiques de cet espace riemannien. De plus la masse se déplace à
vitesse constante en norme.

Lorsqu’il existe une force dérivant d’une énergie potentielle, par exemple un champ de gravi-
tation, nous verrons qu’il existe quand même un espace riemannien dans lequel les trajectoires
sont encore toutes des géodésiques.

Enfin, lorsque la longueur de la tige varie dans le temps, par exemple un moteur allonge ou
raccourcit la tige, la liaison est holonome rhéonome. Nous pouvons encore supprimer la force,
mais l’espace riemannien évolue dans le temps. Le temps devient une nouvelle coordonnée,
au même titre que les coordonnées spatiales, et nous considérons l’évolution du système dans
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un nouvel espace riemannien ayant une dimension supplémentaire. Dans le cas du pendule
sphérique, l’espace riemannien a alors trois coordonnées, (θ, φ, t).

24.2 Systèmes holonomes à liaisons scléronomes

Considérons un système dynamique S à n degrés de liberté, c’est-à-dire un système à n
coordonnées généralisées (qi). L’évolution temporelle de ce système est représentée par un point
M se déplaçant dans un espace de dimension n ayant les (qi) pour système de coordonnées,
appelé espace de configuration. Cet espace de configuration est l’ensemble des configurations
possibles du système, il constitue une variété différentielle à n dimensions, autrement dit un
espace riemannien Vn. Lorsque les liaisons sont holonomes, parfaites et indépendantes du temps,
l’espace de configuration n’évolue pas dans le temps : les composantes gij du tenseur métrique
de l’espace de configuration ne sont pas des fonctions explicites du temps. Soit ds l’élément
linéaire de l’espace de configuration, d’après (72) p. 144

ds2 = gijdqidqj

où les indices latins varient de 1 à n, et où les gij sont fonction des qi uniquement.

24.2.1 Cinématique

Le vecteur vitesse a pour composantes contravariantes,

∀i vi =
dqi

dt
= q̇i

et pour composantes covariantes :

∀i vi = gijv
j = gij q̇

j = q̇i

Exprimons l’énergie cinétique à partir de la vitesse et de l’élément linéaire :

T = 1
2
mv2

=
1

2
m

(
ds

dt

)2

= 1
2
mgij q̇

iq̇j

On remarque que le carré de l’élément linéaire s’écrit :

ds2 =
2T

m
dt2 (185)

Remarque 48. On peut toujours changer d’unité de masse et poser m = 1 pour avoir :

ds2 = 2T dt2

On peut également diviser l’unité de longueur des qi par
√

m et obtenir le même résultat.
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Dérivons l’énergie cinétique par rapport à la vitesse :

∀i
∂T

∂q̇i
=

∂

∂q̇i

(
1
2
mgij q̇

iq̇j
)

=
m

2

∂

∂q̇i


∑

i

gij q̇
iq̇j +

∑

j

gij q̇
iq̇j




=
m

2

∂

∂q̇i

(∑

i

gij q̇
iq̇j +

∑

i

gij q̇
iq̇j

)

= mgij q̇
j (186)

= mvi

Or, les composantes de l’impulsion généralisée s’écrivent :

∀i pi ,
∂L

∂q̇i

où L = T − V est le lagrangien. Lorsque l’énergie potentielle totale V ne dépend pas des
vitesses généralisées :

∀i pi =
∂T

∂q̇i

= mvi

Les composantes de l’impulsion généralisée ne sont autres que les composantes covariantes de
la vitesse du point représentatif M dans l’espace riemannien Vn des configurations, multipliée
par la masse.

Pour l’accélération, servons-nous de la définition (140) p. 238 du vecteur unitaire u tangent
à la trajectoire C au point M :

u · u = 1

d

ds
(u · u) = 0

2
du
ds

· u = 0

du
ds

· u = 0

Le vecteur du/ds est soit nul soit orthogonal à u partout sur la trajectoire C . D’après (136)
p. 236, il a pour composantes les dérivées absolues Dui/ds. Il n’est pas unitaire, appelons ρ sa
norme. On définit un vecteur unitaire n qui lui est colinéaire :

∀i
Dui

ds
=

ni

ρ

Le vecteur unitaire n, colinéaire au vecteur orthogonal à la tangente à C , est appelé vecteur
de la normale principale à C . La dérivation absolue de la vitesse par rapport au temps donne
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l’accélération :

∀i ai =
Dvi

dt

=
D (vui)

dt

=
dv

dt
ui + v

Dui

ds

ds

dt

=
dv

dt
ui +

v2

ρ
ni (187)

Le vecteur accélération se décompose en une accélération tangentielle et une accélération
normale. Le scalaire ρ(s) a la dimension d’une longueur et est appelé rayon de courbure de C

au point considéré. ρ−1 est appelé courbure de C dans Vn.

24.2.2 Les équations de la dynamique

En l’absence d’hypothèses sur le caractère conservatif ou non des forces généralisées Qi

s’exerçant sur le système, le mouvement du système est déterminé par les équations de Lagrange
sous leur forme la plus générale :

∀i = 1, . . . , n
d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
= Qi (188)

Désignons par Qiδqi le travail élémentaire des forces extérieures appliquées au système lors d’un
déplacement virtuel arbitraire δqi. C’est un scalaire qui ne dépend pas du système de coordon-
nées dans lequel on l’exprime, car si c’était le cas le système gagnerait ou perdrait de l’énergie
par changement de coordonnées. C’est donc un invariant par changement de coordonnées. Les
δqi étant les composantes contravariantes d’un vecteur, les Qi sont les composantes covariantes
du vecteur force généralisées de Vn. Remplaçons l’énergie cinétique par son expression donnée
par les relations (186) p. 299 :

∀i
d

dt

(
mgij q̇

j
)

− ∂

∂qi

(
1
2

mgkj q̇
kq̇j
)

= Qi (189)

Le calcul suivant est identique à celui de la démonstration du théorème 23.2.1 p. 268 :

∀i m

(
gij q̈

j +
dgij

dqk

dqk

dt
q̇j − 1

2

∂gkj

∂xi
q̇kq̇j

)
= Qi

∀i m
(
gij q̈

j + gij,kq̇kq̇j − 1
2

∂igkj q̇
kq̇j
)

= Qi

∀i m
[
gij q̈

j +
(
gij,k − 1

2
∂igkj

)
q̇kq̇j

]
= Qi

En remarquant que gij,kq̇kq̇j = gki,jq̇
kq̇j :

∀i m
[
gij q̈

j +
(

1
2

gki,j + 1
2

gij,k − 1
2

∂igkj

)
q̇kq̇j

]
= Qi

∀i m
[
gij q̈

j + 1
2

( gki,j + gij,k − ∂igkj) q̇kq̇j
]

= Qi

∀i m
(
gij q̈

j + Γkij q̇kq̇j
)

= Qi
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Par multiplication contractée par gihgih = 4 (relation (52) p. 102) :

∀i mgih

(
δh

j q̈j + gihΓkij q̇kq̇j
)

= Qi

∀i mgih

(
q̈h + Γh

kj q̇kq̇j
)

= Qi

∀i mgih

(
dvh + vjΓh

kj dqk

dt

)
= Qi

∀i mgih

(
dvh + vjωh

j

dt

)
= Qi

∀i mgih
Dvh

dt
= Qi

∀i m
Dvi

dt
= Qi

∀i mai = Qi

Ainsi les membres de gauche des équations de Lagrange (188) p. 300 ne sont autres que les
composantes covariantes du vecteur accélération de M dans l’espace riemannien de configura-
tion. Les équations de Lagrange étendent la relation fondamentale de la dynamique aux espaces
courbes. D’après les relations (187) p. 300, on peut encore écrire les équations du mouvement
sous la forme :

∀i m
dv

dt
ui + m

v2

ρ
ni = Qi (190)

Au cours du mouvement le vecteur force généralisée reste dans le plan défini par la tangente à
la trajectoire et par la normale principale.

24.2.3 Absence de forces extérieures

En l’absence de forces extérieures exercées sur le système, c’est-à-dire lorsque les Qi sont
nulles, l’énergie cinétique est constante puisqu’il n’y a pas d’énergie potentielle, la vitesse est
donc constante et l’accélération nulle, le point M suit une géodésique de Vn :

∀i ai = 0

∀i m
dv

dt
ui + m

v2

ρ
ni = 0

Soit : 



dv

dt
= 0

1/ρ = 0

La courbure est nulle dans l’espace riemannien. À partir des relations (189) p. 300 nous avons
également :

∀i
d

dt

(
mgij q̇

j
)

− ∂

∂qi

(
1
2

mgkj q̇
kq̇j
)

= 0

q̈i − 1
2
∂igkj q̇

kq̇j = 0 (191)

Ce sont les équations des coordonnées de la géodésique suivie par le système dans l’espace de
Riemann des configurations
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24.2.4 Forces dérivant toutes d’une énergie potentielle

Supposons que le vecteur force généralisée dérive d’une énergie potentielle indépendante du
temps :

∀i Qi = −∂iV (qi)

En prenant le produit scalaire de la relation (190) p. 301 par le vecteur vitesse,

vi

(
m

dv

dt
ui + m

v2

ρ
ni

)
= Qiv

i

mvui

(
dv

dt
ui +

v2

ρ
ni

)
= −∂V

∂qi

dqi

dt

mv
dv

dt
= −dV

dt
ˆ

mvdv = −
ˆ

dV

1
2
mv2 + V = cste

qui est l’équation de conservation de l’énergie mécanique d’un système conservatif (dont les
forces dérivent toutes d’un potentiel). La constante est l’énergie mécanique totale E. Cette
équation nous donne l’expression de la vitesse d’un système conservatif :

v =
√

2 (E − V )

À partir des relations (189) p. 300, la loi du mouvement du système s’écrit :

∀i m
d

dt

(
gij q̇

j
)

− m

2

∂gkj

∂qi
q̇kq̇j = −∂V

∂qi

Ce ne sont pas les équations des coordonnées d’une géodésique à cause du membre de droite
non nul. Cependant, dans le paragraphe suivant nous montrons que nous pouvons quand même
réduire le problème à la recherche d’une géodésique.

24.2.5 Recherche d’une géodésique

Déterminons la trajectoire fictive du point représentatif d’un système en présence d’une
énergie potentielle, sous la forme d’une géodésique. Gardons l’hypothèse de conservation de
l’énergie mécanique du paragraphe précédent (système conservatif).

— Dans la loi du mouvement, remplaçons le temps par la fonction à déterminer θ(t). Les
coordonnées sont maintenant des fonctions de la fonction θ(t) :

∀i qi = qi [θ(t)]

∀i
dqi [θ(t)]

dt
=

dqi

dθ(t)

dθ(t)

dt

∀i q̇i =
dqi

dθ
θ̇
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La loi horaire ne dépend plus explicitement du temps mais cela ne change pas la forme
de la trajectoire suivie par le système :

∀i m
dθ

dt

d

dθ

(
gij

dqj

dθ

dθ

dt

)
− m

2

∂gkj

∂qi

dqk

dθ

dθ

dt

dqj

dθ

dθ

dt
+

∂V

∂qi
= 0

∀i θ̇
d

dθ

(
gij

dqj

dθ
θ̇

)
− 1

2
θ̇2 ∂gkj

∂qi

dqk

dθ

dqj

dθ
+

1

m

∂V

∂qi
= 0 (192)

— Changeons d’espace de configuration en changeant de métrique mais pas de système
de coordonnées (qi) :

ds′2 = F (qi)ds2

= F (qi)gijdqidqj

= g′
ijdqidqj

Par la suite nous fixerons la nouvelle métrique par l’intermédiaire de la fonction inconnue F (qi)
de telle sorte que la trajectoire soit une géodésique dans le nouvel espace de configuration.
Cherchons la composante covariante de la vitesse dans cette nouvelle métrique en utilisant la
fonction θ(t) :

∀i q′
i = g′

ijq
j

= F (qi)gijq
j

∀i
dq′

i

dθ
= F (qi)gij

dqj

dθ

Par analogie avec les relations (191) p. 301, les équations des coordonnées d’une géodésique de
ce nouvel espace de configuration sont données par :

∀i
d

dθ

(
dq′

i

dθ

)
− 1

2

∂g′
jk

∂qi

dqj

dθ

dqk

dθ
= 0

∀i
d

dθ

(
Fgij

dqj

dθ

)
− 1

2
F

∂gkj

∂qi

dqk

dθ

dqj

dθ
− 1

2

∂F

∂qi
gkj

dqk

dθ

dqj

dθ
= 0

Puisque le choix de la fonction θ(t) est libre, prenons la égale à l’abscisse curviligne s′ (qui est
bien fonction du temps). Nous avons alors,

Fgkj
dqk

dθ

dqj

dθ
= Fgkj

dqk

ds′
dqj

ds′

=
ds′2

ds′2

gkj
dqk

dθ

dqj

dθ
=

1

F

et par conséquent (en gardant θ plutôt que s′) :

∀i
d

dθ

(
Fgij

dqj

dθ

)
− 1

2
F

∂gkj

∂qi

dqk

dθ

dqj

dθ
− 1

2F

∂F

∂qi
= 0

∀i F
d

dθ

(
Fgij

dqj

dθ

)
− 1

2
F 2 ∂gkj

∂qi

dqk

dθ

dqj

dθ
− 1

2

∂F

∂qi
= 0

Cette relation s’identifie avec la loi du mouvement du système (192) p. 303, si l’on prend :

F (qi) = θ̇ et F (qi) = cste − 2V

m
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Pour la constante, prenons le double de l’énergie mécanique totale divisée par la masse :

F (qi) =
2

m

[
E − V (qi)

]

Dans cette relation il vaut mieux ne pas remplacer E − V par T , car T est fonction des
vitesses. Dans l’hypothèse de la conservation de l’énergie mécanique, la trajectoire d’un système
dynamique qui correspond à une valeur donnée de l’énergie mécanique est une géodésiques de
l’espace de configuration pour la métrique riemannienne :

ds′2 = F (qi)gijdqidqj

=
2

m

(
E − V (qi)

)
gijdqidqj

La loi horaire selon laquelle ces géodésiques sont décrites au cours du temps est donnée par :
dθ

dt
=

2

m

(
E − V (qi)

)

θ(t) =

ˆ

2

m

(
E − V (qi)

)
dt

=
2t

m

(
E − V (qi)

)
+ θ(t = 0)

24.3 Systèmes holonomes à liaisons rhéonomes

Considérons un système dynamique à n degrés de liberté. Lorsque les liaisons sont holo-
nomes, parfaites et dépendantes du temps, les configurations possibles pour le système dé-
pendent de l’instant considéré. Nous sommes amenés à substituer à l’espace de configuration,
l’espace-temps de configuration, c’est-à-dire une variété à n + 1 dimensions Vn+1, pour laquelle
les qi et le temps q0 constituent un système de coordonnées. Le point représentatif du système
dynamique se déplace en fonction du temps, sur une hypersurface qui se déforme dans le temps.

Remarque 49. Le passage à un système de coordonnées en mouvement est traité comme un cas
particulier de liaisons holonomes dépendantes du temps. On utilise les mêmes formules mais le nombre
de coordonnées ne change pas.

Soit ds l’élément linéaire de l’espace-temps de configuration,

ds2 = gαβ dqαdqβ

où les indices grecs varient de 0 à n, et où les gαβ sont fonction des qλ.

Le vecteur vitesse a pour composantes contravariantes,

∀α vα =
dqα

dt
= q̇α

de sorte que : 



∀i q̇i =
dqi

dt
q̇0 = 1

(193)

Le vecteur vitesse a pour composantes covariantes :

∀α vα = gαβvβ = gαβ q̇β = q̇α
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Exprimons l’énergie cinétique à partir de la vitesse et de l’élément linéaire :

T = 1
2
mv2

=
1

2
m

(
ds

dt

)2

= 1
2
mgαβ q̇αq̇β

Comme pour le cas scléronome :

ds2 =
2T

m
dt2

En dérivant l’énergie cinétique par rapport à la vitesse :

∀α
∂T

∂q̇α
=

∂

∂q̇α

m

2


∑

α

gαβ q̇αq̇β +
∑

β

gαβ q̇αq̇β




=
m

2

∂

∂q̇α

(∑

α

gαβ q̇αq̇β +
∑

α

gαβ q̇αq̇β

)

= mgαβ q̇β

= mvα

Les n composantes pi de l’impulsion généralisée sont donc encore égales aux n composantes
covariantes vi de la vitesse multipliée par la masse.

La dérivée absolue de la vitesse par rapport au temps donne l’accélération :

∀α aα =
Dvα

dt

= q̈α + Γα
γβ q̇γ q̇β

Pour les composantes covariantes de l’accélération :

∀α aα = gαβ
Dvβ

dt
= gαβ q̈β + Γαγβ q̇γ q̇β

Avec (193) p. 304, q̇0 = 1 ⇒ q̈0 = 0, pour la composante temporelle de l’accélération :

a0 = g0β q̈β + Γ0γβ q̇γ q̇β

= g0iq̈
i + Γ0ik q̇iq̇k + Γ0i0 q̇i + Γ00k q̇k + Γ000

Avec les relations (126) p. 225, Γ0i0 = 1
2

g00,i, Γ00k = 1
2

g00,k, Γ000 = 1
2

g00,0 :

a0 = g0iq̈
i + Γ0ik q̇iq̇k + g00,iq̇

i + 1
2

g00,0

24.3.1 Les équations de la dynamique

Quel que soit le type de liaison, scléronome ou rhéonome, le mouvement du système est
déterminé par les équations de Lagrange :

∀i = 1, . . . , n
d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
= Qi
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où l’énergie cinétique est maintenant fonction de q̇0. Cherchons l’équation pour l’indice 0.
Effectuons le produit scalaire par q̇i :

d

dt

(
∂T

∂q̇i

)
q̇i − ∂T

∂qi
q̇i = Qiq̇

i

[
d

dt

(
∂T

∂q̇i
q̇i

)
− ∂T

∂q̇i
q̈i

]
− ∂T

∂qi
q̇i = Qiq̇

i

d

dt

(
∂T

∂q̇i
q̇i

)
−
(

∂T

∂q̇i
q̈i +

∂T

∂qi
q̇i

)
= Qiq̇

i (194)

Réécrivons le premier terme du membre de gauche. L’énergie cinétique est une fonction homo-
gène de degré deux des vitesses généralisées (si les variables, ici les vitesses généralisées, sont
multipliées par un scalaire, le résultat est multiplié par ce scalaire au carré) :

T
(
λq̇0, . . . , λq̇n

)
= λ2 T

(
q̇0, . . . , q̇n

)

En différentiant :

∂T

∂ (λq̇α)
d (λq̇α) = d

(
λ2T

)

∂T

∂ (λq̇α)

d (λq̇α)

dλ
=

d (λ2T )

dλ

∂T

∂ (λq̇α)
q̇α = 2λ T

En posant λ = 1 nous trouvons

∂T

∂q̇α
q̇α = 2T

appelée identité d’Euler, ici pour une fonction homogène de degré deux. Changeons d’indice :

∂T

∂q̇i
q̇i +

∂T

∂q̇0
q̇0 = 2T

∂T

∂q̇i
q̇i = 2T − ∂T

∂q̇0

d

dt

(
∂T

∂q̇i
q̇i

)
= 2

dT

dt
− d

dt

(
∂T

∂q̇0

)

Réécrivons le second terme du membre de gauche :

dT
(
q̇i, q̇0, qi, q0

)
=

∂T

∂q̇i
dq̇i +

∂T

∂q̇0
dq̇0 +

∂T

∂qi
dqi +

∂T

∂q0
dq0

dT

dt
=

∂T

∂q̇i
q̈i +

∂T

∂q̇i
q̇i +

∂T

∂q0

dT

dt
− ∂T

∂q0
=

∂T

∂q̇i
q̈i +

∂T

∂q̇i
q̇i
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Injectons ces deux relations dans (194) p. 306 :

2
dT

dt
− d

dt

(
∂T

∂q̇0

)
−
(

dT

dt
− ∂T

∂q0

)
= Qiq̇

i

dT

dt
− d

dt

(
∂T

∂q̇0

)
+

∂T

∂q0
= Qiq̇

i

d

dt

(
∂T

∂q̇0

)
− ∂T

∂q0
=

dT

dt
− Qiq̇

i

Cette relation remplace celle de conservation de l’énergie que nous avions pour le cas holonome
scléronome. L’énergie mécanique ne se conserve plus car les liaisons, variables au cours du temps,
effectuent des travaux que nous ne pouvons prévoir explicitement. Nous obtenons les mêmes
équations que pour le cas holonome scléronome, ainsi qu’une équation pour la composante
temporelle : 




∀i mai = Qi

ma0 =
dT

dt
− Qiq̇

i
(195)

Ces deux équations sont les équations du mouvement de M dans Vn+1. Si le mouvement du
système a lieu sans forces extérieures exercées sur le système, les n composantes ai sont nulles,
mais a0 est en général différent de zéro et les trajectoires du point M dans Vn+1 ne s’interprètent
pas géométriquement d’une manière simple.

24.3.2 Forces dérivant toutes d’une énergie potentielle généralisée

Supposons que toutes les forces dérivent d’une énergie potentielle généralisée U (q0, q1, . . . , qn)
pouvant contenir explicitement le temps q0. Si l’on introduit le lagrangien

L = T − U

les équations du mouvement du système deviennent :

∀i = 1, . . . , n
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0

La métrique de la variété Vn+1 s’écrit :

dσ2 = gαβ dqαdqβ

= gijdqidqj + 2 gi0 dqidq0 + g00 dq0dq0

= gijdqidqj + g00

(
dq0

)2

= ds2 + g00

(
dq0

)2

où l’on a choisi ∀i gi0 = 0 en prenant des vecteurs de base orthogonaux entre l’espace et le
temps. Avec la relation (185) p. 298 et en faisant entrer la fonction U dans g00 :

dσ2 =
2T

m
dt2 + g00

(
dq0

)2

=
2T

m
dt2 − 2U

m
dt2

=
2L

m
dt2
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Les formules (195) subsistent avec cette métrique à condition de remplacer les forces par leurs
énergies potentielles, c’est-à-dire T par L et les Qi par zéro. Les équations du mouvement du
point représentatif M dans l’espace Vn+1 doué de la nouvelle métrique s’écrivent :





∀i ai = 0

ma0 =
dL

dt

24.4 Dynamique des milieux continus

24.4.1 Les milieux continus

D’un point de vue microscopique tout milieu est composé de particules. Cependant, en
prenant un volume de matière suffisamment grand, nous pouvons nous placer d’un point de
vue macroscopique et supposer le milieu continu. Cette approximation est valable pour les
fluides en hydrodynamique et pour les solides en théorie de l’élasticité. On utilise donc les
mathématiques du continu pour modéliser un milieu physique qui ne l’est pas. Rien de nouveau
en cela, en physique l’espace et le temps sont aussi supposés continus, et en mécanique classique
les échanges de matière, d’énergie et de quantité de mouvement ou de moment cinétique sont
supposés continus.

En relativité la notion de solide n’existe pas car elle suppose un déplacement simultané
des différentes parties du solide lorsqu’il est soumis à une force. En faisant vibrer un solide on
pourrait transmettre un signal avec une vitesse infinie, en désaccord avec la relativité restreinte.
Pour cette raison on utilise les milieux continus en relativité.

Plaçons-nous dans un référentiel inertiel et étudions l’évolution dans le temps et dans l’es-
pace d’une caractéristique φ quelconque du milieu, sa masse volumique, sa température, sa
pression, sa vitesse, son accélération...

Plusieurs points de vue sont possibles :

— Dans le point de vue d’Euler on imagine un volume infinitésimal en un point fixe de
notre référentiel, au travers duquel circule le milieu continu. La caractéristique φ du
volume infinitésimal varie dans le temps mais pas dans l’espace.

— Dans le point de vue de Lagrange on choisit un volume infinitésimal de matière du mi-
lieu continu et l’on suit son évolution dans le temps et dans l’espace. La caractéristique
φ du volume infinitésimal varie dans le temps et dans l’espace. En général la vitesse
de l’élément de matière que l’on suit est fonction du temps.

— Il existe un troisième point de vue qui consiste à se placer dans le référentiel inertiel
de repos instantané du volume infinitésimal de matière. Dans ce référentiel la vitesse
du volume infinitésimal de matière du milieu continu est nulle, mais son accélération
est en général non nulle. La caractéristique φ du volume infinitésimal varie dans le
temps mais pas dans l’espace. C’est en fait un cas particulier du point de vue d’Euler,
dans lequel le référentiel inertiel de l’observateur est choisi de façon à ce que la vitesse
instantanée du milieu continu soit nulle.
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24.4.2 Dérivée particulaire

Rapportons l’espace à un système de coordonnées curvilignes quelconques (xi). Prenons
le point de vue de Lagrange, et soient vi(t) les composantes contravariantes de la vitesse du
volume infinitésimal de matière du milieu continu par rapport à l’observateur inertiel :

dφ[xi(t), t] =
∂φ

∂t
dt +

∂φ

∂xi
dxi(t)

dφ

dt
=

∂φ

∂t
+

∂φ

∂xi

dxi

dt
(t)

=
∂φ

∂t
+ vi(t)

∂φ

∂xi
(196)

=
∂φ

∂t
+ v(t) · grad φ

La dérivée particulaire de φ nous dit qu’en chaque point du référentiel d’un observateur inertiel,
la variation dans le temps de la caractéristique φ du milieu continu est due à sa variation locale
(en un point fixe) dans le temps et au mouvement relatif de l’observateur par rapport au milieu
continu, dans le gradient de φ.

L’équation (196) ne fait pas de supposition concernant l’origine de la variation locale de la
caractéristique φ. Dans le paragraphe suivant, on explicite ce terme pour le cas de la masse
volumique.

24.4.3 Équation de continuité

Nous nous plaçons dans le référentiel inertiel de repos instantané de l’élément de volume du
milieu continu, cas particulier du point de vue d’Euler. La masse et la masse volumique de cet
élément de volume ne sont fonction que du temps :

M(t) =

˚

V

ρ(t)dv

Le volume V d’intégration est suffisamment petit pour considérer que la matière de ce volume
a un mouvement d’ensemble, autrement dit que la vitesse est bien la même en tout point de ce
volume.

dM

dt
=

˚

V

∂ρ

∂t
dv

Comme il n’y a ni création ni destruction de masse dans ce volume (on suppose la conservation
de la masse), la variation de masse ne peut être due qu’à un flux de matière à travers la surface
S délimitant le volume V

˚

V

∂ρ

∂t
dv = −

¨

S

ρv · nds

où n est la normale sortante à la surface S. Le produit scalaire d’une vitesse avec une surface
orientée définit bien un volume par unité de temps. Si le terme de gauche est positif, c’est-à-dire
si la masse et la masse volumique augmente avec le temps, alors de la matière entre dans la
surface et le produit scalaire v · n est négatif. Le signe négatif devant le terme de droite le rend
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positif. Avec le théorème de la divergence 22.4.1 p. 254 :
˚

V

∂ρ

∂t
dv +

˚

V

div(ρv)dv = 0

˚

V

[
∂ρ

∂t
+ div(ρv)

]
dv = 0

∂ρ

∂t
+ div(ρv) = 0

Cette équation s’appelle équation de continuité ou équation de conservation de la masse. Elle
nous dit que si en un point d’un référentiel inertiel la masse volumique varie localement, alors
il y a un flux de matière vers ce point (ou en éloignement).

En notation indicielle, avec l’opérateur divergence en coordonnées rectilignes (148) p. 243,

∂ρ

∂t
+

∂(ρvi)

∂xi
= 0 (197)

et en coordonnées curvilignes (146) p. 243 :

∂ρ

∂t
+ ∇i(ρvi) = 0 (198)

24.4.4 Tenseur des contraintes

Pour étudier l’équilibre des forces dans un milieu continu, nous considérons un volume à
face planes ayant le nombre minimal de faces planes, c’est-à-dire un tétraèdre. Pour les autres
volumes, comme par exemple le cube, le système d’équations des forces est surdéterminé car
l’équilibre est hyperstatique.

Rapportons l’espace à un système de coordonnées rectangulaires (x1, x2, x3) et à son repère
naturel orthonormé (o, e1, e2, e3).

x2

x3

x
1

σ

Fig. 24.1 – Tétraèdre

Soient f 1, f 2, f 3 des forces extérieures par unité de surface (des pressions) s’exerçant sur
chacune des trois faces identiques du tétraèdre. Elles le mettent en mouvement accéléré de
rotation et de translation. Dans le cas statique, une quatrième force extérieure par unité de
surface F maintient le tétraèdre immobile. Le tétraèdre étant supposé à l’équilibre, la somme
des forces extérieures s’exerçant sur lui est nulle :

Fs + f 1s1 + f2s2 + f 3s3 = 0 (199)

F + f1s1/s + f 2s2/s + f3s3/s = 0
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Les surfaces si sont les projections de la surface s sur les plans coordonnées. Soit σ le vecteur
unitaire sortant normal à la face inclinée, de composantes covariantes σ1, σ2, σ3 :

F + f1(σ · e1) + f 2(σ · e2) + f 3(σ · e3) = 0

F + f 1σ1 + f 2σ2 + f 3σ3 = 0

F + f iσi = 0

Les trois vecteurs unitaires sortants normaux aux surfaces ni = −ei forment une base ortho-
normée. La pression f 1 qui s’exerce sur la face (x2, x3) a pour expression :

f1 = t11n1 + t12n2 + t13n3

= t1jnj

= −t1jej

où t1j est homogène à une pression. Avec cette convention de signe pour les composantes, le
vecteur f 1 a pour composantes une fois contravariantes t1j dans la base (nj) et −t1j dans la
base (ej). Pour l’ensemble des forces :

∀i = 1, 2, 3 f i = −tijej

Nous avons alors

F = −f iσi

F jej = tijσiej

∀j = 1, 2, 3 F j = tijσi

Donc, dans la base naturelle (ej) la force par unité de surface F a pour composantes contrava-
riantes tijσi. Les F j sont des composantes contravariantes et les σi des composantes covariantes,
d’après le critère de tensorialité 20.9.2 p. 211, les tij sont les composantes deux fois contrava-
riantes d’un tenseur appelé tenseur des contraintes.

Remarque 50. Vérifions-le en effectuant le changement de coordonnées de xi à xi′

, auquel correspond
le changement de base naturelle :

∀j = 1, 2, 3 ej =
∂xk′

∂xj
ek′

La force par unité de surface se transforme selon :

F = tijσiej

= tij(σ · ei)ej

= tij

(
σ · ∂xl′

∂xi
el′

)
∂xk′

∂xj
ek′

= tij ∂xl′

∂xi

∂xk′

∂xj
(σ · el′)ek′

Or la force exercée sur la surface S ne dépend pas du système de coordonnées (la force est un vecteur) :

F = F
′

tij ∂xl′

∂xi

∂xk′

∂xj
(σ · el′)ek′ = tk′l′

(σ · el′)ek′

∂xl′

∂xi

∂xk′

∂xj
tij = tk′l′

D’après le théorème 20.7.1 p. 202, la matrice 3 × 3 des tij est un tenseur deux fois contravariant.
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Cherchons l’expression de la force infinitésimale :

F jej = tijσiej

F jejS = tijSiej

F jejds = tijdsiej

∀j = 1, 2, 3 F jds = tijdsi (200)

Lorsque le fluide est parfait (ni transfert de chaleur ni viscosité en cisaillement ou en traction-
compression) le tenseur des contraintes devenu tenseur des pressions prend la forme suivante,

∀i, j tij = pgij (201)

où le scalaire p est la pression du fluide au point et à l’instant considéré, et où les gij sont les
composantes du tenseur métrique dans le système de coordonnées choisi. Lorsque ce dernier est
orthogonal, le tenseur métrique est diagonal ainsi que celui des pressions.

24.5 Équations de la dynamique des milieux continus

On considère un élément de matière du milieu continu, de surface fermée ds, de volume dv
et de masse volumique ρ. On utilise un système de coordonnées rectangulaires et on se place
dans le référentiel inertiel de repos instantané de cet élément de matière. On note f v la somme
des forces extérieures par unité de volume des forces de volume (forces électromagnétiques et
gravitationnelles) et

∑
f i la somme des forces extérieures par unité de surface des forces surfa-

ciques, les forces s’exerçant sur l’élément de matière. La relation fondamentale de la dynamique
s’écrit :

f vdv + f idsi = γρdv

avec (199) p. 310 :

fvdv − Fds = γρdv

En notation indicielle :

∀i = 1, 2, 3 f idv − F ids = ργidv

avec (200) p. 312 :

∀i = 1, 2, 3 f idv − tkidsk = ργidv

Intégrons sur un volume V quelconque, de surface S :

∀i

˚

V

(
f i − ργi

)
dv −

¨

S

tkidsk = 0

En utilisant le théorème de la divergence 22.4.1 p. 254 dans un système de coordonnées recti-
lignes :

∀i

˚

V

(
f i − ργi − ∂ktki

)
dv = 0

f i − ∂ktki = ργi (202)

qui sont les équations de la dynamique des milieux continus en coordonnées rectilignes. Elles
sont homogènes à une force par unité de volume.
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La somme des moments des forces extérieures est égale au moment des forces d’inertie :

r × (fvdv − Fds) = r × γρdv

r × (fv − γρ)dv − r × Fds = 0

En notation indicielle et en intégrant sur un volume quelconque V de surface S :

∀i, j

˚

V

[
xi
(
f j − ργj

)
− xj

(
f i − ργi

)]
dv −

¨

S

(
xitkj − xjtki

)
dsk = 0

En utilisant le théorème de la divergence 22.4.1 p. 254 :

∀i, j

˚

V

[
xi
(
f j − ργj − ∂ktkj

)
− xj

(
f i − ργi − ∂ktki

)]
dv −

˚

V

(
tij − tji

)
dv = 0

Les relations (202) montrent que la première intégrale est nulle :

∀i, j

˚

V

(
tij − tji

)
dv = 0

tij = tji

Le tenseur des contraintes est donc symétrique par rapport à ses deux indices.

24.5.1 Écriture des équations en fonction de l’impulsion

Les relations (202) p. 312 peuvent s’écrire en fonction de la densité volumique d’impulsion.
Écrivons l’accélération (138) p. 237 dans un système de coordonnées rectilignes où les symboles
de Christoffel sont nuls (21.4.6 p. 226), puis utilisons les relations (196) p. 309 :

∀i γi =
dvi

dt

=
∂vi

∂t
+ vk∂kvi

La vitesse de l’élément de matière varie localement et il existe un gradient de vitesse dans le
milieu continu.

En vue de passer au cas relativiste, plaçons-nous dans le référentiel inertiel instantané R0

au repos par rapport à l’élément de matière du milieu continu. La vitesse relative est nulle :

∀i γi =
∂vi

∂t

∀i ργi =
∂ (ρvi)

∂t
− vi ∂ρ

∂t

=
∂ (ρvi)

∂t

où l’on utilise une seconde fois le fait que les vi sont nulles dans le référentiel propre du milieu
continu. Les équations de la dynamique des milieux continus en coordonnées rectilignes (202)
p. 312 par unité de volume s’écrivent en fonction de l’impulsion :

∀i f i − ∂ktki = ∂t(ρvi)

Soit p̄ le trivecteur impulsion par unité de volume non relativiste, de composantes contra-
variantes :

∀i p̄i , ρvi (203)
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Les équations de la dynamique et l’équation de continuité (197) p. 310 s’écrivent :




∂tρ + ∂ip̄
i = 0

∂tp̄
i + ∂ktki = f i ∀i = 1, 2, 3

(204)

24.5.2 Forme générale des équations de la dynamique des milieux continus

Généralisons les relations (202) p. 312 à un système de coordonnées curvilignes. Les équa-
tions tensorielles

∀i f i − ∇ktki = ργi (205)

sont invariantes par changement de coordonnées et redonnent les relations (202) pour un sys-
tème de coordonnées rectilignes. Ce sont donc les équations de la dynamique des milieux conti-
nus dans un système de coordonnées curvilignes arbitraires.

24.5.3 Écriture des équations générales en fonction de l’impulsion

Écrivons ces équations en fonction de l’impulsion. Les relations (138) p. 237 donnent l’ac-
célération en fonction de la vitesse :

∀i γi =
dvi

dt
+ Γi

kjv
kvj

= ∂tv
i + vk∂kvi + Γi

kjv
kvj

= ∂tv
i + vk

(
∂kvi + Γi

kjv
j
)

En multipliant par la masse volumique et avec la définition 21.8.1 p. 234 de la dérivée covariante :

∀i ργi = ρ∂tv
i + ρvk∇kvi

=
∂ (ρvi)

∂t
− vi ∂ρ

∂t
+ ∇k

(
ρvkvi

)
− vi∇k

(
ρvk

)

=
∂ (ρvi)

∂t
+ ∇k

(
ρvkvi

)
− vi

[
∂ρ

∂t
+ ∇k

(
ρvk

)]

Avec l’équation de continuité (198) p. 310 le dernier terme est nul :

∀i ργi = ∂t

(
ρvi
)

+ ∇k

(
ρvkvi

)

Les équations de la dynamique des milieux continus en coordonnées curvilignes (205) s’écrivent
en fonction de l’impulsion :

∀i ∂t

(
ρvi
)

+ ∇k

(
ρvkvi + tki

)
= f i (206)

Ces trois équations et celle de continuité déterminent la dynamique des milieux continus sous
l’action de forces de volume et de surface. Il reste à remplacer les tki et les f i par des modèles
de forces.
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25.1 La transformation de Lorentz

25.1.1 Transformation de Galilée

En physique non relativiste, pour passer des coordonnées spatiales et temporelle d’un point
dans un référentiel galiléen aux coordonnées du même point dans un autre référentiel galiléen,
c’est-à-dire pour effectuer un changement de référentiel galiléen, nous utilisons la transformation
de Galilée. Pour deux référentiels en configuration standard :

x′ = x − vet ; y′ = y ; z′ = z ; t′ = t

Appliquons cette transformation à l’équation de la sphère de lumière dans R′ :

x′2 + y′2 + z′2 = c2t′2

(x − vet)
2 + y2 + z2 = c2t2

x2 − 2xvet + v2
et2 + y2 + z2 = c2t2 (207)

Ce n’est plus une sphère dans R à cause des termes supplémentaires −2xvet et v2
e t2.

25.1.2 Transformation spéciale de Lorentz

Au paragraphe 9.3 p. 74, nous avons vu que l’équation de la sphère de lumière est invariante
par changement de référentiel (changement de coordonnées spatio-temporelles). À partir de
(207), pour obtenir une sphère nous ne pouvons pas garder t′ = t si nous voulons éliminer le
terme croisé −2xvet. On essaye alors la transformation la plus simple envisageable,

x′ = x − vet ; y′ = y ; z′ = z ; t′ = t + Kx

où K est une constante qu’il faut déterminer. Appliquons cette transformation à l’équation
(207) de la sphère de lumière dans R′ :

x2 − 2xvet + v2
e t2 + y2 + z2 = c2 (t + Kx)2

= c2t2 + 2c2Kxt + c2K2x2

x2
(
1 − c2K2

)
− 2xt

(
ve + c2K

)
+ y2 + z2 = c2t2

(
1 − v2

e/c2
)
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Pour éliminer le terme en xt on pose ve + c2K = 0, soit K = −v/c2. La transformation et
l’équation dans R deviennent,

x′ = x − vet ; y′ = y ; z′ = z ; t′ = t − vex/c2

x2
(
1 − v2

e/c2
)

+ y2 + z2 = c2t2
(
1 − v2

e/c2
)

Pour obtenir l’équation d’une sphère dans R nous devons diviser x′ et t′ par le terme constant√
1 − v2

e/c2.

Définition 25.1.1. Facteur relativiste
On définit le facteur relativiste ou facteur de Lorentz ou encore coefficient de parallaxe
spatio-temporelle par :

γ(ve) ,
1√

1 − v2
e/c2

γ(ve) est noté γe. Ce facteur est sans dimension. Pour toute vitesse relative, c’est-à-dire
pour tout couple de référentiels ou d’observateurs, il existe un facteur relativiste. Lorsque il y
a plusieurs vitesses relatives il faut préciser de quel facteur relativiste il s’agit. De plus :

0 6 ve 6 c ⇔ γe > 1 (208)

La transformation devient 



t′ = γe

(
t − vex/c2

)

x′ = γe (x − vet)

y′ = y

z′ = z

appelée transformation spéciale de Lorentz-Poincaré. La transformation est dite « spéciale »
parce qu’elle n’inclue pas les rotations statiques ordinaires de l’espace. Elle est obtenue ici
grâce à l’hypothèse de l’invariance de c (qui entraine celle de l’équation de la sphère de lumière)
et grâce à la transformation de Galilée en considérant un mouvement de R′ dans le sens des x
croissants. La transformation de Lorentz-Poincaré s’écrit :





t′ = γe

(
t − vex/c2

)

x′ = γe (x − vet)
⇒

{
ct′ = γe (ct − xve/c)

x′ = γe (x − ctve/c)

La transformation de Lorentz-Poincaré est symétrique en x et ct. On pose

βe = ve/c





ct′ = γe(ct − βex)

x′ = γe(x − βect)

Sous forme matricielle :
(

ct′

x′

)
=

[
−γeβe γe

γe −γeβe

](
ct
x

)



Relativité restreinte 317

Notation 28. Matrice de Lorentz
La matrice changement relativiste de référentiel galiléen, ou matrice de Lorentz, est notée avec la

lettre grecque lambda majuscule en l’honneur de Lorentz :

Λ =

[−γeβe γe

γe −γeβe

]

On a la transformation inverse en changeant βe en −βe et en permutant les coordonnées :

ct = γe (ct′ + βex
′) ; x = γe (x′ + βect) ; y = y′ ; z = z′

25.2 Quadrivitesse

Définissons le temps propre τ comme le temps qui s’écoule dans le référentiel du point
matériel.

Définition 25.2.1. Temps propre
Le temps propre d’un référentiel est le temps indiqué par une horloge fixe dans ce référen-
tiel.

L’intervalle de temps propre, ou durée propre, entre deux évènements, est la durée mesurée
dans le référentiel dans lequel les deux évènements ont lieu au même endroit (dx = dy = dz = 0).
Le choix d’écriture du carré de la métrique (30) p. 76 donne un ds réel :

ds2 = c2dτ 2

ds = ±cdτ

où dτ et c sont toujours positifs. On choisit ds positif, le sens de parcours se fait dans le sens
de l’écoulement du temps :

ds = cdτ (210)

L’intervalle s est égal au temps propre au facteur c près, dans la convention de signe (30) p. 76
choisie pour la métrique. Le temps propre d’une particule est la mesure de la quadridistance
qu’elle parcourt dans l’espace-temps.

En revanche, le temps t dans un référentiel quelconque est arbitraire au même titre que
les coordonnées spatiales. Il dépend de notre choix de référentiel. On l’appelle alors temps
coordonnée.

Dans l’espace-temps de Poincaré-Minkowski on considère un point matériel en mouvement
avec une vitesse inférieure à c, donc pour lequel ds2 > 0. Ce mouvement peut être défini par
la donnée des coordonnées galiléennes réduites xα ((9) p. 24) de ce point en fonction d’un
paramètre. Prenons pour paramètre le temps propre τ , c’est-à-dire l’intervalle s au facteur c
près. Nous avons alors xα = xα(τ), où les indices grecs varient de 0 à 3.
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Définition 25.2.2. Quadrivitesse
Le quadrivecteur vitesse d’univers, aussi appelé quadrivitesse, vitesse spatio-temporelle,
vitesse quadridimentionnelle, ou encore 4-vitesse, est défini par :

∀α uα ,
dxα

dτ

Dans le système de coordonnées galiléennes réduites (pseudo-orthonormées), sa pseudo-
norme vaut :

‖u‖2 = u · u

= ηαβuαuβ

=

(
dx0

dτ

)2

−
(

dx1

dτ

)2

+

(
dx2

dτ

)2

+

(
dx3

dτ

)2

=
ds2

dτ 2

= c2

Nous avons :




u0 =
dx0

dτ

ui =
dxi

dτ

⇒





u0 = c
dt

dτ

ui = vi dt

dτ

où les indices latins varient de 1 à 3. La relation (30) p. 76 donne

ds2 = c2dt2 − dx2 − dy2 − dz2

ds2

dt2
= c2 − v2

ds

dt
=

√
c2 − v2

dt

ds
=

1

c
√

1 − v2/c2

dt

dτ
= γ(v) (211)

où l’on s’est servi de la définition 25.1.1 p. 316 du facteur relativiste γ. Si bien que la quadri-
vitesse s’écrit :





u0 = cγ(v)

ui = γ(v)vi
(212)
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Notation 29. On note ∂α la dérivée partielle par rapport à la coordonnée galiléenne réduite xα.

∂0u0 =
cdγ(v)

dx0
=

d

dt

(
1 − v2

c2

)−1/2

= −1

2

(
1 − v2

c2

)−3/2

× − 1

c2

dv2

dt

=
γ3

v

2c2

dv2

dt
=

γ3
v

2c2

d

dt

(
v2

x + v2
y + v2

z

)

=
γ3

v

2c2

(
2vx

dvx

dt
+ 2vy

dvy

dt
+ 2vz

dvz

dt

)

=
γ3

v

c2
~v · d~v

dt
=

γ4
v

c2
~v · ~a

Dans le référentiel inertiel au repos instantané R0 le vecteur vitesse d’espace est nul ∀i, vi = 0
et γ(v) = 1 : 




u0 = c

ui = 0
et ∂0u0 = 0 (213)

D’après la définition 23.2.1 p. 266 le point matériel décrit une géodésique de l’espace-temps de
métrique (30) p. 76. Nous pouvons à présent écrire le principe d’inertie en relativité restreinte :

Un point matériel isolé admet pour trajectoire d’univers une géodésique de l’espace de
Poincaré-Minkowski pour laquelle le ds2 est positif (dans la convention choisie).

Les géodésiques pour lesquelles ds2 = 0 sont parcourues à la vitesse c, elles correspondent
aux rayons lumineux si l’on suppose que la lumière se propage à la vitesse limite. Elles sont
dites nulles ou isotropes.

25.3 Quadri-impulsion

25.3.1 Impulsion relativiste

La masse inerte d’un système mesurée dans le référentiel propre de ce système, notée simple-
ment m (parfois m0) ne peut être qu’absolue. Elle est appelée masse propre, masse intrinsèque,
masse au repos ou simplement masse.

Définition 25.3.1. Inertie
L’inertie d’un système de vélocité ~v dans un référentiel galiléen est le produit de la masse
propre de ce système par le facteur relativiste lié à sa vélocité :

I(v) , γvm
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Définition 25.3.2. Quantité de mouvement relativiste
Le trivecteur quantité de mouvement relativiste ou impulsion relativiste est le produit :

~p , γvm~v (214)

, I~v

, m~u

~p




mux

muy

muz




Remarque 51. À faible vitesse devant c ou lorsque c tend vers l’infini, m~u tend vers m~v, le trivecteur
quantité de mouvement non relativiste.

Définition 25.3.3. Quadri-impulsion
La quadri-impulsion d’un système dans R est le produit de sa masse (propre) par sa
quadrivitesse dans R (212) p. 318 :

p , mu

p




mγvc
mux

muy

muz




La quadri-impulsion généralise à l’espace-temps l’impulsion relativiste purement spatiale en
lui ajoutant une composante temporelle.

25.3.2 Énergie relativiste

Pour faire le lien avec la mécanique non relativiste, prenons une vitesse v petite devant la
vitesse limite c. Le facteur relativiste γv tendant vers un, l’inertie tend vers la masse. La partie
spatiale du quadrivecteur impulsion, c’est-à-dire la quantité de mouvement relativiste ~p, tend
vers la quantité de mouvement non relativiste m~v.

Pour la partie temporelle, à faible vitesse nous devons prendre le développement limité de

γv =
(
1 − v2/c2

)−1/2

pour v ≪ c, donc pour v2/c2 proche de zéro :

γv ≈ 1 +
1

2

(
v2

c2

)
+

3

8

(
v2

c2

)2

+ . . .

Notons pt la composante temporelle de la quadri-impulsion :

pt = γvmc

ptc = γvmc2

≈ mc2 +
mv2

2
+

3mv4

8c2
+ . . .
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La multiplication par c nous a fait passer du domaine des impulsions au domaine des énergies.
À faible vitesse le deuxième terme Ecin = mv2/2 se confond avec l’énergie cinétique de la
mécanique non relativiste. Le premier terme mc2 est une énergie constante qui existe aussi à
vitesse nulle, donc dans le référentiel propre.

Définition 25.3.4. Énergie au repos
L’énergie au repos d’un système, ou énergie propre, ou énergie de masse est le produit de
sa masse par c2 :

E0 , mc2

E0 n’existe pas en mécanique non relativiste parce que l’on ne mesure ou calcule que des
différences d’énergie. Au facteur c2 près, que l’on peut prendre égal à l’unité, l’énergie au repos
est la masse (inerte au repos) de la particule. Faire la différence entre ces deux notions revient
à faire la différence entre un prix en dollars et un prix en euros avec un taux de change fixe.

Définition 25.3.5. Énergie cinétique relativiste
L’énergie cinétique relativiste est toute l’énergie due au mouvement relatif, donc l’en-
semble des termes contenant v :

T ,
mv2

2
+

3mv4

8c2
+ . . .

, (γv − 1) mc2

Remarque 52. Lorsque la vitesse tend vers c le facteur relativiste γv tend vers l’infini et donc l’énergie
cinétique tend aussi vers l’infini. Il existe une vitesse limite mais pas une énergie cinétique limite.

Définition 25.3.6. Énergie totale relativiste
L’énergie totale est la somme de l’énergie au repos et de l’énergie cinétique relativiste :

E , E0 + T

= γvmc2 (215)

= Ic2

Au facteur c2 près, que l’on peut prendre égal à l’unité, l’énergie totale relativiste du système
est son inertie.

25.3.3 Quadri-impulsion

La définition 25.3.3 p. 320 de la quadri-impulsion est homogène à une quantité de mouve-
ment :

p (Ic, ~p) (216)

La multiplier par c la rend homogène à une énergie, pour former la « quadri-énergie » :

E (E, c~p)
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Elle n’est jamais homogène aux deux en même temps, sauf lorsque c = 1. Diviser la quadri-
impulsion par c la rend homogène à une masse, pour former la « quadri-inertie » :

I

(
I,

~p

c

)

Nous devrions l’appeler quadrivecteur inertie-énergie-impulsion, mais nous retiendrons le terme
quadri-impulsion.

Les relations ~p = I~v et E = Ic2 donnent la nouvelle relation :

c2~p = E~v

De part leur définition, l’énergie totale est liée à l’énergie au repos et à la quantité de
mouvement relativiste :

γ2
v(v) =

1

1 − β2

γ2
v − γ2

vv2/c2 = 1

γ2
vm2c4 − γ2

vv2m2c2 = m2c4

E2 = E2
0 + p2c2 (217)

25.3.4 Conservation de la quadri-impulsion

Comme tout quadrivecteur, la quadri-impulsion est invariante par changement de référentiel
galiléen, mais cela ne signifie pas que la somme des quadri-impulsions se conserve lors d’une
interaction, autrement dit que la quadri-impulsion d’un système isolé se conserve dans le temps.
À basse vitesse elle donne l’énergie cinétique et la quantité de mouvement, deux quantités qui se
conservent lors d’une interaction en mécanique non relativiste (l’énergie d’agitation thermique
est une forme d’énergie cinétique).

On vérifie expérimentalement mais on ne peut démontrer que la quadri-impulsion se conserve
lors d’une interaction. Soient deux systèmes de quadri-impulsion p1 et p2. Par hypothèse basée
sur l’expérience :

∀α = 0, . . . , 3 pα
1 + pα

2 = p′α
1 + p′α

2

(1) La partie temporelle donne la conservation de l’inertie et non plus de la masse inerte.
Avec la relation (216) p. 321 :

p0
1 + p0

2 = p′0
1 + p′0

2

I1c + I2c = I ′
1c + I ′

2c

I1 + I2 = I ′
1 + I ′

2

L’inertie I(v) d’une particule, donc son énergie totale E = Ic2, n’est pas invariante par
changement de référentiel par la transformation de Lorentz-Poincaré puisque fonction
de la vitesse, mais la somme des inerties (donc des énergies totales) est conservée par
hypothèse lors d’une interaction.

Réciproquement, la masse m d’une particule, donc son énergie au repos E0 = mc2,
est absolue puisqu’elle n’est définie que dans le référentiel propre de la particule, mais la
somme des masses (donc des énergies au repos) ne se conserve pas lors d’une interaction
puisque c’est la somme des énergies totales qui se conserve.
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(2) La partie spatiale donne la conservation de la quantité de mouvement relativiste selon
chaque axe :

p1
1 + p1

2 = p′1
1 + p′1

2 ⇒ px1
+ px2

= p′
x1

+ p′
x2

p2
1 + p2

2 = p′2
1 + p′2

2 ⇒ py1
+ py2

= p′
y1

+ p′
y2

p3
1 + p3

2 = p′3
1 + p′3

2 ⇒ pz1
+ pz1

= p′
z1

+ p′
z1

~p1 + ~p2 = ~p′
1 + ~p′

2

La conservation de la quantité de mouvement est remplacée par la conservation de la
quantité de mouvement relativiste, l’inertie I(v) = γvm remplaçant la masse inerte m.

La quantité de mouvement relativiste d’une particule n’est pas invariante par chan-
gement de référentiel galiléen par la transformation de Lorentz-Poincaré puisque fonc-
tion de la vitesse, mais par hypothèse la somme des quantités de mouvement relativistes
se conserve lors d’une interaction.

25.4 Dynamique relativiste des milieux continus

Nous nous plaçons dans un référentiel inertiel R0 au repos par rapport au milieu en un lieu
et à un instant précis, c’est-à-dire en un point d’univers donné (évènement P0). En ce point les
composantes du vecteur vitesse relative d’espace du milieu dans le référentiel sont nulles, en
revanche les dérivées de ces composantes peuvent être non nulles. Nous choisissons un système
de coordonnées rectangulaires.

En dynamique relativiste toutes les formes d’énergie apportent leur contribution au qua-
drivecteur énergie-impulsion. Or les énergies s’additionnent, nous devons donc raisonner en
termes d’énergie. Dans les équations de la dynamique des milieux continus non relativistes
(204) p. 314, le vecteur impulsion volumique non relativiste p̄ ne contient que le terme de
masse volumique correspondant à l’énergie de masse. Pour faire apparaitre l’énergie de masse
multiplions la définition du trivecteur impulsion volumique non relativiste (203) p. 313 par c2

(on utilise E = mc2) :

∀i c2p̄i = ρc2vi

où ρ est la masse volumique propre, celle mesurée dans le référentiel propre R0. Pour for-
mer le quadrivecteur énergie-impulsion relativiste nous devons prendre en compte l’énergie des
contraintes mécanique. En revanche nous supposons l’absence de champ électromagnétique.

Le travail par unité de temps de la force de contrainte est son produit scalaire euclidien par
la vitesse de l’élément de matière considéré. À partir de (200) p. 312 :

vjF
jds = vjt

ijdsi

Remarque 53. Les composantes covariante vj sont nulles mais la substitution se fera à la fin. De
même que lorsque l’on écrit la relation fondamentale de la dynamique

∑
F = d(mv)/dt la vitesse peut

être nulle sans que l’accélération le soit.

Au terme c2ρvi homogène à une énergie par unité de temps et de surface correspond le terme
de mêmes dimensions vjt

ij . La partie spatiale du quadrivecteur densité volumique d’impulsion
relativiste p a alors pour composantes contravariantes :

∀i pi = ρvi − 1

c2
tijvj
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Le signe négatif vient de ce que les composantes covariantes de la vitesse sont négatives dans
la métrique (+ − −−) de la relativité (voir l’exemple 17.3 p. 146).

Exemple 25.4.1. La pression p est homogène à une densité volumique d’énergie. En
mécanique non relativiste, l’énergie contenue dans un volume élémentaire de fluide parfait
à la pression p a pour expression

E = pdv

qui donne

Evi = pvidv

= pgijvjdv

= tijvjdv

En relativité, avec une signature (+ − −−), l’énergie contenue dans ce même volume
élémentaire a pour expression

E = ρdvc2 + pdv

qui donne

Evi = (ρc2vi + pvi)dv

Evi

c2
=
(

ρvi +
1

c2
pgijvj

)
dv

pi =
(

ρvi − 1

c2
tijvj

)
dv

Les composantes spatiales du quadrivecteur p sont nulles en P0 mais il n’en est pas de même
de leurs dérivées. Les équations non relativistes (204) p. 314 deviennent :





∂tρ + ∂i

(
ρvi − 1

c2
tijvj

)
= 0

∂t

(
ρvi − 1

c2
tijvj

)
+ ∂ktki = f i ∀i = 1, 2, 3

En tenant compte de la nullité des vi en P0 :




∂tρ + ρ∂iv
i − 1

c2
∂it

ijvj = 0

ρ∂tv
i − 1

c2
∂tt

ijvj + ∂ktki = f i ∀i = 1, 2, 3

Introduisons la variable x0 = ct :




c∂0ρ + ρ∂iv
i − 1

c2
∂it

ijvj = 0

cρ∂0vi − 1

c
∂0tijvj + ∂ktki = f i ∀i = 1, 2, 3

(218)

25.5 Forme tensorielle des équations du mouvement

Il s’agit d’écrire les relations (218) dans l’espace-temps de la relativité, c’est-à-dire sous forme
de quadri-tenseurs et quadrivecteurs. Nous introduisons le quadri-tenseur d’univers symétrique
T de composantes deux fois contravariantes T αβ qui généralise le tenseur des contraintes du
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paragraphe 24.4.4 p. 310. Dans le référentiel inertiel de repos instantané R0 et au point d’univers
P0, ce tenseur a pour composantes :

∀i, k T ik = tik ; ∀i T i0 = T 0i = T 00 = 0

Les indices latins varient de 1 à 3, les indices grecs de 0 à 3, l’indice 0 étant la composante
temporelle. Nous introduisons également le quadrivecteur force d’univers par unité de volume,
qui a pour composantes dans R0 en P0 :

∀i φi = f i ; φ0 = 0

ainsi que le quadrivecteur vitesse d’univers (212) p. 318

∀i ui = γvi ; u0 = γc

qui a pour composantes dans R0 en P0 :

∀i ui = 0 ; u0 = c

Montrons que les équations (218) s’écrivent

∀α ∇β

(
ρuαuβ + T αβ

)
= φα (219)

équivalent au système d’équations :




∇β

(
ρu0uβ + T 0β

)
= φ0

∇β

(
ρuiuβ + T iβ

)
= φi

⇒





∇β

(
ρu0uβ

)
+ ∇kT 0k + ∇0T 00 = 0

∇β

(
ρuiuβ

)
+ ∇0T

i0 + ∇kT ik = f i

En coordonnées rectangulaires :




∂β

(
ρu0uβ

)
+ ∂kT 0k + ∂0T 00 = 0

∂β

(
ρuiuβ

)
+ ∂0T i0 + ∂kT ik = f i





u0uβ∂βρ + ρuβ∂βu0 + ρu0∂βuβ + ∂kT 0k + ∂0T 00 = 0

uiuβ∂βρ + ρuβ∂βui + ρui∂βuβ + ∂0T i0 + ∂kT ik = f i

Nous avons aussi les relations suivantes :

∂βuβ = ∂0u0 + ∂kuk

uβ∂βρ = u0∂0ρ + ui∂iρ

uβ∂βui = u0∂0ui + ui∂iu
i

Dans R0 avec les relations (213) p. 319 (∀i ui = 0, u0 = 1, ∂0u0 = 0), elles deviennent :

∂βuβ = ∂kuk

uβ∂βρ = c∂0ρ

uβ∂βui = c∂0ui

Remplaçons : 



c2∂0ρ + ρc∂kuk + ∂kT 0k + ∂0T 00 = 0

uic∂0ρ + ρuβ∂βui + ρui∂βuβ + ∂0T
i0 + ∂kT ik = f i

De nouveau avec les relations (213) p. 319 :




c2∂0ρ + ρc∂iu
i + ∂kT 0k + ∂0T 00 = 0

ρc∂0ui + ∂0T i0 + ∂kT ik = f i
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Par hypothèse ∀α, T α0 = 0 :

T αβuβ = T α0u0 + T αjuj ∀α

= 0 (220)

Les tenseurs et vecteurs ayant une existence propre indépendante de tout référentiel, cette
relation vraie dans R0 est vraie dans tout référentiel.

T α0c + T αjuj = 0 ∀α

T α0c = −T αjuj ∀α

c∂βT α0 = −∂βT αjuj ∀α, β





c∂kT α0 = −∂kT αjuj ∀α

c∂0T α0 = −∂0T αjuj ∀α
⇒





c∂kT k0 = −∂kT kjuj ∀α = k

c∂0T i0 = −∂0T ijuj ∀i

c∂0T 00 = −∂0T 0juj = −uj∂0T 0j − T 0j∂0uj = 0

Avec ces relations : 



c2∂0ρ + cρ∂iu
i − 1

c
∂kT kjuj = 0

cρ∂0ui − 1

c
∂0T ijuj + ∂kT ik = f i

Or, nous avons également

∂iu
i = γ∂iv

i + vi∂iγ = γ∂iv
i

∂0ui = γ∂0vi + vi∂0γ = γ∂0vi

Dans R0, γ = 1 :

∂iu
i = ∂iv

i

∂0ui = ∂0v
i

Nous retrouvons les équations (218) p. 324 :




c∂0ρ + ρ∂iv
i − 1

c2
∂it

ijvj = 0

cρ∂0vi − 1

c
∂0tijvj + ∂ktik = f i ∀i = 1, 2, 3

25.6 Le tenseur énergie-impulsion

Les équations (219) p. 325 s’écrivent :

∀α ∇βP αβ = φα (221)

où l’on a posé

∀α, β P αβ = ρuαuβ + T αβ (222)

Le tenseur symétrique P αβ est le tenseur énergie-impulsion du milieu continu considéré. Le
produit scalaire avec la quadrivitesse s’écrit (en utilisant (220) p. 326) :

∀α P αβuβ =
(
ρuαuβ + T αβ

)
uβ

= ρuαuβuβ

= c2ρuα
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Le tenseur énergie-impulsion peut être vu comme une application linéaire ayant pour vecteur
propre le quadrivecteur vitesse et pour valeur propre correspondante la masse volumique ρ.

D’après (201) p. 312, lorsque le milieu continu est un fluide parfait le tenseur énergie-
impulsion admet pour composantes :

∀i, k T ik = tik = −pηik ; ∀i T i0 = T 0i = T 00 = 0

Le signe négatif vient du choix de la métrique ∀i, k ηik = −1. En tenant compte du fait que
∀i ui = 0 ⇒ ∀i, k uiuk = 0 et u0u0 = c2, dans un système de coordonnées quelconque :

T αβ = −pgαβ +
p

c2
uαuβ

D’où

∀α, β P αβ = ρuαuβ − pgαβ +
p

c2
uαuβ

=
(

ρ +
p

c2

)
uαuβ − pgαβ

25.7 Principe de moindre action en relativité restreinte

En mécanique non relativiste, l’action de Hamilton d’un système de lagrangien L entre les
évènements A (départ du point A à l’instant tA) et B (arrivée au point B à l’instant tB) a pour
expression :

S =

ˆ tB

tA

L (y(t), ẏ(t), t) dt

Dans le cas d’un système libre, le principe de moindre action se réduit à un principe de moindre
temps :

S = ε

ˆ tB

tA

dt

où ε est invariant sur la trajectoire, ayant la dimension d’une énergie et caractérisant le système.
Le principe de moindre action

δS = 0

donne l’équation de la trajectoire du système. Cette trajectoire existe en elle-même et doit être
indépendante du référentiel galiléen de l’observateur.

Par analogie, en relativité restreinte l’action doit être invariante par changement de réfé-
rentiel galiléen pour que la trajectoire le soit aussi. L’action relativiste est donc de la forme :

S = ε

ˆ τB

τA

dτ

où τ est le temps propre du système et ε un invariant relativiste ayant la dimension d’une
énergie et caractérisant le système. L’action écrite dans un référentiel galiléen quelconque doit
être invariante, donc de la forme que nous avons indiquée :

ˆ tB

tA

L (y(t), ẏ(t), t) dt = ε

ˆ τB

τA

dτ

= ε

ˆ tB

tA

1

γv
dt
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On en déduit l’expression du lagrangien dans le référentiel galiléen quelconque :

L = ε/γv

Prenons le développement limité de 1/γv pour v ≪ c :

L ≈ ε
[
1 − v2/(2c2)

]

Le lagrangien est défini à une constante additive près donc :

L ≈ −εv2

2c2

À faible vitesse devant c il doit redonner l’énergie cinétique du système libre :

−εv2

2c2
=

1

2
mv2

ε = −mc2

On a donc pour le lagrangien relativiste d’un système libre

L = −mc2/γv (223)

et pour l’action du système libre :

S = −mc2

ˆ τB

τA

dτ

= −mc2

ˆ tB

tA

1

γv
dt

Le principe de moindre action s’écrit :

−mc2δ

ˆ tB

tA

1

γv
dt = 0

Avec les relations (210) p. 317 et (211) p. 318,

dt = γvds/c

nous avons

S = −mc

ˆ B

A

ds (224)

et le principe de moindre action dans l’espace-temps quadridimensionnel de la relativité res-
treinte s’écrit :

−mcδ

ˆ B

A

ds = 0 (225)

où A est l’évènement départ du point x1
A, x2

A, x3
A à l’instant x0

A, et B l’évènement arrivée au
point x1

B , x2
B, x3

B à l’instant x0
B. L’action est inversement proportionnelle à la quadrilongueur de

la ligne d’univers parcourue par le système entre les évènements A et B. D’après (30) p. 76, la
quadrilongueur est maximale pour une ligne d’univers droite (objet immobile dans le référentiel
galiléen), par conséquent l’action est minimale lorsque la ligne d’univers est une droite.
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25.7.1 Trajectoire d’un système libre

Cherchons la trajectoire à partir du principe de moindre action sans utiliser les équations
de Lagrange :

−mcδ

ˆ B

A

ds = 0

−m

ˆ B

A

cδds = 0

En coordonnées galiléennes réduites (ct, x, y, z) :

ds2 = dxαdxα

δ(ds2) = δ(dxαdxα)

2dsδds = dxαδdxα + dxαδdxα

Dans l’espace-temps pseudo-euclidien de la relativité restreinte dxα = −dxα :

2dsδds = (−dxα)δ(−dxα) + dxαδdxα

= 2dxαδdxα

δds =
dxα

ds
δdxα

=
uα

c
δdxα

Or :

d(uαδxα) = duαδxα + uαdδxα

= duαδxα + uαδdxα

−d(uαδxα) + duαδxα = −uαδdxα

Le principe de moindre action devient :

−m

ˆ B

A

uαδdxα = 0

−m

ˆ B

A

(uαδxα) + m

ˆ B

A

duαδxα = 0

−m [uαδxα]BA + m

ˆ B

A

duα

ds
δxαds = 0 (226)

Or δxα(A) = δxα(B) = 0

m

ˆ B

A

duα

ds
δxαds = 0

duα

ds
= 0 (227)

Le quadrivecteur vitesse est constant pour un système libre.
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25.7.2 Impulsion relativiste

En notation vectorielle, l’impulsion relativiste d’un système libre s’écrit :

~p =
∂L

∂~v

= −mc2
∂
√

1 − ~v · v/c2

∂~v

= −mc2 2~v√
1 − v2/c2

~p = γvm~v

Cette relation définit le trivecteur quantité de mouvement relativiste.

Remarque 54. Avec le lagrangien d’un système libre, les équations de Lagrange s’écrivent

d

dt

(
∂L

∂~v

)
− ∂L

∂~r
= 0

d

dt

(
∂L

∂~v

)
= 0

d~p

dt
= 0

25.7.3 Énergie relativiste

En notation vectorielle, la fonction énergie d’un système libre s’écrit :

H = ~v · ∂L

∂~v
− L

= ~v · m~v√
1 − v2/c2

+ mc2
√

1 − v2/c2

H = γvmc2

Cette relation définit l’énergie totale relativiste.

25.7.4 Équation de Hamilton-Jacobi relativiste pour une particule libre

Nous avons obtenu précédemment la relation (226) p. 329 :

−m [uαδxα]BA + m

ˆ B

A

duα

ds
δxαds = 0

Sur une trajectoire réelle, la quadrivitesse d’une particule libre est constante, duα

ds
= 0 :

−m [uαδxα]BA = 0

Si l’on considère deux trajectoires ayant même point de départ δxα
A = 0 mais une arrivée

différente, il reste :

δS = −muαδxα

= −pαδxα

∂S

∂xα
= −pα
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Remarque 55. La relation (48) p. 101 donne le passage entre composantes covariantes-
contravariantes, pour le quadri-vecteur position

r(x0, xi) = r(x0, −xi)

et pour la quadri-énergie-impulsion,

p(p0, pi) = p(p0, −pi)

si bien que l’on a également :
∂S

∂xα

= −pα

Avec la définition (25.3.3) p. 320 de la quadri-impulsion et la relation (217) p. 322 sur
l’énergie :

∂S

∂x0
= −p0

∂S

c∂t
= −E

c

1

c2

(
∂S

∂t

)2

=
E2

c2

1

c2

(
∂S

∂t

)2

=
m2c4

c2
+ p2

Nous obtenons l’équation de Hamilton-Jacobi relativiste :

1

c2

(
∂S

∂t

)2

−
(

∂S

∂x

)2

−
(

∂S

∂y

)2

−
(

∂S

∂z

)2

= m2c2
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26.1 Principe d’équivalence

On utilise le principe d’équivalence du paragraphe 22.5 p. 258 pour guider notre réflexion.
Un champ de gravitation est équivalent à un référentiel en rotation. Dans un référentiel d’inertie
R de système de coordonnées galiléennes (t, x, y, z), l’intervalle ds est donné par :

ds2 = c2dt2 − dx2 − dy2 − dz2

L’intervalle conserve sa forme lorsque l’on passe à un autre référentiel inertiel. Voyons com-
ment il se transforme lorsque nous passons dans un référentiel non inertiel R′ de coordonnées
(t′, x′, y′, z′) en rotation uniforme dans R :

O i

j O′

P

r

b

x
′

y
′

i
′j

′

ωt

Fig. 26.1 – Référentiel R′ en rotation uniforme dans le référentiel inertiel R

Écrivons l’expression des vecteurs de base du référentiel R′ en fonction des vecteurs de base
du référentiel R, dans le référentiel R′. A priori nous ne connaissons pas la transformation du
temps, nous supposons t′ = t et envisagerons une transformation du temps un peu plus loin :

{
i′ = cos(ωt)i + sin(ωt)j

j ′ = − sin(ωt)i + cos(ωt)j

Soit P un point quelconque fixe dans R′ :

OP = OO′ + O′P

= ri′ + x′i′ + y′j ′

xi + yj = (r + x′)[cos(ωt)i + sin(ωt)j] + y′[− sin(ωt)i + cos(ωt)j]
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r et ω sont ici des paramètres :




x = (r + x′) cos(ωt) − y′ sin(ωt)

y = (r + x′) sin(ωt) + y′ cos(ωt)

z = z′
⇒





x = g(t, x′, y′)

y = h(t, x′, y′)

z = z′

⇒





dx =
∂x

∂x′ dx′ +
∂x

∂y′ dy′ +
∂x

∂t
dt

dy =
∂y

∂x′ dx′ +
∂y

∂y′ dy′ +
∂y

∂t
dt

dz = dz′

⇒





dx = cos(ωt)dx′ − sin(ωt)dy′ − ω[x′ sin(ωt) + y′ cos(ωt)]dt

dy = sin(ωt)dx′ + cos(ωt)dy′ + ω[x′ cos(ωt) − y′ sin(ωt)]dt

dz = dz′

⇒





dx2 = cos2(ωt)dx′2 + sin2(ωt)dy′2 − 2 cos(ωt) sin(ωt)dx′dy′

+ ω2[x′2 sin2(ωt) + y′2 cos2(ωt) + 2x′y′ sin(ωt) cos(ωt)]dt

− 2ω[cos(ωt)dx′ − sin(ωt)dy′][x′ sin(ωt) + y′ cos(ωt)]dt

dy2 = sin2(ωt)dx′2 + cos2(ωt)dy′2 + 2 sin(ωt) cos(ωt)dx′dy′

+ ω2[x′2 cos2(ωt) + y′2 sin2(ωt) − 2x′y′ cos(ωt) sin(ωt)]dt

+ 2ω[sin(ωt)dx′ + cos(ωt)dy′][x′ cos(ωt) − y′ sin(ωt)]dt

dz2 = dz′2

Dans le référentiel tournant, l’intervalle s’écrit :

ds2 = [c2 − ω2(x′2 + y′2)]dt2 − dx′2 − dy′2 − dz′2 − 2ωdt(y′dx′ + x′dy′)

Quelle que soit la transformation du temps on ne peut faire disparaitre le dernier terme et
cette expression ne peut se réduire à une somme de carrés de différentielles des coordonnées
t′, x′, y′, z′. Ce système de coordonnées est donc curviligne est le carré de l’intervalle élémentaire
ds s’écrit sous la forme quadratique générale

ds2 = gµνdxµdxν

où les gµν sont fonction des coordonnées spatiales et temporelle. Les référentiels non galiléens
étant équivalents à un champ de gravitation, on en déduit que les masses et donc l’énergie
déterminent les propriétés géométriques de l’espace-temps.

26.2 Métrique de la relativité générale

En mécanique classique la gravitation est une force attractive entre les masses. Nous aban-
donnons ici la notion de force gravitationnelle pour un modèle où les masses et distributions
énergétiques courbent l’espace-temps. Une masse d’épreuve très petite ainsi que la lumière
suivent les géodésiques de l’espace-temps.

L’univers est représenté par une variété riemannienne V4 à quatre dimensions, de métrique

ds2 = gµνdxµdxν (228)

de signature (+ − −−) ou (− + ++). En particulier l’équation ds2 = 0 définit en chaque
point de la variété V4 un hypercône élémentaire de lumière. Les gµν sont des fonctions des
coordonnées xµ, dont les dérivées déterminent les symboles de Christoffel qui apparaissent dans
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les équations des géodésiques. Ils définissent donc complètement les géodésiques de ce système
de coordonnées, donc la gravitation, c’est pourquoi on les appelle potentiels de gravitation de
ce système. Dans l’espace-temps de dimension n = 4 ils sont au nombre de seize (4 × 4), mais
d’après la relation (35) p. 82, seules dix composantes sont différentes :

n(n + 1)/2 = 10

Le problème consiste en la détermination de ces potentiels de gravitation.

La relativité restreinte traite les référentiels accélérés mais pas la gravitation. L’espace-
temps plat pseudo-euclidien de la relativité restreinte est osculateur à l’espace-temps courbe
pseudo-riemannien de la relativité générale. Quelle que soit l’intensité du champ gravitationnel,
un observateur inertiel se déplace sur une géodésique de l’espace-temps de la relativité générale,
dans l’espace pseudo-euclidien de raccordement de la relativité restreinte.

26.3 Champ gravitationnel faible

Une faible courbure de l’espace-temps doit redonner la théorie de la gravitation newtonienne
pour des vitesses petites devant la vitesse limite. En coordonnées galiléennes, un champ de
gravitation faible s’écrit de la forme :

gµν = ηµν + hµν

où ηµν est le tenseur métrique de l’espace plat pseudo-euclidien de Poincaré-Minkowski (relation
(32) p. 76), et hµν est le tenseur symétrique

[hµν ] =




h00 h01 h02 h03

h01 h11 h12 h13

h02 h12 h22 h23

h03 h13 h23 h33




tel que ∀µ, ν, hµν ≈ 0. On suppose également que dans le système de coordonnées choisi la
métrique est stationnaire (constante dans le temps) :

∂0gµν = 0

Cela suppose que le référentiel inertiel ne tourne pas sur lui-même.

Remarque 56. Un référentiel inertiel peut tourner sur lui-même, par rapport aux étoiles dites fixes.
Imaginons deux masses gravitant autour de la Terre dans le même plan, en décrivant dans le même sens
une trajectoire circulaire de même rayon. Elles se suivent donc. Relions ces deux masses par une tige
rigide pour qu’elles ne constituent qu’un seul et même objet. Cet objet est inertiel, pour autant il tourne
sur lui-même par rapport au reste de l’univers (ou, par rapport aux étoiles fixes) car il montre toujours
la même face à la Terre. Les forces d’inertie ne sont donc pas dues à la rotation par rapport au reste de
l’univers, mais à la sortie du solide hors de la géodésique que suit son centre d’inertie.

La ligne d’univers d’une particule en chute libre dans ce champ de gravitation est une
géodésique, relation (163) p. 266,

∀λ = 0, 1, 2, 3
d2xλ

dτ 2
+ Γλ

µν

dxµ

dτ

dxν

dτ
= 0

où en relativité générale, τ est le temps propre de l’observateur sur la géodésique, et x0 = ct
est le temps coordonnée, mesuré loin de toute masse-énergie. La particule est supposée non
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relativiste, son trivecteur vitesse est petit devant la vitesse limite c :

∀i = 1, 2, 3
dxi

dt
≪ c

dxi ≪ cdt

dxi ≪ dx0

dxi

dτ
≪ dx0

dτ

En faisant cette approximation puis en remplaçant x0 par ct :

∀λ = 0, 1, 2, 3
d2xλ

dτ 2
+ Γλ

00

dx0

dτ

dx0

dτ
≈ 0

d2xλ

dτ 2
+ Γλ

00c2

(
dt

dτ

)2

≈ 0 (229)

Écrivons les symboles de Christoffel de deuxième espèce en fonction des potentiels de gravitation
selon la relation (127) p. 225. Dans la relation qui suit, les deux premiers termes du membre
de droite sont nuls car le système de coordonnées est stationnaire :

∀λ = 0, 1, 2, 3 Γλ
00 = 1

2
gλκ (gκ0,0 + g0κ,0 − g00,κ)

= −1
2

gλκg00,κ

Faisons l’approximation du premier ordre

gλκ ≈ ηλκ

De plus

g00,κ = h00,κ

car les composantes du tenseur métrique ηµν de l’espace de Poincaré-Minkowski sont des
constantes :

∀λ = 0, 1, 2, 3 Γλ
00 ≈ −1

2
ηλκh00,κ

La relation (229) devient :

∀λ = 0, 1, 2, 3
d2xλ

dτ 2
≈ c2

2
ηλκh00,κ

(
dt

dτ

)2

— La première relation, pour λ = 0, donne pour la partie temporelle :

d2x0

dτ 2
≈ c2

2
η0κh00,κ

(
dt

dτ

)2

Seule η00 est non nulle donc κ = 0, et le système de coordonnées étant stationnaire
h00,0 = g00,0 = 0 :

d2x0

dτ 2
≈ c2

2
η00h00,0

(
dt

dτ

)2

≈ 0
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Soit α une constante :
d2t

dτ 2
≈ 0

dt

dτ
≈ α

(
dt

dτ

)2

≈ α2

dτ 2 ≈ dt2

α2

— Les trois relations suivantes, pour i = 1, 2, 3, donnent pour la partie spatiale :

∀i = 1, 2, 3
d2xi

dτ 2
≈ c2

2
ηijh00,j

(
dt

dτ

)2

Pour une signature de l’espace de Poincaré-Minkowski (+−−−) nous avons ηij = −δij :

∀i = 1, 2, 3
d2xi

dτ 2
≈ −c2

2
δijh00,j

(
dt

dτ

)2

d2x

dτ 2
≈ −c2

2

(
dt

dτ

)2

grad h00

α2 d2x

dt2
≈ −c2

2
α2 grad h00

d2x

dt2
≈ −c2

2
grad h00

Comparons avec l’équation de Newton d’une particule dans un champ de gravitation. Soient
mg la masse grave et mi la masse inerte de cette particule :

f = mgg

mi
d2x

dt2
= −mg grad φ

Nous avons alors :

−c2

2
grad h00 ≈ −mg

mi

grad φ

En posant l’égalité entre masse grave et masse inerte :

h00 ≈ 2φ

c2

Par conséquent, dans la limite des champs de gravitation faibles :

g00 ≈ 1 +
2φ

c2
(230)

où d’après (152) p. 250 φ est négatif.

Cette dernière relation peut être obtenue grâce au principe de moindre action. En mécanique
non relativiste, le lagrangien d’un système dans un champ de gravitation de potentiel φ s’écrit

L = 1
2
miv

2 − mgφ

En relativité restreinte, la relation 223 p. 328 donne

L = −mic
2
√

1 − v2/c2 − mgφ
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À faible vitesse nous avons :

L ≈ −mic
2 + 1

2
miv

2 − mgφ

On remarque que si l’on supprime le terme constant mic
2 du lagrangien (ce qui est toujours

loisible de faire) on retrouve bien le lagrangien non relativiste. L’action s’écrit :

S =

ˆ

L dt

≈ −mc

ˆ

(
c − v2

2c
+

φ

c

)
dt

où l’on a posé l’égalité entre masse inerte et masse grave. En comparant avec (224) p. 328 :

ds ≈
(

c − v2

2c
+

φ

c

)
dt

ds2 ≈

c2 +

(
v2

2c

)2

− v2 +

(
φ

c

)2

+ 2

(
c − v2

2c

)
φ

c


 dt2

ds2 ≈
{

c2 + v2

[(
v2

4c2

)
− 1

]
+ 2φ

[
1 − v2

c2
+

φ

2c2

]}
dt2

On approxime à moins un et un les termes entre crochets :

ds2 ≈
(
c2 + 2φ − v2

)
dt2

≈
(

1 +
2φ

c2

)
(cdt)2 − dr2

= gµνdxµdxν

= g00(dx0)2 − gii(dxi)2

si bien que

g00 ≈ 1 +
2φ

c2

Exemple 26.3.1. Calculons quelques valeurs de la correction à apporter à un espace plat.
La relation (152) p. 250 donne l’expression du potentiel de champ gravitationnel φ :

2φ

c2
=

−2GM

rc2

où la vitesse limite vaut exactement c = 299 792 458 m/s, et la constante de gravitation
a pour valeur G = 6,674 30 × 10−11 m3/kg/s2.
Prenons la Terre qui a pour masse M

♁
= 5,973 6 × 1024 kg et pour rayon moyen r

♁
=

6 371 km. À sa surface, la correction est de :
−2GM

♁

rc2
=

−2 × 6,674 30 × 10−11 × 5,973 6 × 1024

6 371 × 103 × 299 792 4582

= −1,392 59 × 10−9
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Prenons le Soleil qui a pour masse M⊙ = 1,989×1030 kg et pour rayon r⊙ = 696 342 km.
À sa surface, la correction est de :

−2GM⊙
rc2

=
−2 × 6,674 30 × 10−11 × 1,989 × 1030

696 342 × 103 × 299 792 4582

= −4,242 35 × 10−6

Ces valeurs petites devant l’unité n’invalident pas l’approximation d’un champ de gravi-
tation faible (elles ne le valident pas non plus).

Remarque 57. On ne peut démontrer ce que l’on a posé en hypothèse, par exemple que le
champ de gravitation est faible. Tout ce que l’on peut faire est de montrer que le raisonnement est
cohérent, en vérifiant que les valeurs sont petites devant l’unité. Si ce n’était pas le cas l’hypothèse
serait fausse, mais comme c’est le cas on ne peut pas conclure. Il se pourrait que le raisonnement
en supposant que le champ de gravitation est fort donne des valeurs grandes devant l’unité.

26.4 Écoulement du temps dans un champ de gravitation

Un horloger et son horloge sont fixes dans le champ de gravitation terrestre. Cet horloger ne
peut observer la dilatation du temps en comparant l’intervalle de temps de l’horloge avec celui
donné par le constructeur, puisque le champ de gravitation affecte le temps et non l’horloge.
L’horloger n’a pas conscience de la dilatation du temps, son horloge fonctionne de manière
nominale. Ainsi, le carré de l’intervalle entre les deux évènements que sont le tic et le tac de
l’horloge marque le temps propre de l’horloger :

ds2 = c2dτ 2

Un observateur dans un champ de gravitation de même intensité, et sans vitesse relative avec
l’horloger, mesure le même écoulement du temps que l’horloger, leurs horloges sont synchrones.

En revanche, un observateur inertiel loin de toute masse-énergie créant un champ de gravi-
tation ou en chute libre dans un champ de gravitation peut observer la déformation de l’espace-
temps due à la présence de la Terre.

Dans son système de coordonnées (xµ), le carré de l’intervalle entre le tic et le tac de l’horloge
est donné par :

ds′2 = gµνdxµdxν

L’intervalle entre deux évènements est un invariant. Les carrés des intervalles dans les deux
référentiels (dans les deux systèmes de coordonnées) sont égaux :

c2dτ 2 = gµνdxµdxν

c2

(
dτ

dx0

)2

= gµν
dxµ

dx0

dxν

dx0
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t = x0/c est le temps propre de l’observateur galiléen, et uµ sa quadrivitesse dans le référentiel
terrestre de l’horloger :

(
dτ

dt

)2

= gµν
dxµ

cdt

dxν

cdt

c2

(
dτ

dt

)2

= gµνuµuν

Si le trivecteur vitesse spatiale ui de l’observateur galiléen est nul dans le référentiel terrestre :

c2

(
dτ

dt

)2

= g00u
0u0

(
dτ

dt

)2

= g00

dτ =
√

g00 dt (231)

où g00 est le coefficient temporel de la métrique au niveau de l’horloge. En utilisant (230) p. 337
comme approximation d’un champ de gravitation faible, nous obtenons dτ en fonction de dt :

dτ ≈
(

1 +
2φ

c2

)1/2

dt

≈
(

1 +
φ

c2

)
dt (232)

Remarque 58. Le potentiel gravitationnel φ étant négatif, on peut aussi écrire :

dτ ≈
(

1 − |φ|
c2

)
dt

Si l’horloge s’approche d’un objet massif, φ augmente en valeur absolue, On observe que le
temps propre de l’horloge ralenti. De même, nous obtenons dt en fonction de dτ :

dt ≈
(

1 +
2φ

c2

)−1/2

dτ

≈
(

1 − φ

c2

)
dτ

Remarque 59. Le potentiel gravitationnel φ étant négatif, on peut aussi écrire :

dt ≈
(

1 +
|φ|
c2

)
dτ

Pour un intervalle de temps fini

∆τ =

ˆ √
g00 dt

D’après cette dernière relation, notre choix de signature de métrique implique

g00 > 0

Lorsque le champ de gravitation est constant dans le temps

∆τ =
√

g00 ∆t
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26.5 Décalage gravitationnel vers le rouge

Soit un atome en un point d’un champ de gravitation, de fréquence propre

ν0 =
dN

dt0

Grâce à la relation (232) p. 340, nous avons :

ν0 =
dN

dt0

=
dN

dt

dt

dt0

≈ ν

(
1 − φ

c2

)

En un point A où règne un champ de gravitation de potentiel φA, la fréquence d’un atome
vaut :

ν0A ≈ ν

(
1 − φA

c2

)

En un point B où règne un champ de gravitation de potentiel φB, elle vaut :

ν0B ≈ ν

(
1 − φB

c2

)

≈ ν0A

(
1 − φA

c2

)−1 (
1 − φB

c2

)

≈
(

1 +
φA

c2

)(
1 − φB

c2

)

≈ 1 +
φA

c2
− φB

c2
− φAφB

c4

≈ ν0A

(
1 +

φA − φB

c2

)

Exemple 26.5.1. Sur Terre on mesure la fréquence de la lumière émise par le Soleil :

ν0⊕ ≈ ν0⊙

(
1 −

φ⊙ − φ
♁

c2

)

≈ ν0⊙

[
1 +

1

c2

(
−GM⊙

R⊙
+

GM
♁

R
♁

)]

≈ ν0⊙

(
1 − GM⊙

c2R⊙

)

ν0⊕ − ν0⊙

ν0⊙
≈ −GM⊙

c2R⊙
Constante gravitationnelle : G ≈ 6,674 28 × 10−11 Nm2/kg2

Vitesse de la lumière : c = 299 792 458 m/s
Masse du Soleil : M⊙ ≈ 1,988 5 × 1030 kg
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Rayon moyen du Soleil : R⊙ ≈ 696 342 × 103 m

∆ν

ν0⊙
≈ −2 × 10−6

Les raies spectrales d’émission des atomes venant du Soleil et observées depuis la Terre
sont décalées vers les basses fréquences (vers le rouge) par rapport aux raies spectrales
d’émission de mêmes atomes situés sur la Terre.

Exemple 26.5.2. On considère un photon émis verticalement vers le haut, depuis un
point A de la surface terrestre, vers un point B à une hauteur H au dessus du point A.
On note M la masse de la Terre et R son rayon :

ν0B ≈ ν0A

[
1 − 1

c2

(
GM

R
− GM

R + H

)]

≈ ν0A

[
1 − GM

Rc2

(
H

R + H

)]

On fait la nouvelle approximation R + H ≈ R :

ν0B ≈ ν0A

(
1 − GMH

R2c2

)

ν0B − ν0A

ν0A
≈ −GMH

R2c2

≈ −gH

c2

où est le champ de pesanteur à la surface de la Terre (supposé constant jusqu’à la hauteur
H). En B la fréquence du photon est décalée vers le rouge.
Accélération de la pesanteur à la surface de la Terre à Paris : g ≈ 9,81 m/s2

Vitesse de la lumière : c = 299 792 458 m/s
Hauteur : H = 20 m

∆ν

ν
≈ 2,18 × 10−15

26.6 Distance dans un champ de gravitation

Contrairement à la relativité restreinte, en relativité générale on ne peut définir l’élément de
distance spatiale en posant dx0 = 0, car d’après (231), dans un champ de gravitation le temps
propre est fonction de x0 par l’intermédiaire de g00 lui même fonction du lieu. On procède alors
de la façon suivante : d’un point B de coordonnées spatiales xi +dxi on emet un rayon lumineux
vers un point A de coordonnées spatiales xi, qui réfléchit le rayon vers le point B. Le temps
mesuré en B multiplié par c est égal au double de la distance AB. L’intervalle d’univers entre
l’évènement émission du rayon en B et l’évènement réception du rayon en B s’écrit :

ds2 = gλµdxλdxµ

En séparant les coordonnées spatiales et temporelles :

ds2 = gijdxidxj + 2g0idx0dxi + g00(dx0)2
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En supposant que la lumière se propage à la vitesse limite, d’après (31) p. 76 l’intervalle est
nul :

gijdxidxj + 2g0idx0dxi + g00(dx0)2 = 0

Cherchons pour quelles valeurs de dx0 cette équation est vérifiée. Le discrimant réduit de cette
équation du second degré en dx0 s’écrit :

∆′ = b′2 − ac

= g2
0i(dxi)2 − g00gijdxidxj

Les deux racines de l’équations sont :

dx0
± = (−b′ ±

√
∆′)/a

=
(

−g0idxi ±
√

g2
0i(dxi)2 − g00gijdxidxj

)
/g00

En remplaçant g0idxi par g0jdxj :

dx0
± =

(
−g0idxi ±

√
g0ig0jdxidxj − g00gijdxidxj

)
/g00

=
[
−g0idxi ±

√
(g0ig0j − g00gij)dxidxj

]
/g00

x0 + dx0
− est la coordonnées temporelle de l’évènement émission du signal, et x0 + dx0

+ est la
coordonnées temporelle de l’évènement réception du signal. « L’intervalle de temps » entre les
deux évènements s’écrit :

dx0
+ − dx0

− = 2
g00

√
(g0ig0j − g00gij)dxidxj

Avec (231) p. 340 nous avons l’intervalle de temps propre :

dτ =
√

g00(dx0
+ − dx0

−)/c

que l’on multiplie par c/2 pour avoir la distance spatiale :

dl =
√

g00(dx0
+ − dx0

−)/2

= 1√
g00

√
(g0ig0j − g00gij)dxidxj

dl2 = 1
g00

(g0ig0j − g00gij)dxidxj

=

(
g0ig0j

g00
− gij

)
dxidxj

= γijdxidxj (233)

où

γij =
g0ig0j

g00

− gij

est la métrique tridimentionnelle de l’espace exprimée en fonction de celle quadridimentionnelle
de l’espace-temps. En général les gλµ dépendent de x0 de sorte que la métrique spatiale dépend
du temps. Dans ce cas on ne peut intégrer dl car sa valeur dépend de la ligne d’univers choisie
entre les deux évènements. En relativité générale la notion de distance perd donc sa signification,
sauf lorsque les gλµ ne dépendent pas du temps.
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Remarque 60. Lorsque le champ de gravitation tend vers zéro, l’espace-temps devient celui pseudo-
euclidien de la relativité restreinte avec les g0i nuls et g00 = 1. Nous retrouvons alors

γij = −gij

Le signe négatif est dû au choix de la signature de la métrique.

La relation (51) p. 102

gλνgνµ = δλ
µ

vraie lorsque les paramètres λ et µ prennent les valeurs 0, 1, 2, 3 est aussi vraie lorsque les
paramètres ne prennent que les valeurs 1, 2, 3 :

giνgνj = δi
j ⇔ gikgkj + gi0g0j = δi

j (234)

Elle est également vraie lorsqu’au moins un paramètre est nul





g0νgνj = δ0
j

giνgν0 = δi
0

⇔




g0kgkj + g00g0j = δ0
j

gikgk0 + gi0g00 = δi
0

⇔





g0kgkj + g00g0j = 0 j 6= 0

g0kgk0 + g00g00 = 1 i = j = 0

gikgk0 + gi0g00 = 0 i 6= 0

gikgk0 + gi0g00 = 0 ⇔ gi0 = −gikgk0

g00

Reprenons (234) p. 344

gikgkj + gi0g0j = δi
j

gikgkj − gikgk0

g00
g0j = δi

j

gik

(
gkj − gk0g0j

g00

)
= δi

j

−gikγkj = δi
j

−γkj est donc l’inverse du tenseur gik. L’inverse de γkj étant γkj, nous pouvons aussi écrire

γkj = −gik

Le tenseur tridimentionnel −gik est le tenseur métrique contravariant de la métrique (233)
p. 343.

Pour synchroniser deux horloges aux points A et B précédents, nous utilisons également
des signaux lumineux. L’instant x0 au point A est simultané à l’instant au point B milieu de
l’aller-retour :

1
2

(
dx0

− + dx0
+

)
=

1

2





−g0idxi +
√

(g0ig0j − g00gij)dxidxj

g00

+
−g0idxi −

√
(g0ig0j − g00gij)dxidxj

g00





= − g0idxi

g00

Ainsi, l’instant x0 au point A est simultané avec l’instant −g0idxi/g00 au point B. Cette rela-
tion permet de synchroniser les horloges dans un volume infinitésimal autour du point B. En
procédant de proche en proche on peut synchroniser des horloges le long d’une ligne ouverte,
mais pas le long d’un contour fermé. En effet, après avoir fait le tour du contour, on se trouve
avec une valeur de −g0idxi/g00 différente de zéro. La synchronisation des horloges dans tout
l’espace est a fortiori impossible, à l’exception des référentiels dans lesquels ∀i g0i = 0. Cette
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impossibilité de synchroniser toutes les horloges dans tout l’espace n’est pas une propriété de
l’espace-temps, elle est liée au choix du référentiel. Dans tout champ de gravitation il est tou-
jours possible de choisir un référentiel tel que les quantités g0i soient nulles, ce qui rend possible
la synchronisation de toutes les horloges.

En relativité restreinte le cours du temps est différent pour deux horloges animées d’un
mouvement relatif. En relativité générale s’ajoute le fait que le temps s’écoule différemment en
différents points de l’espace d’un référentiel donné. Si deux événements E1 et E2 ont lieu en
un point A et sont simultanés avec respectivement les deux évènements E ′

1 et E ′
2 en un point

B, l’intervalle de temps propre entre E1 et E2 sera en général différent de l’intervalle de temps
propre entre E ′

1 et E ′
2.

Puisque nous avons supposé dx0
− = dx0

+, la relation précédente s’écrit aussi

g00

2

(
dx0

+ + dx0
−

)
+ g0idxi = 0

g00dx0 + g0idxi = 0

g0λdxλ = 0

dx0 = 0

La différentielle covariante dx0 doit donc être nulle.

26.7 Lien potentiel gravitationnel et tenseur énergie-impulsion

Prenons le laplacien du potentiel gravitationnel g00 en champ faible et pour v ≪ c :

∆g00 = ∆

(
1 +

2φ

c2

)

=
2

c2
∆φ

Avec l’équation de Poisson (154) p. 257 :

∆g00 =
8πρG

c2

Or avec la définition (222) p. 326 du tenseur énergie-impulsion :

P 00 = ρc2

En coordonnées galiléennes réduites, avec la signature (+ − −−), P 00 = P00 :

∆g00 =
8πG

c4
P00 (235)

26.8 Mouvement d’une particule dans un champ de gravitation

Nous cherchons l’équation du mouvement d’une particule libre de masse m dans un champ
de gravitation. Nous reprenons le principe de moindre action en relativité restreinte (225) p. 328
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dans lequel la présence d’un champ de gravitation est prise en compte dans l’expression de la
métrique ds :

−mcδ

ˆ B

A

ds = 0

δ

ˆ B

A

ds = 0

ˆ B

A

δds = 0

À partir de (228) p. 334 :

ds2 = gµνdxµdxν

δds2 = δgµνdxµdxν + gµνδdxµdxν + gµνdxµδdxν

2dsδds = δgµνdxµdxν + 2gµνdxµδdxν

δds =

(
1

2
δgµν

dxµ

ds

dxν

ds
+ gµν

dxµ

ds

δdxν

ds

)
ds

=

[
1

2
δgµν

dxµ

ds

dxν

ds
+

d

ds

(
gµν

dxµ

ds
δxν

)
− d

ds

(
gµν

dxµ

ds

)
δxν

]
ds

ˆ

δds =

ˆ

[
1

2
δgµν

dxµ

ds

dxν

ds
− d

ds

(
gµν

dxµ

ds

)
δxν

]
ds +

ˆ

d

ds

(
gµν

dxµ

ds
δxν

)
ds

Le dernier membre est nul car δxν(A) = δxν(B) = 0 :

ˆ

δds =

ˆ

[
1

2

∂gµν

∂xσ
δxσ dxµ

ds

dxν

ds
− d

ds

(
gµσ

dxµ

ds

)
δxσ

]
ds

=

ˆ

(
1

2

∂gµν

∂xσ

dxµ

ds

dxν

ds
− ∂gµσ

∂xλ

dxλ

ds

dxµ

ds
− gµσ

d2xµ

ds2

)
δxσds

Or,

∂gµσ

∂xλ

dxλ

ds

dxµ

ds
=

1

2

(
∂gµσ

∂xλ

dxλ

ds

dxµ

ds
+

∂gµσ

∂xλ

dxλ

ds

dxµ

ds

)

=
1

2

(
∂gµσ

∂xν

dxν

ds

dxµ

ds
+

∂gνσ

∂xµ

dxµ

ds

dxν

ds

)

ˆ

δds =

ˆ

[
1

2

(
∂gµν

∂xσ
− ∂gµσ

∂xν
− ∂gνσ

∂xµ

)
dxµ

ds

dxν

ds
− gµσ

d2xµ

ds2

]
δxσds

On utilise les symboles de Christoffel de première espèce, relation (126) p. 225,

ˆ

δds =

ˆ

(
−Γσµν

dxµ

ds

dxν

ds
− gµσ

d2xµ

ds2

)
δxσds
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puis les symboles de Christoffel de deuxième espèce, relation (117) p. 223 :
ˆ

δds = −
ˆ

(
gσλΓλ

µν

dxµ

ds

dxν

ds
+ gµσ

d2xµ

ds2

)
δxσds

= −
ˆ

(
gσλΓλ

µν

dxµ

ds

dxν

ds
+ gλσ

d2xλ

ds2

)
δxσds

= −
ˆ

gσλ

(
Γλ

µν

dxµ

ds

dxν

ds
+

d2xλ

ds2

)
δxσds

La variation de l’action étant nulle pour des variations arbitraires des coordonnées δxσ, nous
retrouvons l’équation (163) p. 266 d’une géodésique :

∀λ = 0, 1, 2, 3
d2xλ

ds2
+ Γλ

µν

dxµ

ds

dxν

ds
= 0

Nous pouvons obtenir ce résultat par un raisonnement beaucoup plus direct. En relativité
restreinte une particule est libre si sa quadriaccélération est nulle, relation (227) p. 329 :

duλ

ds
= 0

En relativité générale le champ de gravitation courbe l’espace-temps, ce qui revient à prendre un
système de coordonnées curviligne. La dérivée ordinaire est remplacée par une dérivée absolue :

∀λ = 0, 1, 2, 3
Duλ

ds
= 0

duλ + Γλ
µνuµdxν

ds
= 0

d2xλ

ds2
+ Γλ

µν

dxµ

ds

dxν

ds
= 0 (236)

C’est l’équation du mouvement d’une particule libre dans un champ de gravitation.

26.9 Les équations du champ de gravitation

26.9.1 Cas intérieur

Nous cherchons à établir une relation entre champ de gravitation et matière qui généralise
les équations de Poisson (154) p. 257 et de Laplace. Ces équations différentielles déterminent
localement le potentiel newtonien dans les cas intérieur et extérieur à la distribution de ma-
tière. Nous cherchons cette relation sous une forme covariante générale, c’est-à-dire tensorielle.
Commençons par l’équation du champ en dehors de la matière (cas extérieur). Supposons que
le tenseur de courbure de Riemann-Christoffel (paragraphe 23.4.4 p. 278) soit nul

Rµν,λσ = 0

Dans ce cas, on peut toujours effectuer un changement de coordonnées pour rendre constants
les potentiels de gravitation gµν et nuls les symboles de Christoffel. Les géodésiques sont alors
des lignes droites dans l’espace-temps et dans l’espace. C’est l’espace-temps plat pseudo-eucli-
dien de la relativité restreinte, sans courbure ni gravitation. Par exemple, dans notre système
solaire, à l’extérieur de la matière du Soleil et des planètes, ces dernières se déplaceraient en
ligne droite à vitesse constante. On rejète donc cette hypothèse.
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Supposons que le tenseur de courbure de Ricci (paragrape 23.4.9 p. 289) soit nul.

Rµσ = 0 (237)

Cette hypothèse est moins contraignante car on peut avoir Rµν,λσ 6= 0 bien que le tenseur de
Ricci soit nul. Cette relation conduit à des équations aux dérivées partielles du second ordre
pour les potentiels de gravitation (autrement dit contenant les potentiels de gravitation ainsi
que leurs dérivées premières et secondes), dans lesquelles les dérivées secondes interviennent
linéairement. En cela elle ressemble à l’équation de Laplace ∆φ = 0 (relation (155) p. 258).
Nous conservons cette hypothèse.

Cherchons maintenant les équations à l’intérieur de la matière sous la forme d’une égalité
entre tenseurs de l’espace-temps,

∀µ, ν Sµν = χQµν

où d’après (235) p. 345 :

∀µ, ν Sµν =
8πG

c4
Qµν

Le tenseur Qµν est le tenseur énergie-impulsion total des distributions de matière et d’énergie.
Il décrit en chaque point d’univers la distribution de matière et d’énergie (cas intérieur). Dans
les régions vides de matière et d’énergie (cas extérieur) il est identiquement nul et nous devons
retrouver (237) p. 348, donc Sµν = Rµν . Le tenseur Qµν étant d’ordre deux, le tenseur Sµν est
aussi d’ordre deux.

Dans l’hypothèse d’un milieu continu avec interactions électromagnétiques nous avons

∀µ, ν Qµν = Pµν + Mµν

où Pµν est le tenseur énergie-impulsion du milieu continu (définition (222) p. 326) et Mµν est le
tenseur énergie-impulsion du champ électromagnétique. Pµν et Mµν étant symétriques, Qµν l’est
aussi. Par conséquent le tenseur que nous cherchons Sµν est aussi symétrique. La gravitation
n’étant pas modélisée par une force, les f i sont nulles et les équations (221) p. 326 deviennent :

∀µ, ν ∇νP µν = 0

La divergence du tenseur énergie-impulsion du milieu continu est nulle car il se conserve, ainsi
que celle de Qµν qui généralise Pµν

∀µ, ν ∇νQµν = 0

Ils sont dits conservatifs. Cette étude valable en relativité restreinte est valable localement pour
l’espace-temps de la relativité générale en prenant une métrique pseudo-euclidienne osculatrice
à V4. Par conséquent Sµν est aussi de divergence nulle :

∀µ, ν ∇νSµν = 0

Sµν est un tenseur purement géométrique ne dépendant que de la métrique, c’est-à-dire des
potentiels de gravitation et de leurs dérivées (par rapport aux coordonnées). Si on utilise le
tenseur métrique et uniquement ses dérivées premières, alors aucun nouveau tenseur ne peut être
construit. En effet, en chaque point on peut trouver un système de coordonnées (géodésiques)
dans lequel les dérivées premières du tenseur métrique sont nulles. Le tenseur cherché est alors
égale au tenseur métrique lui-même, ou à son inverse, ou à ǫijkl/

√
g (où ǫijkl est le tenseur

d’antisymétrie), etc. Cette égalité entre tenseur étant vraie dans un système de coordonnées,
elle est vraie dans tout système de coordonnées. Nous utilisons donc le tenseur métrique ainsi
que ses dérivées premières et secondes. Le tenseur de courbure de Ricci dépend des potentiels
de gravitation et est symétrique d’ordre deux mais n’est pas de divergence nulle, en revanche
le tenseur d’Einstein (184) p. 296 est symétrique d’ordre deux, conservatif et dépendant des
potentiels de gravitation.
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Élie Cartan a montré que de façon générale les tenseurs satisfaisant aux conditions précé-
dentes sont donnés par

∀µ, ν Sµν = α
[
Rµν − 1

2
gµν(R + β)

]

où α et β sont des constantes, Rµν est le tenseur de courbure de Ricci, R est sa courbure
riemannienne scalaire. Nous obtenons :

∀µ, ν Rµν − 1
2

gµν(R + β) = χQµν

∀µ, ν Rµν − 1
2

gµνR + 1
2

gµνλ = χQµν

où l’on supprime la constante α puisqu’il y a déjà la constante χ. La constante λ = −1
2
β

est appelée constante cosmologique. Sauf dans certaines études cosmologiques très spéciales,
on n’envisage en théorie relativiste de la gravitation que le cas λ = 0. Nous avons alors les
équations du champ gravitationnel :

∀µ, ν Rµν − 1
2

gµνR =
8πG

c4
Qµν (238)

26.9.2 Cas extérieur

Les équations du champ de gravitation libre, c’est-à-dire à l’extérieur des masses qui l’en-
gendrent s’écrivent :

∀µ, ν Rµν − 1
2

gµνR = 0

En passant en composantes mixtes :

∀ν, ν gνµRµν − 1
2

gνµgµνR = χgνµQµν

Rν
ν − 1

2
δν

ν R = χQν
ν

où l’on utilise la notation 20 p. 195 des tenseurs symétriques. En contractant les indices ν et ν,

∀ν, Rν
ν − 1

2
δν

ν R = χQν
ν

Par définition de la courbure scalaire (23.4.5) p. 294, Rν
ν = R. De même la contraction Qν

ν = Q
est appelée scalaire de Laue. D’après la relation 52 p. 102, pour un espace à 4 dimensions,
δν

ν = 4, on a alors :

R − 2R = χQ

R = −χQ

Cette dernière relation permet d’écrire les équations équivalentes aux équations (238) p. 349 :

∀µ, ν Rµν =
8πG

c4

(
Qµν − 1

2
gµνQ

)

Dans un espace vide Qµν = 0, nous retrouvons (237) p. 348 :

∀µ, ν Rµν = 0 (239)

Comme nous l’avons déjà mentionné, cela ne signifie pas que l’espace-temps vide de matière et
d’énergie soit plat (il est déformé par de la matière ou de l’énergie « plus loin »), car pour cela il
faudrait que le tenseur de courbure de Riemann-Christoffel soit nul, c’est-à-dire les conditions
plus restrictives Rµν,λσ = 0.
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26.10 Principe de moindre action en relativité générale

26.10.1 Cas extérieur

Le principe de moindre action est la méthode historique utilisée par David Hilbert pour
établir les équations du champ de gravitation. Par analogie avec le principe de moindre action
qui donne les équations de la dynamique de Newton, nous supposons que les équations du
champ de gravitation à l’extérieur des masses et de l’énergie qui l’engendrent, dérivent (sont
issues) d’un principe de moindre action. Il s’agit de trouver l’action Sg du champ de gravitation
comme fonction des potentiels de gravitation gµν , invariante par changement de coordonnées
pour assurer l’invariance des équations du champ de gravitation, puis de poser l’hypothèse que
la variation de cette action est nulle lors d’une variation des potentiels de gravitation :

δSg = 0

Pour trouver l’expression de Sg, partons de l’invariance de l’hypervolume par changement de
coordonnées, (160) p. 263 :

√
|g| dΩ =

√
|g′| dΩ′

ˆ

Lg

√
|g| dΩ =

ˆ

L′
g

√
|g′| dΩ′

où le lagrangien du champ de gravitation Lg est un scalaire, donc un invariant. Le déterminant
g étant négatif d’après (33) p.76, nous avons la forme de l’action cherchée :

Sg = κ

ˆ

Lg

√−g dΩ

où κ est une constante. Il s’agit à présent de trouver l’expression du lagrangien Lg. Par ana-
logie avec l’équation de Laplace du potentiel du champ de gravitation dans le cas extérieur
∆φ = 0 (relation (155) p. 258), nous cherchons les équations du champ de gravitation sous
forme d’équations différentielles du second ordre par rapport aux potentiels de gravitation gµν .
Autrement dit Lg doit être du premier ordre car on prend sa variation. Il n’existe pas de scalaire
formé à partir des gµν et de leurs dérivées premières ∂kgµν (ou des symboles de Christoffel).
Ces derniers peuvent toujours être annulés en un point en prenant un système de coordonnées
localement géodésique en ce point. En revanche le scalaire de courbure riemannienne R, ainsi
que αR + β où α et β sont des constantes, contiennent les dérivées secondes des gµν de manière
linéaire, ce qui fait qu’elles disparaissent lors de la variation. Dans un premier temps on suppose
que le lagrangien est la courbure scalaire. Avec la définition de la courbure scalaire R 23.4.5
p. 294 :

Sg = κ

ˆ √
−g RdΩ

δSg = κ

ˆ

δ
(√−g gµνRµν

)
dΩ

1
κ

δSg =

ˆ

gµνRµνδ
√−g +

√−g Rµνδgµν +
√−g gµνδRµνdΩ

=

ˆ

gµνRµνδ
√−gdΩ +

ˆ √−g RµνδgµνdΩ +

ˆ √−g gµνδRµνdΩ
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— Calculons la première intégrale grâce à la relation (57) p. 104 qui donne δg :

δ
√−g =

−δg

2
√−g

=
−g

2
√−g

gµνδgµν

Avec la relation (52) p. 102

gµνgµν = 1

δ (gµνgµν) = 0

gµνδgµν = −gµνδgµν

nous avons

δ
√−g =

g

2
√−g

gµνδgµν

= −
√−g

√−g

2
√−g

gµνδgµν

= −1

2

√−g gµνδgµν

ˆ

gµνRµνδ
√−gdΩ =

ˆ

Rδ
√−gdΩ

= −1

2

ˆ

gµνR
√

−g δgµνdΩ

— Calculons la troisième intégrale en nous plaçant dans un système de coordonnées locale-
ment géodésiques. Le tenseur de courbure de Ricci, définition 23.4.4 p. 289 se simplifie.
Les symboles de Christoffel sont nuls, mais pas leur dérivée :

∀µ, σ Rµσ = ∂λΓλ
σµ − ∂σΓλ

λµ + Γξ
σµ Γλ

λξ − Γξ
λµ Γλ

σξ

= ∂λΓλ
σµ − ∂σΓλ

λµ

∀µ, σ δRµσ = δ
(
∂λΓλ

σµ − ∂σΓλ
λµλ

)

= ∂λδΓλ
σµ − ∂σδΓλ

λµ

= DλδΓλ
σµ − DσδΓλ

λµ

car lorsque les symboles de Christoffel sont nuls, la dérivée covariante se réduit à
la dérivée partielle ordinaire. C’est une équation tensorielle, donc valable dans tous
système de coordonnées, pas seulement localement géodésique.

gµνδRµν = gµν
(
DλδΓλ

νµ − DνδΓλ
λµ

)

= gµνDλδΓλ
νµ − gµνDνδΓλ

λµ

La dérivation covariante du tenseur métrique étant nulle :

gµνδRµν = Dλ

(
gµνδΓλ

νµ

)
− Dj

(
gµνδΓλ

λµ

)

= Dλ

(
gµνδΓλ

νµ

)
− Dλ

(
gµλδΓν

νµ

)

= Dλ

(
gµνδΓλ

νµ − gµλδΓν
νµ

)
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En remplaçant et en utilisant le théorème de la divergence sous forme tensorielle (153)
p. 255 :

ˆ √
−g gµνδRµνdΩ =

ˆ √
−g Dλ

(
gµνδΓλ

νµ − gµλδΓν
νµ

)
dΩ

=

˛ √−g
(
gµνδΓλ

νµ − gµλδΓν
νµ

)
dσλ

= 0

Cette intégrale est nulle car calculée sur l’hypersurface délimitant l’hypervolume d’in-
tégration sur laquelle les variations du champ sont nulles conformément au principe de
moindre action.

Nous avons alors :

1
κ

δSg = −1

2

ˆ

gµνR
√−g δgµνdΩ +

ˆ √−g RµνδgµνdΩ

δSg = κ

ˆ (
Rµν − 1

2
gµνR

)√−g δgµνdΩ

Les variations δgµν étant arbitraires, on en déduit les équations du champ de gravitation dans
le cas extérieur :

Rµν − 1
2

gµνR = 0

Sµν = 0

Chaque composante du tenseur Sµν est nulle, ce qui donne 16 relations. Nous avons vu que
par symétrie des tenseurs Rµν et gµν , le tenseur S est symétrique. Par conséquent, parmi les 16
composantes de ce tenseur, seules 10 sont distinctes et ne restent que 10 relations indépendantes
(par exemple la relation S02 = 0 est équivalente à la relation S20 = 0). De plus la relation (51)
p. 102 et la nullité de la divergence du tenseur d’Einstein (183) p. 296 donnent :

gλµRµν − 1
2

gλµgµνR = 0

Rλν − 1
2

δλ
ν R = 0

∀λ = 0, . . . , 3 ∇λ

(
Rλν − 1

2
δλ

ν R
)

= 0

Ces 4 relations lient les 10 composantes de Sµν restantes, il n’y a donc que 6 relations distinctes,
qui correspondent aux 6 composantes indépendantes du tenseur métrique.

26.10.2 Lagrangien du champ de gravitation

Nous allons voir que le lagrangien a une expression plus simple que la courbure scalaire.
Avec la définition de la courbure scalaire R 23.4.5 p. 294 puis celle du tenseur de courbure de
Ricci Rµν 23.4.4 p. 289 :

R = gµνRµν

√
−g R =

√
−g gµν

(
∂λΓλ

νµ − ∂νΓλ
λµ + Γξ

νµ Γλ
λξ − Γξ

λµ Γλ
νξ

)

On intègre par partie le premier et le deuxième terme dans la parenthèse :
√−g R = ∂λ

(√−g gµνΓλ
νµ

)
− Γλ

νµ∂λ

(√−g gµν
)

+ Γλ
λµ∂ν

(√−g gµν
)

− ∂ν

(√−g gµνΓλ
λµ

)

+
√−g gµν

(
Γξ

νµ Γλ
λξ − Γξ

λµ Γλ
νξ

)
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Réorganisons les termes et intégrons :
ˆ √−g RdΩ =

ˆ

Γλ
λµ∂ν

(√−g gµν
)

− Γλ
νµ∂λ

(√−g gµν
)

+
√−g gµν

(
Γξ

νµ Γλ
λξ − Γξ

λµ Γλ
νξ

)
dΩ

+

ˆ

∂λ

(√
−g gµνΓλ

νµ

)
− ∂ν

(√
−g gµνΓλ

λµ

)
dΩ

En utilisant le théorème de la divergence sous forme tensorielle (153) p. 255, le dernier terme
s’écrit :

ˆ

∂λ

(√−g gµνΓλ
νµ

)
− ∂ν

(√−g gµνΓλ
λµ

)
dΩ =

ˆ

∂λ

[√−g
(
gµνΓλ

νµ − gµλΓν
νµ

)]
dΩ

=

˛ √−g
(
gµνΓλ

νµ − gµλΓν
νµ

)
dσr

Sa variation est nulle car l’intégrale est évaluée sur l’hypersurface délimitant l’hypervolume
d’intégration sur laquelle la variation du champ est nulle conformément au principe de moindre
action. Il reste
ˆ √−g RdΩ =

ˆ

Γλ
λµ∂ν

(√−g gµν
)

− Γλ
νµ∂λ

(√−g gµν
)

+
√−g gµν

(
Γξ

νµ Γλ
λξ − Γξ

λµ Γλ
νξ

)
dΩ

— Le premier terme sous l’intégrale s’écrit :

∂ν

(√−g gµν
)

= gµν∂ν

(√−g
)

+
√−g ∂νgµν

= −gµν ∂νg

2
√−g

+
√−g ∂νgµν

Avec la relation (58) p. 104 donnant ∂νg :

∂ν

(√−g gµν
)

= −gµν g

2
√−g

gλσ∂νgλσ +
√−g ∂νgµν

= −gµν −√−g
√−g

2
√−g

gλσ∂νgλσ +
√

−g ∂νgµν

= 1
2

gµν√−g gλσ∂νgλσ +
√−g ∂νgµν

=
√−g

(
1
2

gµνgλσ∂νgλσ + ∂νgµν
)

Avec la relation (51) p. 102 sur le symbole de Kronecker :

gµν = gµλδν
λ

= gµλgνσgλσ

∂νgµν = ∂νgµλgνσgλσ + gµλ∂νgνσgλσ + gµλgνσ∂νgλσ

= ∂νgµλδν
λ + δµ

σ∂νgνσ + gµλgνσ∂νgλσ

= ∂νgµν + ∂νgµν + gµλgνσ∂νgλσ

= −gµλgνσ∂νgλσ

Donc

∂ν

(√−g gµν
)

=
√−g

(
1
2

gµνgλσ∂νgλσ − gµλgνσ∂νgλσ

)
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Avec la relation donnant les symboles de Christoffel de deuxième espèce en fonction
du tenseur métrique (127) p. 225 :

Γµ
σν = 1

2
gµλ (∂νgλσ + ∂σgνλ − ∂λgσν)

gσνΓµ
σν = gµλ

(
1
2

gσν ∂νgλσ + 1
2

gσν ∂σgνλ − 1
2

gσν ∂λgσν

)

= gµλ
(
gσν∂νgλσ − 1

2
gσν ∂λgσν

)

= gµλgσν∂νgλσ − 1
2

gµλgσν∂λgσν

= gµλgνσ∂νgλσ − 1
2

gµνgλσ∂νgλσ

Donc

∂ν

(√
−g gµν

)
= −

√
−ggσνΓµ

σν

— Le deuxième terme sous l’intégrale s’écrit :

∂λ

(√
−g gµν

)
= gµν∂λ

(√
−g

)
+

√
−g ∂λgµν

= gµν −∂λg

2
√−g

+
√−g ∂λgµν

= 1
2

gµν
√

−g gξω∂λgξω +
√

−g ∂λgµν

=
√

−g
(

1
2

gµνgξω∂λgξω + ∂λgµν
)

D’après le théorème de Ricci en composantes contravariantes (144) p. 242 et en appli-
quant la relation (142) p. 241 :

Dgµν = 0

∂λgµν + gµξ Γν
ξλ + gνξ Γµ

ξλ = 0

D’où :

∂λ

(√−g gµν
)

=
√−g

(
1
2

gµνgξω∂λgξω − gµξ Γν
ξλ − gνξ Γµ

ξλ

)

On utilise la forme particulière des symboles de Christoffel, (128) p. 226 :

∂λ

(√−g gµν
)

=
√−g

(
gµν Γξ

ξλ − gµξ Γν
ξλ − gνξ Γµ

ξλ

)

L’intégrale devient :
ˆ √−g RdΩ =

ˆ

−Γλ
λµ

√−ggσν Γµ
σν − Γλ

νµ

√−g
(
gµν Γξ

ξλ − gµξ Γν
ξλ − gνξ Γµ

ξλ

)

+
√−g gµν

(
Γξ

νµ Γλ
λξ − Γξ

λµ Γλ
νξ

)
dΩ

Factorisons
√−g et développons le reste :

ˆ √−g RdΩ =

ˆ √−g
(
−gσν Γλ

λµΓµ
σν − gµν Γλ

νµ Γξ
ξλ + gµξ Γλ

νµ Γν
ξλ + gνξ Γλ

νµ Γµ
ξλ

+gµν Γξ
νµ Γλ

λξ − gµν Γξ
λµ Γλ

νξ

)
dΩ

=

ˆ √−g
(
−gσν Γλ

λµΓµ
σν + gµξ Γλ

νµ Γν
ξλ + gνξ Γλ

νµ Γµ
ξλ − gµν Γξ

λµ Γλ
νξ

)
dΩ

=

ˆ √−g
(
2gµξ Γλ

νµ Γν
ξλ − gσν Γλ

λµ Γµ
σν − gµν Γξ

λµ Γλ
νξ

)
dΩ
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Effectuons le changement d’indices σ ⇄ µ et ν ⇄ ξ dans le deuxième terme, et ν → ξ et ξ → σ
dans le troisième :

ˆ √
−g RdΩ =

ˆ √
−g

(
2gµξ Γλ

νµ Γν
ξλ − gµξ Γλ

λσ Γσ
µξ − gµξ Γσ

λµ Γλ
ξσ

)
dΩ

Ajoutons le terme nul Γλ
λσ Γσ

µξ − Γλ
λσ Γσ

µξ :
ˆ √

−g RdΩ =

ˆ √
−ggµξ

[
2
(
Γλ

νµ Γν
ξλ − Γλ

λσ Γσ
µξ

)
−
(
Γλ

νµ Γν
ξλ − Γλ

λσ Γσ
µξ

)]
dΩ

=

ˆ √−ggµξ
(
Γλ

νµ Γν
ξλ − Γλ

λσ Γσ
µξ

)
dΩ

Nous obtenons l’expression du lagrangien du champ de gravitation :

Lg = gµξ
(
Γλ

νµ Γν
ξλ − Γλ

λσ Γσ
µξ

)

26.10.3 Constante cosmologique

Si à la place de R nous prenons la combinaison linéaire αR + β avec α et β des constantes,
nous avons :

Sg = κ

ˆ √−g (αR + β)dΩ

Or nous devons retrouver

Sg = κ

ˆ √
−g RdΩ

lorsque la constante β est nulle, donc α = 1. Les équations s’écrivent alors :

Rµν − 1
2

gµν(R + β) = 0

Rµν − 1
2

gµνR − 1
2

gµνβ) = 0

Rµν − 1
2

gµνR + λgµν = 0

où λ = −1
2

β est appelée constante cosmologique. Si cette constante est non nulle, sa valeur
est très faible et par conséquent n’intervient quasiment pas localement mais uniquement en
cosmologie, d’où son nom.

26.10.4 Cas intérieur

Dans le cas intérieur, pour déterminer les équations du champ de gravitation dans la matière
ou en présence de rayonnement électromagnétique, nous devons ajouter à l’action du champ de
gravitation Sg, l’action pour la matière et le champ électromagnétique Se (« e » pour énergie),
telle que :

δ(Sg + Se) = 0

δSg + δSe = 0

δSe = 0

On suppose que l’action s’écrit

Se = κ′
ˆ

Le

√−g dΩ



356 Gravitation relativiste

où le lagrangien Le est fonction du tenseur métrique et de ses dérivées premières :

Le = Le(gµν , ∂λgµν)

= Le(g
µν , ∂λgµν)

La variation de l’action s’écrit

δSe = κ′
ˆ

δ(Le

√−g) dΩ

1
κ′

δSe =

ˆ

∂ (Le

√−g)

∂gµν
δgµν +

∂ (Le

√−g)

∂ (∂λgµν)
δ (∂λgµν) dΩ

=

ˆ

∂ (Le

√−g)

∂gµν
δgµνdΩ +

ˆ

∂ (Le

√−g)

∂ (∂λgµν)
δ (∂λgµν) dΩ

On intègre par partie le second terme du membre de droite :

1
κ′

δSe =

ˆ

∂ (Le

√−g)

∂gµν
δgµνdΩ +

ˆ

∂λ

[
∂ (Le

√−g)

∂ (∂λgµν)
δgµν

]
dΩ −

ˆ

∂λ

[
∂(Le

√−g)

∂ (∂λgµν)

]
δgµν dΩ

=

ˆ

∂ (Le

√−g)

∂gµν
δgµνdΩ +

ˆ

∂λ

[√−g
∂Le

∂ (∂λgµν)
δgµν

]
dΩ −

ˆ

∂λ

[
∂(Le

√−g)

∂ (∂λgµν)

]
δgµν dΩ

On utilise le théorème de la divergence sous forme tensorielle (153) p. 255 :

1
κ′

δSe =

ˆ

∂ (Le

√−g)

∂gµν
δgµνdΩ +

˛ √−g
∂Le

∂ (∂λgµν)
δgµνdσλ −

ˆ

∂λ

[
∂(Le

√−g)

∂ (∂λgµν)

]
δgµν dΩ

=

ˆ

∂ (Le

√−g)

∂gµν
δgµνdΩ −

ˆ

∂λ

[
∂(Le

√−g)

∂ (∂λgµν)

]
δgµν dΩ

L’intégrale sur l’hypersurface délimitant l’hypervolume d’intégration est nulle car les variations
du champ y sont nulles conformément au principe de moindre action.

δSe = κ′
ˆ

{
∂ (Le

√−g)

∂gµν
− ∂λ

[
∂(Le

√−g)

∂ (∂λgµν)

]}
δgµν dΩ

= κ′
ˆ

1
2

√−g Tµνδgµν dΩ

où l’on a posé le tenseur impulsion-énergie

Tµν ,
∂ (Le

√−g)

∂gµν
− ∂λ

[
∂(Le

√−g)

∂ (∂λgµν)

]

Nous avons alors

δ(Sg + Se) = κ

ˆ (
Rµν − 1

2
gµνR − χTµν

)√−g δgµνdΩ

Les variations δgµν étant arbitraires, on en déduit les équations du champ de gravitation dans
le cas intérieur :

Rµν − 1
2

gµνR = χTµν
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26.11 Champ gravitationnel à symétrie sphérique

26.11.1 La métrique de Schwarzschild

Ce champ est créé par une distribution de matière à symétrie centrale. Lorsque la den-
sité de matière tend vers zéro nous devons retrouver une métrique euclidienne, qui s’écrit en
coordonnées sphérique

ds2 = c2dt2 −
(
dr2 + r2dθ2 + r2 sin2(θ)dφ2

)

= c2dt2 − dr2 − r2
(
dθ2 + sin2(θ)dφ2

)

Le ds2 le plus général est donc

ds2 = a(r, t)c2dt2 − b(r, t)dr2 − c(r, t)
(
dθ2 + sin2(θ)dφ2

)
+ d(r, t)drdt

où les fonctions a, b et d sont sans dimension, et c est homogène au carré d’une longueur.
Effectuons une transformation de coordonnées de la forme générale

r = f1(r′, t′) et t = f2(r′, t′)

où f1 et f2 sont des fonctions quelconques des nouvelles coordonnées r′ et t′. Chaque fonction
permet une condition, et l’on se débarasse du terme croisé en posant

d(r′, t′) = 0

La deuxième condition est

c(r′, t′) = r′2

qui conserve la symétrie centrale. Les deux fonctions inconnues restantes sont écrites sous une
forme exponentielle :

a(r′, t′) = eα(r′,t′) et b(r′, t′) = eβ(r′,t′)

Nous obtenons le ds2 de la métrique de Schwarzschild

ds2 = eαc2dt2 − eβdr2 − r2
(
dθ2 + sin2(θ)dφ2

)

où les nouvelles coordonnées sont écrites sans les primes. Nous retrouvons l’expression du ten-
seur métrique de Schwarzschild, (55) p. 103 :

G




eα 0 0 0
0 −eβ 0 0
0 0 −r2 0
0 0 0 −r2 sin2(θ)




Avec le tenseur métrique, calculons les symboles de Christoffel de seconde espèce, relation (132)
p. 230, le point désignant la dérivation par rapport à ct et le prime celle par rapport à r :





Γ0
00 = 1

2
α̇

Γ0
01 = 1

2
α′

Γ0
11 = 1

2
β̇eβ−α





Γ1
11 = 1

2
β ′

Γ1
10 = 1

2
β̇

Γ1
00 = 1

2
α′eα−β

Γ1
22 = −re−β

Γ1
33 = −r sin2(θ)e−β





Γ2
21 = 1/r

Γ2
33 = − sin(θ) cos(θ)





Γ3
31 = 1/r

Γ3
32 = cot(θ)



358 Gravitation relativiste

Puis nous calculons les composantes covariantes du tenseur de Ricci, exercice 23.4.7 p. 291 :




R00 = −1
2
β̈ + 1

4
α̇β̇ − 1

4
β̇2 +

(
1
2
α′′ + 1

4
α′2 − 1

4
α′β ′ + 1

r
α′
)

eα−β

R10 = β̇
r

R11 = −1
2
α′′ + 1

4
β ′α′ + 1

r
β ′ − 1

4
α′2 +

(
1
2
β̈ + 1

4
β̇2 − 3

4
β̇α̇
)

eβ−α

R22 = −
[
1 + r

2
(α′ − β ′)

]
e−β + 1

On applique les équations du champ de gravitation dans le cas extérieur (239) p. 349 :

∀µ, ν Rµν = 0

soit, 



− 1
2
β̈ + 1

4
α̇β̇ − 1

4
β̇2 +

(
1
2
α′′ + 1

4
α′2 − 1

4
α′β ′ + 1

r
α′
)

eα−β = 0

β̇
r

= 0

− 1
2
α′′ + 1

4
β ′α′ + 1

r
β ′ − 1

4
α′2 +

(
1
2
β̈ + 1

4
β̇2 − 3

4
β̇α̇
)

eβ−α = 0

−
[
1 + r

2
(α′ − β ′)

]
e−β + 1 = 0





1
2
α′′ + 1

4
α′2 − 1

4
α′β ′ + 1

r
α′ = 0

β̇ = 0

− 1
2
α′′ + 1

4
β ′α′ + 1

r
β ′ − 1

4
α′2 = 0

1 + r
2
(α′ − β ′) = eβ

⇒





α′ + β ′ = 0

β = β(r)

1 − rβ ′ = eβ

1 + rα′ = eβ

Cherchons les expressions de eα et de eβ . On pose

y = e−β

y′ = −β ′e−β

y + ry′ = e−β − rβ ′e−β

= (1 − rβ ′) e−β

La troisième relation s’écrit

(1 − rβ ′) e−β = 1

y + ry′ = 1

y est de la forme y = Ar−1 + B :

Ar−1 + B + r
(
rs/r2

)
= 1

B = 1

donc A est homogène à r, une longueur. Revenons à la variable de départ :

y = Ar−1 + 1

e−β = Ar−1 + 1

Cherchons l’expression de eα :

α′ + β ′ = 0

α + β = κ(t)
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Comme α et β, κ est sans dimension.

eα+β = eκ

eα = eκe−β

Pour déterminer la constante κ, remarquons que lorsque l’on s’éloigne à l’infini de la distribution
de masse qui crée la champ de gravitation, la métrique doit redevenir euclidienne :





lim
r→∞

eα = 1

lim
r→∞

eβ = 1
⇒ κ = 1 ⇒ eα = e−β et α̇ = 0

Pour trouver l’expression de la constante A remarquons qu’à la limite des champs de gravitation
faibles, nous devons retrouver la relation (230) p. 337 :

g00 ≈ 1 +
2φ

c2

A

r
+ 1 ≈ 1 +

2φ

c2

A ≈ r
2φ

c2

Le modèle du potentiel du champ gravitationnel φ est donné par la relation (152) p. 250, M
étant la masse qui crée le champ. On pose

rs = −A

=
2GM

c2
(240)

le rayon de Schwarzschild de la masse M qui crée le champ de gravitation, de dimension une
longueur.

Remarque 61. Deux corps de masse m et M peuvent se libérer de leur attraction gravitationnelle
mutuelle si leur vitesse radiale relative en éloignement est suffisamment élevée. Dans le cadre de la
mécanique non relativiste, supposons m ≪ M et supposons la conservation de l’énergie mécanique de
m :

Ei = Ef

Eci + Epi = Ecf + Epf

À mesure que m s’éloigne de M , son énergie cinétique se transforme en énergie potentielle jusqu’à ce
que sa vitesse soit nulle à l’infini. Prenons l’origine de l’énergie potentielle à l’infini :

Eci + Epi = 0

mv2

l

2
− GMm

r
= 0

vl =

√
2GM

r

Calculons le rayon maximum, appelé rayon de Schwarzschild, que doit faire le corps de masse M pour
que sa vitesse de libération associée soit égale ou supérieure à la vitesse limite c :

c =

√
2GM

rs

rs =
2GM

c2

Le rayon de Schwarzschild est aussi appelé rayon du trou noir.
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Par conséquent

eα = 1 − rs/r et eβ = (1 − rs/r)−1

La métrique de Schwarzschild s’écrit :

ds2 =
(

1 − rs

r

)
c2dt2 −

(
1 − rs

r

)−1

dr2 − r2
(
dθ2 + sin2(θ)dφ2

)

Le temps coordonnée t est mesuré loin de toute masse-énergie, donc loin de M , autrement dit
pour r ≫ rs. Comme les distances radiales varient fortement dans le champ de gravitation, la
coordonnée radiale r n’est pas la distance physique au centre de la masse M , mais correspond
à la circonférence divisée par 2π d’une sphère de centre M , sur laquelle le champ de gravitation
est homogène. La métrique de Schwarzschild n’est pas définie en r = 0, point de l’espace-temps
appelé singularité gravitationnelle. En revanche l’hypersurface r = rs n’est pas une singularité
gravitationnelle, c’est une singularité de coordonnées car un changement de coordonnées ap-
proprié permet de définir la métrique de Schwarzschild en rs. Cette hypersurface qui ne peut
être traversée que dans un sens est appelée horizon des évènements.

Pour r ≫ rs on vérifie que la métrique de Schwarzschild est asymptotique à la métrique de
Lorentz de la relativité restreinte en coordonnées sphériques :

ds2 = c2dt2 − dr2 − r2
(
dθ2 + sin2(θ)dφ2

)

Les symboles de Christoffel de deuxième espèce s’écrivent :

{
Γ0

01 = 1
2

α′





Γ1
11 = 1

2
β ′

Γ1
00 = 1

2
α′eα−β

Γ1
22 = −re−β

Γ1
33 = −r sin2(θ)e−β





Γ2
21 = 1/r

Γ2
33 = − sin(θ) cos(θ)





Γ3
31 = 1/r

Γ3
32 = cot(θ)

26.11.2 Équation de la trajectoire d’un corps de faible masse

Le corps d’épreuve suit une géodésique de l’espace-temps courbé par une masse supposée
beaucoup plus grande que la sienne, d’équation (236) p. 347 :

∀λ = 0, 1, 2, 3
d2xλ

ds2
+ Γλ

µν

dxµ

ds

dxν

ds
= 0

Notons par un point la dérivation par rapport à l’abscisse curviligne s.

(1) λ = 0 donne l’équation paramétrique de la coordonnée temporelle x0 = ct :

ẍ0 + Γ0
µν ẋµẋν = 0

ẍ0 + Γ0
00 ẋ0ẋ0 + Γ0

01 ẋ0ẋ1 + Γ0
11 ẋ1ẋ1 = 0

ẍ0 + 1
2

η′ ẋ0ẋ1 = 0

Or nous avons trouvé au paragraphe 26.11.1 précédent pour un corps à symétrie sphé-
rique :





eα = (1 − rs/r)−1

eβ = 1 − rs/r
⇒





(eα)′ = (1 − rs/r)−2(−rs/r2)
(
eβ
)′

= rs/r2





α′eα = (1 − rs/r)−2(−rs/r2)

β ′eβ = rs/r2
⇒





α′ = (−rs/r2)(1 − rs/r)−1

β ′ = rs/r2(1 − rs/r)−1
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c2d2t

ds2
+

rs

2r2

(
1 − rs

r

)−1 cdt

ds

dr

ds
= 0

(
1 − rs

r

)−1 d

ds

[(
1 − rs

r

)
cdt

ds

]
= 0

(
1 − rs

r

)
cdt

ds
= α (241)

où α est constante sur la trajectoire.

(2) λ = 1 donne l’équation paramétrique de la coordonnée radiale r :

ẍ1 + Γ1
µν ẋµẋν = 0

ẍ1 + Γ1
00 ẋ0ẋ0 + Γ1

11 ẋ1ẋ1 + Γ1
22 ẋ2ẋ2 + Γ1

33 ẋ3ẋ3 = 0

ẍ1 + 1
2

α′eα−β ẋ0ẋ0 + 1
2

β ′ẋ1ẋ1 − re−βẋ2ẋ2 − r sin2(θ)e−βẋ3ẋ3 = 0

d2r

ds2
+
(

1 − rs

r

)(
cdt

ds

)2

− rs

2r2

(
1 − rs

r

)−1
(

dr

ds

)2

−r
(

1 − rs

r

)(
dθ

ds

)2

− r sin2(θ)
(

1 − rs

r

)(
dφ

ds

)2

= 0

(3) λ = 2 donne l’équation paramétrique de la coordonnée angulaire θ :

ẍ2 + Γ2
µν ẋµẋν = 0

ẍ2 + 2Γ2
12 ẋ1ẋ2 + Γ2

33 ẋ3ẋ3 = 0

d2θ

ds2
+

2

r

dr

ds

dθ

ds
− sin(θ) cos(θ)

(
dφ

ds

)2

= 0 (242)

(4) λ = 3 donne l’équation paramétrique de la coordonnée angulaire φ :

ẍ3 + Γ3
µν ẋµẋν = 0

ẍ3 + 2Γ3
13 ẋ1ẋ3 + Γ3

23 ẋ2ẋ3 = 0

d2φ

ds2
+

2

r

dr

ds

dφ

ds
+ 2 cot(θ)

dθ

ds

dφ

ds
= 0 (243)

Prenons pour condition initiale θ = π/2, le point de départ est dans le plan xoy (voir la figure
7.4 p. 64). Prenons une vitesse initiale contenue dans le plan xoy, donc telle que dθ/ds = 0. La
relation (242) p. 361 donne comme équation paramétrique pour θ :

d2θ

ds2
= 0

θ = C1s + C2

dθ

ds
= C1
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Or nous avons pris comme condition initiale dθ/ds = 0, donc C1 = 0 et θ = C2 = π/2. Le
mouvement reste dans le plan xoy. La relation (243) p. 361 donne :

d2φ

ds2
+

2

r

dr

ds

dφ

ds
= 0

1

r2

d

ds

(
r2 dφ

ds

)
= 0

r2 dφ

ds
= β (244)

où β est une constante, qui est la constante de aires au facteur c près :

β = r2 dφ

cdτ

cβ = r2φ̇

τ est le temps propre du corps de faible masse. Avec les conditions initiales, la métrique de
Schwarzschild s’écrit :

ds2 = (1 − rs/r) c2dt2 − (1 − rs/r)−1dr2 − r2dφ2

1 =
(

1 − rs

r

)(
cdt

ds

)2

−
(

1 − rs

r

)−1
(

dr

ds

)2

− r2

(
dφ

ds

)2

Éliminons dt et ds à l’aide des relations (241) p. 361 et (244) p. 362 :

1 =
(

1 − rs

r

)−1

α2 −
(

1 − rs

r

)−1
(

dr

ds

)2

− β2

r2

1 − rs

r
= α2 −

(
dr

ds

)2

− β2

r2

(
1 − rs

r

)

1

β2

(
1 − rs

r

)
=

α2

β2
− 1

r4

(
dr

dφ

)2

− 1

r2

(
1 − rs

r

)

Le changement de variable,

u = 1/r (245)

implique

dr

dφ
=

d(u−1)

dφ

= −u−2 du

dφ
(

dr

dφ

)2

= u−4

(
du

dφ

)2

1

r4

(
dr

dφ

)2

=

(
du

dφ

)2

Remplaçons le rayon de Schwarzschild par son expression, (240) p. 359 :

1

β2

(
1 − 2uGM

c2

)
=

α2

β2
−
(

du

dφ

)2

− u2

(
1 − 2uGM

c2

)
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Dérivons par rapport à φ :

−2GM

c2β2

du

dφ
= −2

du

dφ

d2u

dφ2
− 2u

du

dφ

(
1 − 2uGM

c2

)
+ u2 2GM

c2

du

dφ

−GM

c2β2
= −d2u

dφ2
− u

(
1 − 2uGM

c2

)
+ u2 GM

c2

d2u

dφ2
+ u =

GM

c2β2
+

3GMu2

c2
(246)

En posant

p = c2β2/(GM) (247)

nous obtenons l’équation différentielle de la trajectoire :

d2u

dφ2
+ u =

1

p
+

3GM

c2
u2 (248)

En mécanique non relativiste, le problème de Kepler conduit à l’équation différentielle d’une
ellipse

d2u

dφ2
+ u =

1

p

où p = r4θ̇2/(GM) est le paramètre de l’ellipse et M est la masse du corps qui crée le champ.

Remarque 62. L’équation d’une ellipse en coordonnées polaire (r, φ) de centre l’un des foyers s’écrit :

r =
p

1 + e cos(φ − φ0)

où p est le paramètre et e est l’excentricité. Pour un cercle e = 0 et pour une ellipse 0 < e < 1. En
posant u = 1/r l’équation s’écrit

u =
1

p
+

e

p
cos(φ − φ0)

Cette équation est solution de l’équation différentielle :




du

dθ
= − e

p
sin(φ − φ0)

d2u

dθ2
= − e

p
cos(φ − φ0)

⇒ d2u

dφ2
+ u =

1

p

En relativité générale il s’introduit le terme correctif 3GM⊙u2/c2. L’équation de la tra-
jectoire n’admet pas de solution périodique dans l’espace, lorsque φ varie de 2π l’inverse du
rayon vecteur u ne reprend pas les mêmes valeurs. En conséquence, la trajectoire ne se referme
pas après un tour. Nous savons aussi par les observations de Mercure que la solution n’est pas
périodique car sa trajectoire elliptique n’est pas fermée.

26.11.3 Avance du périhélie de Mercure

Remarque 63. Toutes les planètes du système solaire ont une avance de leur périhélie, point de leur
trajectoire le plus proche du Soleil. L’avance du périhélie de Mercure est plus importante, sa proximité
avec le Soleil la place dans un champ de gravitation plus intense dans lequel les effets relativistes sont
plus marqués. Plus généralement, tous les astres et satellites en orbite ont une avance de leur périastre.
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Fig. 26.2 – Avance du périhélie

On vérifie que le terme quadratique correctif est petit devant u en faisant leur rapport :

3GM⊙u2

c2u
=

3GM⊙
rc2

Prenons les valeurs numériques :
Masse du Soleil : M⊙ = 1,998 5 × 1030 kg
Constante gravitationnelle : G = 6,674 30 × 10−11 m3/kg/s2

Vitesse limite : c = 299 792 458 m/s
Demi-grand axe : a' = 57 909 083 × 103 m

Distance minimale : r
min' = 46 001 200 × 103 m

Distance maximale : r
max' = 69 816 900 × 103 m

Excentricité : e' = 0,205 63

Période de révolution : T' = 7 442 203 s

3GM⊙
rc2

=
3 × 6,674 30 × 10−11 × 1,998 5 × 1030

57 909 050 × 103 × 299 792 4582

= 7,65 × 10−8

En première approximation l’équation différentielle du mouvement s’écrit sans le terme qua-
dratique et donne pour équation du mouvement l’ellipse de la mécanique non relativiste. Cette
solution est injectée dans l’équation différentielle du mouvement pour remplacer le terme qua-
dratique, elle devient alors :

d2u

dφ2
+ u =

1

p
+

3GM⊙
p2c2

[1 + e cos(φ − φ0)]

=
1

p
+

3GM⊙
p2c2

[
1 + 2e cos(φ − φ0) + e2 cos2(φ − φ0)

]

=
1

p
+

3GM⊙
p2c2

+
6GM⊙

p2c2
e cos(φ − φ0)
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où e2 est d’autant plus petit devant e que l’orbite est proche d’un cercle. On compare les deux
premiers termes en faisant leur rapport :

3GM⊙
pc2

≈ 3GM⊙
rc2

≈ 7,65 × 10−8

Le deuxième terme est donc négligeable devant le premier :

d2u

dφ2
+ u =

1

p
+

6GM⊙
p2c2

e cos(φ − φ0)

On pose w = u − 1/p :

d2w

dφ2
+ w ≈ 6GM⊙

pc2
w

En posant la constante

α = 1 − 6GM⊙
pc2

nous avons l’équation différentielle

d2w

dφ2
+ α2w ≈ 0

qui a pour solution :

w = β cos[α(φ − φ0)]

u =
1

p
+ β cos[α(φ − φ0)]

On identifie β avec e/p pour retrouver le cas non relativiste, et l’on a

r =
p

1 + e cos[α(φ − φ0)]

Le rayon vecteur reprend sa valeur lorsque

αφ = 2π

φ = 2π/α

autrement dit, puisque α < 1, après un tour complet. Le périhélie avance. La différence d’angle
avec un tour complet (φ = 2π) vaut

δ = 2π/α − 2π

= 2π



(

1 − 6GM⊙
pc2

)−1/2

− 1




≈ 6πGM⊙
pc2

Pour faire intervenir des grandeurs directement mesurables, on utilise la relation classique
suivante, qui lie le paramètre de l’ellipse, son demi grand axe a et son excentricité e,

p = a
(
1 − e2

)

et la troisième loi de Kepler

4π2a3

T 2
= GM⊙
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où T est la période de révolution et m la masse qui crée le champ de gravitation. Avec ces
relations, l’avance du périhélie de Mercure devient

δ' =
6π × 4π2a3

'

a'

(
1 − e2

'

)
T 2

'
c2

=
24π3a2

'(
1 − e2

'

)
T 2

'
c2

=
24 × 3,141 5923 × (57 909 083 × 103)

2

(1 − 0,205 632) 7 442 2032 × 299 792 4582

= 5,234 × 10−7 rad

En secondes d’arc (1◦ = 3 600 ′′) pour un siècle :

δ' =
5,234 × 10−7 × 180 × 3600 × 100 × 365.2422

π × 87.9693
= 44,8 ′′ par siècle

26.12 Déviation des rayons lumineux

Cherchons la trajectoire d’un rayon lumineux lorsqu’il passe au voisinage immédiat du Soleil.
On suppose que la masse du photon est nulle et que ce dernier ce propage à la vitesse limite c.
Reprenons l’équation du mouvement (246) p. 363 :

d2u

dφ2
+ u =

GM⊙
c2β2

+
3GM⊙u2

c2

La relation (244) p. 362 donne :

GM⊙
c2β2

=
GM⊙
c2r4

(
ds

dφ

)2

Or, pour tout ce qui se propage à la vitesse limite s = 0 donc ds/dφ = 0. L’équation devient :

d2u

dφ2
+ u =

3GM⊙u2

c2

Avec (245) p. 362 r = 1/u :

r2 ≫ r ⇔ u2 ≪ u

Si l’on suppose le terme correctif négligeable devant u, l’équation approchée s’écrit

d2u

dφ2
+ u =

GM⊙
c2β2

On résoud l’équation sans second membre :

d2u

dφ2
+ u = 0
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On cherche une solution de la forme u0 = a + b cos(φ) :

du0

dφ
= −b sin(φ)

d2u0

dφ2
= −b cos(φ)

d2u0

dφ2
+ u = a

Donc a = 0 et

b cos(φ) = 1/r0

b cos(π/2) = 1/rmin

b = 1/rmin

si bien que

u0 = cos(φ)/rmin

Revenons à l’équation complète en cherchant une solution de la forme u0 + u1 avec u1 ≪ u0 :

d2(u0 + u1)

dφ2
+ u0 + u1 =

3GM⊙(u0 + u1)
2

c2

d2u0

dφ2
+

d2u1

dφ2
+ u0 + u1 =

3GM⊙ (u2
0 + 2u0u1 + u2

1)

c2

d2u1

dφ2
+ u1 =

3GM⊙u2
0

c2

=
3GM⊙ cos2(φ)

c2r2
min

On cherche une solution de la forme a + b cos2(φ) :

du1

dφ
= −2b cos(φ) sin(φ)

d2u1

dφ2
= −2b

[
− sin2(φ) + cos2(φ)

]

= −2b
[
2 cos2(φ) − 1

]

d2u1

dφ2
+ u1 = −4b cos2(φ) + 2b + a + b cos2(φ)

= 2b + a − 3b cos2(φ)

= −3b cos2(φ)

où l’on a posé a = −2b.

b = −GM⊙
c2r2

min

u1 =
GM⊙
c2r2

min

[
2 − cos2(φ)

]

=
GM⊙
c2r2

min

[
1 + sin2(φ)

]
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D’où la solution :

u = u0 + u1

=
cos(φ)

rmin
+

GM⊙
c2r2

min

[
1 + sin2(φ)

]

Pour calculer la déviation subie par le rayon lumineux, on considère les deux asymptotes aux
deux branches infinies de la trajectoire hyperbolique du rayon. À l’infini le rayonnement « suit »
la première asymptote, après avoir été dévié, à l’infini il « suit » la seconde asymptote. L’angle
δ de déviation est l’angle entre les deux asymptotes. Par symétrie du problème, nous n’avons
besoin que de l’angle φasy que fait l’une des asymptotes avec l’axe focale de l’hyperbole :

φasy =
π

2
+

δ

2

u tend vers zéro lorsque r tend vers l’infini :

cos(φasy)

rmin
+

GM⊙
c2r2

min

[
1 + sin2(φasy)

]
= 0

cos
(

π
2

+
δ⊙

2

)

rmin
+

GM⊙
c2r2

min

[
1 + sin2

(
π
2

+
δ⊙

2

)]
= 0

− sin
(

δ
2

)

rmin
+

GM⊙
c2r2

min

[
1 + cos2

(
δ⊙

2

)]
= 0

L’angle δ⊙ étant petit, on effectue un développement limité à l’ordre un des fonctions sinus et
cosinus au voisinage de zéro, sin(x) ≈ x et cos(x) ≈ 1 :

− δ⊙
2rmin

+
2GM⊙
c2r2

min

= 0

δ⊙ ≈ 4GM⊙
c2rmin

x

y

F
+

r=+∞

δ

δ/2

rmin

φasy

Fig. 26.3 – Trajectoire hyperbolique du rayon lumineux
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En prenant pour rmin le rayon du Soleil r⊙ = 696 342 × 103 m :

δ⊙ ≈ 4 × 6,674 30 × 10−11 × 1,988 5 × 1030

299 792 4582 × 696 342 × 103

≈ 8,48 × 10−6 rad

≈ 1,75 ′′
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Annexes

27.1 Diagrammes d’espace-temps

27.1.1 Mécanique classique

En mécanique classique, à un changement de référentiel galiléen correspond un changement
d’origine du système de coordonnées spatiales. La coordonnée temporelle étant la même dans
tous les référentiels, on ne la représente pas mais on représente deux des trois coordonnées
spatiales à un instant donné. On prend pour instant initial t0 le moment où les référentiels se
croisent (Fig. 27.1) :

y, y′

x, x′

R, R′

Fig. 27.1 – Référentiels confondus à t0

Habituellement on trouve la représentation suivante des référentiels à l’instant t1 (Fig. 27.2),

y

x

R

y′

x′

R′

Fig. 27.2 – Référentiels à t1

où les référentiels ont une vitesse constante d’éloignement v selon l’axe x, et où la trajectoire
relative est en pointillés. La représentation du vecteur v attaché à R ou à R′ implique que l’on
se situe dans l’autre référentiel (Fig. 27.3) :
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y

x

R

y′

x′

R′

v

Fig. 27.3 – Nous sommes dans R

Nous sommes dans R et nous observons le référentiel R′ s’éloigner de nous avec la vitesse v.
Pour faire le lien avec la représentation de Poincaré-Minkowsk de l’espace-temps de la relativité
restreinte, voici une représentation avec la coordonnée temporelle et une coordonnée spatiale.
À l’instant t0 où les référentiels se croisent (Fig. 27.4) :

t, t′

x, x′t0

R, R′

Fig. 27.4 – Référentiels confondus à t0

À l’instant t1 nous avons la représentation suivante, dans laquelle les observateurs se trouvent
au croisement des axes temporel et spatial (Fig. 27.5) :

t

xt1

t0

R

t′

x′t′
1

t′
0

R′

Fig. 27.5 – Référentiels à t1 = t′
1

Ici, la représentation de la trajectoire indique que l’on se situe dans R.

27.1.2 Relativité restreinte

En relativité restreinte, à un changement de référentiel dans l’espace-temps correspond
un changement d’origine du système de coordonnées spatiales, mais aussi un changement de
la coordonnée temporelle et de la coordonnée spatiale dans l’axe du mouvement. Le temps
et l’espace se « mélangent » lorsqu’on observe un référentiel autre que le sien propre. Dans
la représentation de Minkowski-Poincaré on ne s’intéresse plus au déplacement dans l’espace
comme en mécanique classique, on représente les coordonnées (t, x) des référentiels à l’instant
t0 où ils se croisent (Fig. 27.6) :
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t t′

x

x′

t0

R, R′

Fig. 27.6 – Référentiels à t0 vus de R

Nous sommes dans R et nous observons le référentiel R′ dont les axes de coordonnées
spatio-temporelles sont obliques. En représentant les coordonnées (t, x) à l’instant t1 on a la
figure 27.7,

t

xt1
t0

R
t′

x′
t1

t0

R′

Fig. 27.7 – Référentiels à t1 vus de R

qui fait le lien avec la figure 27.5 de la mécanique classique.

27.2 Orthonormalisation de Gram-Schmidt

Démonstration. Méthode d’orthonormalisation de Gram-Schmidt
Pour tout espace vectoriel pré-euclidien, la méthode d’orthonormalisation de Schmidt per-

met la construction effective d’une base orthonormée.
Soit (u1, u2, . . . , un) une base quelconque d’un espace vectoriel pré-euclidien En. Cher-

chons n vecteurs v1, v2, . . . , vn, orthogonaux entre eux et linéairement indépendants pour for-
mer une base orthogonale. Pour le premier de ces vecteurs, nous posons :

v1 = u1

Bien entendu, (v1, u2, . . . , un) forme une base de En. Cherchons le deuxième vecteur v2 sous la
forme de la combinaison linéaire suivante, où λ1 est l’inconnue :

v2 = λ1v1 + u2

Écrivons la relation d’orthogonalité entre v1 et v2 :

v1 · v2 = 0

u1 · (λ1u1 + u2) = 0

λ1u1 · u1 + u1 · u2 = 0

λ1 = −u1 · u2

‖u1‖2
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λ1 est non nul car u1 et u2 sont supposés non orthogonaux. Le vecteur v2 est non nul car
le système (v1, u2, . . . , un) étant libre, v1 et u2 sont non nuls et linéairement indépendants.
(v1, v2, u3, . . . , un) est donc un système libre. Cherchons le troisième vecteur v3 sous la forme :

v3 = µ1v1 + µ2v2 + u3

Les coefficients µ1 et µ2 se calculent en écrivant d’une part les relations d’orthogonalité entre
v1 et v3 :

v1 · v3 = 0

u1 · (µ1v1 + µ2v2 + u3) = 0

u1 · [µ1u1 + µ2 (λ1u1 + u2) + u3] = 0

µ1u1 · u1 + µ2λ1u1 · u1 + µ2u1 · u2 + u1 · u3 = 0

µ1‖u1‖2 + µ2λ1‖u1‖2 − µ2λ1‖u1‖2 + u1 · u3 = 0

µ1 = −u1 · u3

‖u1‖2

et d’autre part les relations d’orthogonalité entre v2 et v3 :

v2 · v3 = 0

(λ1v1 + u2) · (µ1v1 + µ2v2 + u3) = 0

λ1µ1v1 · v1 + λ1µ2v1 · v2 + λ1v1 · u3 + µ1u2 · v1 + µ2u2 · v2 + u2 · u3 = 0

λ1µ1v1 · v1 + λ1µ2v1 · v2 + λ1v1 · u3 + µ1 (v2 − λ1v1) · v1

+µ2 (v2 − λ1v1) · v2 + (v2 − λ1v1) · u3 = 0

µ1v2 · v1 + µ2‖v2‖2 + v2 · u3 = 0

µ2‖v2‖2 + v2 · u3 = 0

µ2 = −v2 · u3

‖v2‖2

Nous avons déterminé le vecteur v3, orthogonal aux vecteurs v1 et v2. Ce vecteur est non
nul, car le système (v1, v2, u3, . . . , un) étant libre, v1, v2 et u3 sont non nuls et linéairement
indépendants. Le système (v1, v2, v3, . . . , un) est donc libre. On construit ainsi de proche en
proche le système de vecteurs (v1, v2, . . . , vn) orthogonaux entre eux, dont aucun n’est nul, et
dont l’ensemble forme une base orthogonale de En.

En divisant chacun de ces vecteurs par sa norme,

∀i = 1, . . . , n ei =
vi

‖vi‖
l’ensemble des vecteurs (e1, e2, . . . , en) forme une base orthonormée de En. �

27.3 Bases non holonomiques

Considérons la base polaire normée. Ses vecteurs de base ont pour expression :
{eρ̂ = eρ

eθ̂ = 1
ρ

eθ
⇒

{
eρ̂ = cos(θ) ex + sin(θ) ey

eθ̂ = − sin(θ) ex + cos(θ) ey

Existe-t-il un système de coordonnées (ξ, η) tel que (eρ̂, eθ̂) en soit une base naturelle ?
{

eρ̂ = eξ

eθ̂ = eη
⇒

{
eρ̂ = x,ξ ex + y,ξ ey

eθ̂ = x,η ex + y,η ey
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Nous avons alors :

x,ξ = cos(θ), y,ξ = sin(θ)

x,η = − sin(θ), y,η = cos(θ)

Les dérivées partielles croisées donnent les relations suivantes :




∂

∂η

∂x

∂ξ
=

∂

∂ξ

∂x

∂η

∂

∂η

∂y

∂ξ
=

∂

∂ξ

∂y

∂η

⇒





∂ cos(θ)

∂η
=

∂(− sin(θ))

∂ξ

∂ sin(θ)

∂η
=

∂ cos(θ)

∂ξ

Il est plus simple de passer par la base duale normée.




eρ̂ = eρ

eθ̂ = ρ eθ
⇒





eρ̂ = cos(θ) ex + sin(θ) ey

eθ̂ = − sin(θ) ex + cos(θ) ey

Existe-t-il un système de coordonnées (ξ, η) tel que (eρ̂, eθ̂) en soit la base duale de la base
naturelle ? 




eρ̂ = eξ

eθ̂ = eη
⇒





eρ̂ = ξ,x ex + ξ,y ey

eθ̂ = η,x ex + η,y ey

Nous avons alors :

ξ,x = cos(θ), ξ,y = sin(θ)

η,x = − sin(θ), η,y = cos(θ)

Les dérivées partielles croisées donnent les relations suivantes :




∂

∂y

∂ξ

∂x
=

∂

∂x

∂ξ

∂y

∂

∂y

∂η

∂x
=

∂

∂x

∂η

∂y

⇒





∂ cos(θ)

∂y
=

∂ sin(θ)

∂x

∂(− sin(θ))

∂y
=

∂ cos(θ)

∂x

Réécrivons la dernière relation :
∂ sin(θ)

∂y
+

∂ cos(θ)

∂x
= 0

∂

∂y

(
y√

u2 + v2

)
+

∂

∂x

(
x√

u2 + v2

)
= 0

ce qui est impossible. Le système de coordonnées (ξ, η) n’existe donc pas.

27.4 Coordonnées curvilignes orthogonales

27.4.1 Coordonnées paraboliques (u, v)

27.4.1.1 Passage des coordonnées paraboliques aux rectangulaires (Fig. 27.8)

{
x = (u2 − v2)/2

y = uv
avec − ∞ < u < +∞, v > 0
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27.4.1.2 Passage des coordonnées polaires aux paraboliques





u =
√

2ρ cos (θ/2)

v =
√

2ρ sin (θ/2)

v = 0

v = 0.5

v = 1

v = 1.5

v = 2

u = 0

u = 0.5

u = 1

u = 1.5

u = 2

x

y

Fig. 27.8 – Coordonnées paraboliques (u, v)

27.4.1.3 Vecteurs de la base naturelle en coordonnées paraboliques

Partant de l’expression du vecteur position :

OM = xex + yey

=
u2 − v2

2
ex + uvey

nous trouvons l’expression des vecteurs de la base naturelle :
{

eu = ∂uM

ev = ∂vM
⇒

{
eu = uex + vey

ev = −vex + uey
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27.4.1.4 Norme des vecteurs de la base naturelle en coordonnées paraboliques





‖eu‖ =
√

u2 + v2

‖ev‖ =
√

v2 + u2

27.4.2 Coordonnées cylindrico-paraboliques (u, v, z)

27.4.2.1 Passage des coordonnées cylindrico-paraboliques aux rectangulaires





x = (u2 − v2)/2

y = uv

z = z

avec − ∞ < u < +∞, v > 0, −∞ < z < +∞

Elles sont identiques aux coordonnées paraboliques, avec en plus z = z et ez = ez.

27.4.3 Coordonnées paraboloïdales (u, v, φ)

27.4.3.1 Passage des coordonnées paraboloïdales aux rectangulaires





x = uv cos(φ)

y = uv sin(φ)

z = (u2 − v2)/2

avec u > 0, v > 0, 0 6 φ < 2π

On obtient les surfaces de coordonnées paraboloïdales u = cste et v = cste en faisant tourner
les paraboles de la figure 27.8 p. 376 autour de l’axe x, cet axe devenant l’axe z (axe de symétrie
de révolution). Le troisième ensemble de surfaces de coordonnées, φ = cste, est formé de plans
coupant cet axe de révolution.

27.4.3.2 Vecteurs de la base naturelle en coordonnées paraboloïdales

Partant de l’expression du vecteur position :

OM = xex + yey + zez

= uv cos(φ) ex + uv sin(φ) ey +
u2 − v2

2
ez

nous trouvons l’expression des vecteurs de la base naturelle :




eu = ∂uM

ev = ∂vM

eφ = ∂φM

⇒





eu = v cos(φ) ex + v sin(φ) ey + uez

ev = u cos(φ) ex + u sin(φ) ey − vez

eφ = −uv sin(φ) ex + uv cos(φ) ey

27.4.3.3 Norme des vecteurs de la base naturelle en coordonnées paraboloïdales





‖eu‖ =
√

v2 cos2 φ + v2 sin2 φ + u2

‖ev‖ =
√

u2 cos2 φ + u2 sin2 φ + v2

‖eφ‖ =
√

u2v2 sin2 φ + u2v2 cos2 φ

⇒





‖eu‖ =
√

v2 + u2

‖ev‖ =
√

u2 + v2

‖eφ‖ = uv
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27.4.4 Coordonnées elliptiques (u, v)

27.4.4.1 Passage des coordonnées elliptiques aux rectangulaires (Fig. 27.9)

{
x = a cosh u cos v

y = a sinh u sin v
avec u > 0, 0 6 v < 2π

En élevant au carré, nous avons :





u2 = a2 cosh2 u cos2 v

v2 = a2 sinh2 u sin2 v
⇒





u2

a2 cosh2 u
= cos2 v

v2

a2 sinh2 u
= sin2 v

d’où :

u2

a2 cosh2 u
+

v2

a2 sinh2 u
= cos2 v + sin2 v

= 1

qui est l’équation d’une ellipse lorsque le paramètre u est constant, et :

u2

a2 cos2 v
− v2

a2 sin2 v
= cosh2 u − sinh2 u

= 1

qui est l’équation d’une hyperbole lorsque le paramètre v est constant.
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v = 0

v = π/6

v = π/3v = π/2

v = π

v = 5π/6

v = 2π/3

v = 11π/6

v = 5π/3

v = 3π/2

v = 7π/6

v = 4π/3

u = 0

u = 1

u = 1.5

u = 2

x

y

Fig. 27.9 – Coordonnées elliptiques

27.4.4.2 Vecteurs de la base naturelle en coordonnées elliptiques

Partant de l’expression du vecteur position :

OM = xex + yey

= a cosh u cos vex + a sinh u sin vey

nous trouvons l’expression des vecteurs de la base naturelle :
{

eu = ∂uM

ev = ∂vM
⇒

{
eu = a sinh u cos vex + a cosh u sin vey

ev = −a cosh u sin vex + a sinh u cos vey

27.4.4.3 Norme des vecteurs de la base naturelle en coordonnées elliptiques





‖eu‖ =
√

a2 sinh2 u cos2 v + a2 cosh2 u sin2 v

‖ev‖ =
√

a2 cosh2 u sin2 v + a2 sinh2 u cos2 v
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



‖eu‖ = a
√

sinh2 u cos2 v + (1 + sinh2 u) sin2 v

‖ev‖ = a
√

(1 + sinh2 u) sin2 v + sinh2 u cos2 v
⇒





‖eu‖ = a
√

sinh2 u + sin2 v

‖ev‖ = a
√

sin2 v + sinh2 u

27.4.5 Coordonnées cylindrico-elliptiques (u, v, z)

27.4.5.1 Passage des coordonnées cylindrico-elliptiques aux rectangulaires





x = a cosh u cos v

y = a sinh u sin v

z = z

avec u > 0, 0 6 v < 2π, −∞ < z < +∞

Elles sont identiques aux coordonnées elliptiques, avec en plus z = z et ez = ez.

27.4.6 Coordonnées de trace elliptique allongée (ξ, η, φ)

27.4.6.1 Passage des coordonnées de trace elliptique allongée aux rectangulaires





x = a sinh ξ sin η cos(φ)

y = a sinh ξ sin η sin(φ)

z = a cosh ξ cos η

avec ξ > 0, 0 6 η 6 π, 0 6 φ < 2π

On obtient les surfaces de coordonnées elliptiques de trace allongée, ξ = cste et η = cste, en
faisant tourner les courbes de la figure 27.9 p. 379 autour de l’axe x, cet axe devenant l’axe z
(axe de symétrie de révolution). Le troisième ensemble de surfaces de coordonnées, φ = cste,
est formé de plans coupant cet axe de révolution.

27.4.6.2 Vecteurs de la base naturelle en coordonnées de trace elliptique allongée

Partant de l’expression du vecteur position :

OM = xex + yey + zez

= a sinh ξ sin η cos(φ) ex + a sinh ξ sin η sin(φ) ey + a cosh ξ cos ηez

nous trouvons l’expression des vecteurs de la base naturelle :




eξ = ∂ξM

eη = ∂ηM

eφ = ∂φM

⇒





eξ = a cosh ξ sin η cos(φ) ex + a cosh ξ sin η sin(φ) ey + a sinh ξ cos ηez

eη = a sinh ξ cos η cos(φ) ex + a sinh ξ cos η sin(φ) ey − a cosh ξ sin ηez

eφ = −a sinh ξ sin η sin(φ) ex + a sinh ξ sin η cos(φ) ey

27.4.6.3 Norme des vecteurs de la base naturelle en coordonnées de trace elliptique allongée





‖eξ‖ =
√

a2 cosh2 ξ sin2 η cos2φ + a2 cosh2 ξ sin2 η sin2φ + a2 sinh2 ξ cos2 η

‖eη‖ =
√

a2 sinh2 ξ cos2 η cos2φ + a2 sinh2 ξ cos2 η sin2φ + a2 cosh2 ξ sin2 η

‖eφ‖ =
√

a2 sinh2 ξ sin2 η sin2φ + a2 sinh2 ξ sin2 η cos2φ
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



‖eξ‖ = a
√

cosh2 ξ sin2 η + sinh2 ξ cos2 η

‖eη‖ = a
√

sinh2 ξ cos2 η + cosh2 ξ sin2 η

‖eφ‖ = a sinh ξ sin η

⇒





‖eξ‖ = a
√

(1 + sinh2 ξ) sin2 η + sinh2 ξ cos2 η

‖eη‖ = a
√

sinh2 ξ(1 − sin2 η) + cosh2 ξ sin2 η

‖eφ‖ = a sinh ξ sin η





‖eξ‖ = a
√

sin2 η + sinh2 ξ

‖eη‖ = a
√

sinh2 ξ + sin2 η

‖eφ‖ = a sinh ξ sin η

27.4.7 Coordonnées de trace elliptique aplatie (ξ, η, φ)

27.4.7.1 Passage des coordonnées de trace elliptique aplatie aux rectangulaires





x = a cosh ξ cos η cos(φ)

y = a cosh ξ cos η sin(φ)

z = a sinh ξ sin η

avec ξ > 0, −π/2 6 η 6 π/2, 0 6 φ < 2π

On obtient les surfaces de coordonnées elliptiques de trace aplatie, ξ = cste et η = cste, en
faisant tourner les courbes de la figure 27.9 p. 379 autour de l’axe y, cet axe devenant l’axe z
(axe de symétrie de révolution). Le troisième ensemble de surfaces de coordonnées, φ = cste,
est formé de plans coupant cet axe de révolution.

27.4.7.2 Vecteurs de la base naturelle en coordonnées de trace elliptique aplatie

Partant de l’expression du vecteur position :

OM = xex + yey + zez

= a cosh ξ cos η cos(φ) ex + a cosh ξ cos η sin(φ) ey + a sinh ξ sin ηez

nous trouvons l’expression des vecteurs de la base naturelle :




eξ = ∂ξM

eη = ∂ηM

eφ = ∂φM

⇒





eξ = a sinh ξ cos η cos(φ) ex + a sinh ξ cos η sin(φ) ey + a cosh ξ sin ηez

eη = −a cosh ξ sin η cos(φ) ex − a cosh ξ sin η sin(φ) ey + a sinh ξ cos ηez

eφ = −a cosh ξ cos η sin(φ) ex + a cosh ξ cos η cos(φ) ey

27.4.7.3 Norme des vecteurs de la base naturelle en coordonnées de trace elliptique aplatie





‖eξ‖ =
√

a2 sinh2 ξ cos2 η cos2 φ + a2 sinh2 ξ cos2 η sin2 φ + a2 cosh2 ξ sin2 η

‖eη‖ =
√

a2 cosh2 ξ sin2 η cos2 φ + a2 cosh2 ξ sin2 η sin2 φ + a2 sinh2 ξ cos2 η

‖eφ‖ =
√

a2 cosh2 ξ cos2 η sin2 φ + a2 cosh2 ξ cos2 η cos2 φ




‖eξ‖ = a
√

sinh2 ξ cos2 η + cosh2 ξ sin2 η

‖eη‖ = a
√

cosh2 ξ sin2 η + sinh2 ξ cos2 η

‖eφ‖ = a cosh ξ cos η

⇒





‖eξ‖ = a
√

sinh2 ξ(1 − sin2 η) + cosh2 ξ sin2 η

‖eφ‖ = a
√

(1 + sinh2 ξ) sin2 η + sinh2 ξ cos2 η

‖eφ‖ = a cosh ξ cos η
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



‖eξ‖ = a
√

sinh2 ξ + sinh2 η

‖eφ‖ = a
√

sin2 η + sinh2 ξ

‖eφ‖ = a cosh ξ cos η

27.4.8 Coordonnées ellipsoïdale (λ, µ, ν)

27.4.8.1 Passage des coordonnées ellipsoïdale aux rectangulaires

Le passage des coordonnées ellipsoïdales aux coordonnées rectangulaires s’obtient à partir
de l’équation d’un ellipsoïde 1 de demi-axes a, b, c respectivement suivant x, y, z :

u2

a2
+

v2

b2
+

w2

c2
= 1

A partir de cette équation, nous écrivons les familles de surfaces orthogonales, qui constituent
ce système de coordonnées :

u2

a2 − λ
+

v2

b2 − λ
+

w2

c2 − λ
= 1 (249a)

u2

a2 − µ
+

v2

b2 − µ
+

w2

c2 − µ
= 1 (249b)

u2

a2 − ν
+

v2

b2 − ν
+

w2

c2 − ν
= 1 (249c)

avec :

λ < c2 < µ < b2 < ν < a2 (250)

L’équation (249a), avec la condition (250), est l’équation d’un ellipsoïde lorsque le paramètre
λ est constant.

L’équation (249b), avec la condition (250), est l’équation d’un hyperboloïde à une nappe
lorsque le paramètre µ est constant.

L’équation (249c), avec la condition (250), est l’équation d’un hyperboloïde à deux nappes
lorsque le paramètre ν est constant.

En résolvant par rapport aux variables x, y, z, nous avons :





u2 =
(a2 − λ)(a2 − µ)(a2 − ν)

(a2 − b2)(a2 − c2)

v2 =
(b2 − λ)(b2 − µ)(b2 − ν)

(b2 − a2)(b2 − c2)

w2 =
(c2 − λ)(c2 − µ)(c2 − ν)

(c2 − b2)(c2 − a2)

(251)

1. Voir Coniques.pdf
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Vérifions que l’on retrouve, par exemple, l’équation (249a) à partir des équations (251) :

u2

a2 − λ
+

v2

b2 − λ
+

w2

c2 − λ
=

(a2 − µ)(a2 − ν)

(a2 − b2)(a2 − c2)
+

(b2 − µ)(b2 − ν)

(b2 − a2)(b2 − c2)
+

(c2 − µ)(c2 − ν)

(c2 − b2)(c2 − a2)

=
(a2 − µ)(a2 − ν)(b2 − c2) − (b2 − µ)(b2 − ν)(a2 − c2)

(a2 − b2)(a2 − c2)(b2 − c2)
+

(c2 − µ)(c2 − ν)(a2 − b2)

(a2 − b2)(a2 − c2)(b2 − c2)

=
(a4 − µa2 − νa2 + µν)(b2 − c2) − (b4 − µb2 − νb2 + µν)(a2 − c2)

(a4 − b2a2 − a2c2 + b2c2)(b2 − c2)

+
(c4 − µc2 − νc2 + µν)(a2 − b2)

(a4 − b2a2 − a2c2 + b2c2)(b2 − c2)

=
a4b2 − µa2b2 − νa2b2 + µνb2 − a4c2 + µa2c2 + νa2c2 − µνc2

a4b2 − b4a2 − a2c2b2 + b4c2 − a4c2 + b2a2c2 + a2c4 − b2c4

+
−b4a2 + µb2a2 + νb2a2 − µνa2 + b4c2 − µb2c2 − νb2c2 + µνc2

a4b2 − b4a2 − a2c2b2 + b4c2 − a4c2 + b2a2c2 + a2c4 − b2c4

+
c4a2 − µc2a2 − νc2a2 + µνa2 − c4b2 + µc2b2 + νc2b2 − µνb2

a4b2 − b4a2 − a2c2b2 + b4c2 − a4c2 + b2a2c2 + a2c4 − b2c4

=
a4b2 − b4a2 − a2c2b2 + b4c2 − a4c2 + b2a2c2 + a2c4 − b2c4

a4b2 − b4a2 − a2c2b2 + b4c2 − a4c2 + b2a2c2 + a2c4 − b2c4

= 1

27.4.8.2 Norme des vecteurs de la base naturelle en coordonnées ellipsoïdale





‖eλ‖ =
1

2

√√√√ (µ − λ)(ν − λ)

(a2 − λ)(b2 − λ)(c2 − λ)

‖eµ‖ =
1

2

√√√√ (µ − ν)(λ − µ)

(a2 − µ)(b2 − µ)(c2 − µ)

‖eν‖ =
1

2

√√√√ (λ − ν)(µ − ν)

(a2 − ν)(b2 − ν)(c2 − ν)

27.4.9 Coordonnées bipolaires (u, v)

27.4.9.1 Passage des coordonnées bipolaires aux rectangulaires (Fig. 27.10)





x =
a sinh v

cosh v − cos u

y =
a sin u

cosh v − cos u

avec 0 6 u < 2π, −∞ < v < +∞

Le passage s’écrit aussi :




u2 + (y − a cot u)2 = a2u

(x − a cot v)2 + v2 = a2v

Les lignes de coordonnées u ou v constante sont des cercles non concentriques.
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u = 2π

v = 0.5

v = 1
v = 2

v = 0

v = −0.5

v = −1
v = −2

u = 3π/2

u = π/2

u = π/4

u = π/6

u = 7π/4

u = 11π/6

x

y

Fig. 27.10 – Coordonnées bipolaires

27.4.9.2 Vecteurs de la base naturelle en coordonnées bipolaires

Partant de l’expression du vecteur position :

OM = xex + yey

=
a sinh v

cosh v − cos u
ex +

a sin u

cosh v − cos u
ey

nous trouvons l’expression des vecteurs de la base naturelle :
{

eu = ∂uM

ev = ∂vM




eu =
a sinh v sin u

(cosh v − cos u)2
ex +

a cos u(cosh v − cos u) − a sin u(cosh v + sin u)

(cosh v − cos u)2
ey

ev =
a cosh v(cosh v − cos u) − a sinh v(sinh v − cos u)

(cosh v − cos u)2
ex − a sin u sinh v

(cosh v − cos u)2
ey

27.4.9.3 Norme des vecteurs de la base naturelle en coordonnées bipolaires





‖eu‖ =
a

cosh v − cos u
‖ev‖ = ‖eu‖
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27.4.10 Coordonnées cylindrico-bipolaires (u, v, z)

27.4.10.1 Passage des coordonnées cylindrico-bipolaires aux rectangulaires





u2 + (y − a cot u)2 = a2u

(x − a cot v)2 + v2 = a2v

z = z

avec 0 6 u < 2π, −∞ < v < +∞, −∞ < z < +∞

ou bien :



x =
a sinh v

cosh v − cos u

y =
a sin u

cosh v − cos u
z = z

avec 0 6 u < 2π, −∞ < v < +∞, −∞ < z < +∞

Elles sont identiques aux coordonnées bipolaires, avec en plus z = z et ez = ez.

27.4.11 Coordonnées toroïdales (u, v, φ)

27.4.11.1 Passage des coordonnées toroïdales aux cylindriques





ρ =
a sin u

cosh v − cos u

z =
a sinh v

cosh v − cos u
φ = φ

avec 0 6 u < 2π, v > 0, 0 6 φ < 2π

On obtient les surfaces de coordonnées toroïdales en faisant tourner les courbes de la figure
27.10 p. 384 autour de l’axe y, cet axe devenant l’axe z (axe de symétrie de révolution). Les
surfaces de coordonnée u = cste, sont des sphères, les surfaces de coordonnées v = cste, sont des
tores. Le troisième ensemble de surfaces de coordonnées, φ = cste, est formé de plans coupant
cet axe de révolution.
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